Skip to main content
Log in

Development and mapping of microsatellite (SSR) markers in wheat

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Microsatellite DNA markers are consistently found to be more informative than other classes of markers in hexaploid wheat. The objectives of this research were to develop new primers flanking wheat microsatellites and to position the associated loci on the wheat genome map by genetic linkage mapping in the ITMI W7984 × Opata85 recombinant inbred line (RIL) population and/or by physical mapping with cytogenetic stocks. We observed that the efficiency of marker development could be increased in wheat by creating libraries from sheared rather than enzyme-digested DNA fragments for microsatellite screening, by focusing on microsatellites with the [ATT/TAA] n motif, and by adding an untemplated G-C clamp to the 5′-end of primers. A total of 540 microsatellite-flanking primer pairs were developed, tested, and annotated from random genomic libraries. Primer pairs and associated loci were assigned identifiers prefixed with BARC (the acronym for the USDA-ARS Beltsville Agricultural Research Center) or Xbarc, respectively. A subset of 315 primer sets was used to map 347 loci. One hundred and twenty-five loci were localized by physical mapping alone. Of the 222 loci mapped with the ITMI population, 126 were also physically mapped. Considering all mapped loci, 126, 125, and 96 mapped to the A, B, and D genomes, respectively. Twenty-three of the new loci were positioned in gaps larger than 10 cM in the map based on pre-existing markers, and 14 mapped to the ends of chromosomes. The length of the linkage map was extended by 80.7 cM. Map positions were consistent for 111 of the 126 loci positioned by both genetic and physical mapping. The majority of the 15 discrepancies between genetic and physical mapping involved chromosome group 5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Akkaya MS, Bhagwat AA, Cregan PB (1992) Length polymorphisms of simple sequence repeat DNA in soybean. Genetics 132:1131–1139

    CAS  PubMed  Google Scholar 

  • Anderson JA, Stack RW, Liu S, Waldron BL, Fjeld AD, Coyne C, Moreno-Sevilla P, Fetch JM, Song QJ, Cregan PB, Frohberg RC (2001) DNA markers for Fusarium head blight resistance QTLs in two wheat populations. Theor Appl Genet 102:1164–1168

    Article  CAS  Google Scholar 

  • Areshchenkova T, Ganal MW (1999) Long tomato microsatellites are predominantly associated with centromeric regions. Genome 42:536–544

    Article  CAS  PubMed  Google Scholar 

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218

    CAS  Google Scholar 

  • Cregan PB, Bhagwat AA, Akkaya MS, Jiang RW (1994) Microsatellite fingerprinting and mapping of soybean. Methods Mol Cell Biol 5:49–61

    CAS  Google Scholar 

  • Czembor PC, Arseniuk E, Czaplicki A, Song QJ, Cregan PB, Ueng P (2003) QTL mapping of partial resistance in winter wheat to Stagonospora nodorum blotch. Genome 46:546–554

    Article  CAS  PubMed  Google Scholar 

  • Delaney DE, Nasuda S, Endo TR, Gill BS, Hulbert SH (1995a) Cytogenetically based physical maps of the group-2 chromosomes of wheat. Theor Appl Genet 91:568–573

    CAS  Google Scholar 

  • Delaney DE, Nasuda S, Endo TR, Gill BS (1995b) Cytogenetically based physical maps of the group-3 chromosomes of wheat. Theor Appl Genet 91:780–782

    CAS  Google Scholar 

  • Devos KM, Bryan GJ, Stephenson P, Gale MD (1995) Application of two microsatellite sequences in wheat storage proteins as molecular markers. Theor Appl Genet 90:247–252

    CAS  Google Scholar 

  • Dubcovsky J, Echaide M, Giancola S, Rousset M, Luo MC, Joppa LR, Dvorak J (1997) Seed-storage-protein loci in RFLP maps of diploid, tetraploid, and hexaploid wheat. Theor Appl Genet 95:1169–1180

    Article  CAS  Google Scholar 

  • Endo TR, Gill BS (1996) The deletion stocks of common wheat. J Hered 87:295–307

    CAS  Google Scholar 

  • Gao LF, Jing RL, Huo NX, Li Y, Li XP, Zhou HR, Chang XP, Tang JF, Ma ZY, Jia JZ (2004) One hundred and one new microsatellite loci derived from ESTs (EST-SSRs) in bread wheat. Theor Appl Genet 108:1392–1400

    Article  CAS  PubMed  Google Scholar 

  • Gastier MJ, Pulido JC, Suden S, Brody T, Kenneth HB, Murray JC, Weber JL, Hudson TJ, Sheffield VC, Duyk GM (1995) Survey of trinucleotide repeats in the human genome: assessment of their utility as genetic markers. Hum Mol Genet 4:1829–1836

    CAS  PubMed  Google Scholar 

  • Gill KS, Gill BS, Endo TR (1993) A chromosome region-specific mapping strategy reveals gene-rich telomeric ends in wheat. Chromosoma 102:374–381

    Article  CAS  Google Scholar 

  • Gill KS, Gill BS, Endo TR, Boyko EV (1996) Identification and high density mapping of gene-rich regions in chromosome group 5 of wheat. Genetics 143:1001–1012

    CAS  PubMed  Google Scholar 

  • Hart GE, Gail MD, McIntosh RA (1993) Triticum aestivum (common wheat). In: O’Brien SJ (ed) Genetic maps. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 6204–6219

    Google Scholar 

  • Hazen SP, Leroy P, Ward R (2002) AFLP in Triticum aestivum L.: patterns of genetic diversity and genome distribution. Euphytica 125:89–102

    Article  CAS  Google Scholar 

  • Hohmann U, Endo TR, Gill KS, Gill BS (1994) Comparison of genetic and physical maps of group-7 chromosomes from Triticum aestivum Mol Gen Genet 245:644–653

    CAS  PubMed  Google Scholar 

  • Kam-Morgan LNW, Gill BS (1989) DNA restriction fragment length polymorphisms: a strategy for genetic mapping of D genome of wheat. Genome 32:724–732

    CAS  Google Scholar 

  • Kim HS, Ward R (2000) Patterns of RFLP-based genetic diversity in germplasm pools of common wheat with different geographical or breeding program origins. Euphytica 115:197–208

    Article  CAS  Google Scholar 

  • Korzun V, Boerner A, Worland AJ, Law CN, Röder MS (1997) Application of microsatellite markers to distinguish inter-varietal chromosome substitution lines of wheat Triticum aestivum L. Euphytica 95:149–155

    Article  Google Scholar 

  • Kostia S, Varvio SL, Vakkari P, Pulkkinen P (1995) Microsatellite sequences in a conifer, Pinus sylvestris. Genome 38:1244–1248

    CAS  PubMed  Google Scholar 

  • Kota RS, Gill KS, Endo TR, Gill BS (1993) Construction of a cytogenetically based physical map of chromosome 1B of common wheat. Genome 36:548–554

    CAS  Google Scholar 

  • Leonova I, Pestsova E, Salina E, Efremova T, Röder M, Börner A (2003) Mapping of the Vrn-B1 gene in wheat Triticum aestivum using microsatellite markers. Plant Breed 122:209–212

    Article  CAS  Google Scholar 

  • Levinson GL, Gutman GA (1983) Slipped-strand mispairing: A major mechanism for DNA sequence evolution. Mol Biol Evol 4:203–221

    Google Scholar 

  • Levinson GL, Gutman GA (1987) High frequencies of short frameshifts in poly-CA/TG tandem repeats borne by bacteriophage M13 in Escherichia coli K12. Nucleic Acids Res 15:5323–5338

    CAS  PubMed  Google Scholar 

  • Lin F, Kong ZX, Zhu HL, Xue SL, Wu JZ, Tian DG, Wei JB, Zhang CQ, Ma ZQ (2004) Mapping QTL associated with resistance to Fusarium head blight in the Nanda2419 × Wangshuibai population. I. Type II resistance. Theor Appl Genet 109:1504–1511

    Article  Google Scholar 

  • Lincoln SE, Lander SL (1993) mapmaker/exp 3.0 and mapmaker/qtl 1.1 Technical report. Whitehead Institute of Medical Research, Cambridge, Mass.

  • Marino CL, Nelson JC, Lu YH, Sorrells ME, Leroy P, Tuleen NA, Lopes CR, Hart GE (1996) Molecular genetic maps of the group 6 chromosomes of hexaploid wheat (Triticum aestivum L. em. Thell). Genome 39:359–366

    CAS  Google Scholar 

  • McCouch SR, Chen X, Panaud O (1997) Microsatellite mapping and applications of SSLP’s in rice genetics and breeding. Plant Mol Biol 35:89–99

    Article  CAS  PubMed  Google Scholar 

  • McCouch SR, Teytelman L, Xu YB, Lobos KB, Clare K, Walton M, Fu B, Maghirang R, Li Z, Xing Y, Zhang Q, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L (2002) Development and mapping of 2240 new SSR markers for rice (Oryza sativa L). DNA Res 9:199–207

    CAS  PubMed  Google Scholar 

  • McGuire PE, Qualset CO (1996) Progress in genome mapping of wheat and related species. In: Joint Proc 5th and 6th Public Workshops of the Int Triticeae Mapping Initiative. Genetic Resources Conservation Program, Division of Agriculture and Natural Resources, University of California, Irvine, pp 38–50

  • Mickelson-Young L, Endo TR, Gill BS (1995) A cytogenetic ladder map of the wheat homoeologous group-4 chromosomes. Theor Appl Genet 90:1007–1011

    Article  CAS  Google Scholar 

  • Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet 30:194–200

    Article  CAS  PubMed  Google Scholar 

  • Nelson JC, Van Deynze AE, Autrique E, Sorrells ME, Lu YH, Merlino M, Atkinson M, Leroy P (1995a) Molecular mapping of wheat homoeologous group 2. Genome 38:516–524

    CAS  Google Scholar 

  • Nelson JC, Van Deynze AE, Autrique E, Sorrells ME, Lu YH, Negre S, Bernard M, Leroy P (1995b) Molecular mapping of wheat homoeologous group 3. Genome 38:525–533

    CAS  Google Scholar 

  • Nelson JC, Sorrells ME, Van Deynze AE, Lu YH, Atkinson M, Bernard M, Leroy P, Faris JD, Anderson JA (1995c) Molecular mapping of wheat major genes and rearrangements in homoeologous groups 4, 5, and 7. Genetics 141:721–731

    CAS  PubMed  Google Scholar 

  • Nicot N, Chiquet V, Gandon B, Amilhat L, Legeai F, Leroy P, Bernard M, Sourdille P (2004) Study of simple sequence repeat (SSR) markers from wheat expressed sequence tags (ESTs). Theor Appl Genet 109:800–805

    Article  CAS  PubMed  Google Scholar 

  • Ostrander EA, Jong PM, Rine J, Duyk G (1992) Construction of small-insert genomic DNA libraries highly enriched for microsatellite repeat sequences. Proc Natl Acad Sci USA 89:3419–3423

    Google Scholar 

  • Paillard S, Schnurbusch T, Tiwari R, Messmer M, Winzeler M, Keller B, Schachermayr G (2004) QTL analysis of resistance to Fusarium head blight in Swiss winter wheat (Triticum aestivum L). Theor Appl Genet 109:323–332

    Article  CAS  PubMed  Google Scholar 

  • Paull JG, Chalmers KJ, Karakousis A, Kretschmer JM, Manning S, Langridge P (1998) Genetic diversity in Australian wheat varieties and breeding material based on RFLP data. Theor Appl Genet 96:435–446

    Article  CAS  Google Scholar 

  • Peng JH, Fahima T, Röder MS, Li YC, Dahan A, Grama A, Ronin YI, Korol AB, Nevo E (1999) Microsatellite tagging of the stripe-rust resistance gene YrH52 derived from wild emmer wheat, Triticum dicoccoides, and suggestive negative crossover interference on chromosome 1B. Theor Appl Genet 98:862–872

    Article  CAS  Google Scholar 

  • Penner GA, Clarke J, Bezte LJ, Leisle D (1995) Identification of RAPD markers linked to a gene governing cadmium uptake in durum wheat. Genome 38:543–547

    CAS  Google Scholar 

  • Pestsova E, Salina E, Börner A, Korzun V, Maystrenko OI, Röder MS (2000a) Microsatellites confirm the authenticity of inter-varietal chromosome substitution lines of wheat (Triticum aestivum L). Theor Appl Genet 101:95–99

    Article  CAS  Google Scholar 

  • Pestsova E, Korzun V, Goncharov NP, Hammer K, Ganal MW, Röder MS (2000b) Microsatellite analysis of Aegilops tauschii germplasm. Theor Appl Genet 101:100–106

    Article  CAS  Google Scholar 

  • Pestsova E, Ganal MW, Röder MS (2000c) Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome 43:689–697

    Article  CAS  PubMed  Google Scholar 

  • Pfeiffer A, Olivieri AM, Morgante M (1997) Identification and characterization of microsatellites in Norway spruce (Picea abies K). Genome 40:411–419

    CAS  PubMed  Google Scholar 

  • Plaschke J, Borner A, Wendehake K, Ganal M W, Röder M (1996) The use of wheat aneuploids for the chromosomal assignment of microsatellite loci. Euphytica 89:33–40

    CAS  Google Scholar 

  • Powell W, Machray GC, Provan J (1996) Polymorphism revealed by simple sequence repeats. Trends Plant Sci 1:215–221

    Article  Google Scholar 

  • Pulido JC, Duyk GM (1994) Construction of small insert libraries enriched for short tandem repeat sequences by marker selection. In: Boyle AL (ed) Current protocols in human genetics. Wiley, New York, pp 2221–2233

    Google Scholar 

  • Qi L, Gill BS (2001) High-density physical maps reveal that the dominant male-sterile gene Ms3 is located in a genomic region of low recombination in wheat and is not amenable to map-based cloning. Theor Appl Genet 103:998–1006

    Article  CAS  Google Scholar 

  • Qi L, Echalier B, Friebe B, Gill BS (2003) Molecular characterization of a set of wheat deletion stocks for use in chromosome bin mapping of ESTs. Funct Integr Genomics 3:39–55

    CAS  PubMed  Google Scholar 

  • Röder MS, Plaschke J, König SU, Börner A, Sorrells ME, Tanksley SD, Ganal MW (1995) Abundance, variability and chromosome location of microsatellites in wheat. Mol Gen Genet 246:327–333

    PubMed  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Gill BS, Ganal MW (1998a) The physical mapping of microsatellite markers in wheat. Genome 41:278–283

    Article  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998b) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Salina E, Börner A, Leonova I, Korzun V, Laikova L, Maystrenko O, Röder MS (2000) Microsatellite mapping of the induced sphaerococcoid mutation genes in Triticum aestivum. Theor Appl Genet 100:686–689

    Article  CAS  Google Scholar 

  • Sears ER (1966) Nullisomic-tetrasomic combinations in hexaploid wheat. In: Riley R, Lewis KR (eds) Chromosome manipulation and plant genetics. Oliver and Boyd, Edinburgh, pp 29–45

    Google Scholar 

  • Sears ER, Sears LMS (1978) The telocentric chromosomes of common wheat. In: Ramanujam S (ed) Proc 5th Int Wheat Genet Symp. Indian Society of Genetics and Plant Breeding, New Delhi, pp 389–407

  • Sheffield VC, Cox DR, Lerman LS, Myers RM (1989) Attachment of a 40-base-pair G + C-rich sequence (GC-clamp) to genomic DNA fragments by the polymerase chain reaction results in improved detection of single-base changes. Proc Natl Acad Sci USA 86:232–236

    Google Scholar 

  • Singh S, Franks CD, Huang L, Brown-Guedira GL, Marshall DS, Gill BS, Fritz A (2004) Lr41, Lr39, and a leaf rust resistance gene from Aegilops cylindrica may be allelic and are located on wheat chromosome 2DS. Theor Appl Genet 108:586–591

    Article  CAS  PubMed  Google Scholar 

  • Smith DN, Devey ME (1994) Occurrence and inheritance of microsatellites in Pinus radiate. Genome 37:977–983

    CAS  PubMed  Google Scholar 

  • Song QJ, Quigley CV, Nelson RL, Carter TE, Boerma HR, Strachan JL, Cregan PB (1999) A selected set of trinucleotide simple sequence repeat markers for soybean cultivar identification. Plant Var Seeds 12:207–220

    Google Scholar 

  • Song QJ, Fickus EW, Cregan PB (2000) Construction of genomic libraries enriched with microsatellite sequences. In: Jauhar PP (ed) Proc 2000 Natl Fusarium Head Blight Forum. Cincinnati, Ohio, pp 50–51

  • Song QJ, Fickus EW, Cregan PB (2002) Characteristics of trinucleotide markers in wheat. Theor Appl Genet 104:286–293

    Article  CAS  PubMed  Google Scholar 

  • Song QJ, Marek LF, Shoemaker RC, Lark KG, Specht JE, Concibido VC, Delannay X, Cregan PB (2004) A new integrated genetic linkage map of the soybean. Theor Appl Genet 109:122–128

    Article  CAS  PubMed  Google Scholar 

  • Sorrells ME, Anderson JA, Ogihara Y, Tanksley SD (1991) Development and application of a chromosomal arm map for wheat based on RFLP markers. In: Proc 2nd Public Workshop of the International Triticeae Mapping Initiative. Wheat Genetics Resource Center, Kansas State University, Manhattan, Kan., pp 3–11

  • Steiner B, Lemmens M, Griesser M, Scholz U, Schondelmaier J, Buerstmayr H (2004) Molecular mapping of resistance to Fusarium head blight in the spring wheat cultivar Frontana. Theor Appl Genet 109:215–225

    Article  CAS  PubMed  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Google Scholar 

  • Tranquilli G, Lijavetzk Y, Muzzi G, Dubcovsky J (1999) Genetic and physical characterization of grain texture-related loci in diploid wheat. Mol Gen Genet 262:846–850

    Article  Google Scholar 

  • Van Deynze AE (1994) Wheat groups 1–7 chromosomes, mapped in Synthetic W7984 × Opata85. http://wheat.pw.usda.gov/ggpages/maps.shtml#wheat

  • Van Deynze AE, Dubcovsky J, Gill KS, Nelson JC, Sorrells ME, Dvorak J, Gill BS, Lagudah ES, McCouch SR, Appels R (1995) Molecular-genetic maps for group 1 chromosomes of Triticeae species and their relation to chromosomes in rice and oat. Genome 38:45–59

    CAS  Google Scholar 

  • Van Ooijen JW, Voorrips RE (2001) joinmap 3.0 software for the calculation of genetic linkage maps. Plant Research International, Wageningen, The Netherlands

  • Wang D, Shi J, Carlson SR, Cregan PB, Ward RW, Diers BW (2003) A low-cost and high-throughput system for high-resolution genotyping with microsatellite DNA markers. Crop Sci 43:1828–1832

    CAS  Google Scholar 

  • Werner JE, Endo TR, Gill BS (1992) Toward a cytogenetically based physical map of the wheat genome. Proc Natl Acad Sci USA 89:11307–11311

    Google Scholar 

  • Zhou WC, Kolb FL, Bai GH, Domier LL, Yao JB (2002a) Effect of individual Sumai 3 chromosomes on resistance to scab spread within spikes and deoxynivalenol accumulation within kernels in wheat. Hereditas 137:81–89

    CAS  PubMed  Google Scholar 

  • Zhou WC, Kolb FL, Bai GH, Shaner G, Domier LL (2002b) Genetic analysis of scab resistance QTL in wheat with microsatellite and AFLP markers. Genome 45:719–727

    Article  CAS  PubMed  Google Scholar 

  • Zhu LC, Smith CM, Fritz A, Boyko EV, Flinn MB (2004) Genetic analysis and molecular mapping of a wheat gene conferring tolerance to the greenbug (Schizaphis graminum Rondani). Theor Appl Genet 109:289–293

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Agricultural Technology, Utilization and Transfer (ATUT) Project 008, the Steering Committee of the U.S. Wheat and Barley Scab Initiative, and the USDA-ARS for the support of this research. Also, the excellent technical assistance of Susan Fogarty and P. Chris Lee is gratefully acknowledged. Victoria Carollo of GrainGenes provided invaluable assistance in identifying errors in the names of loci.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. B. Cregan.

Additional information

Communicated by D. A. Hoisington

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, Q.J., Shi, J.R., Singh, S. et al. Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet 110, 550–560 (2005). https://doi.org/10.1007/s00122-004-1871-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-004-1871-x

Keywords

Navigation