Skip to main content
Log in

Identification of quantitative trait loci for productive tiller number and its relationship to agronomic traits in spring wheat

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Productive tiller number (PTN), defined as the number of tillers that produce spikes and seeds, is a key component of grain yield in wheat. Spring wheat cultivars in the northern Great Plains of North America differ in PTN. The objectives of this study were (1) to determine the relationship of PTN to agronomic traits using recombinant inbred line (RIL) populations derived from crosses Reeder/Conan, McNeal/Thatcher and Reeder/McNeal grown under a range of environments, and (2) to identify and validate quantitative trait loci (QTL) associated with high PTN. Correlation between PTN and plot weight ranged from r = 0.4–0.6 among the populations based on combined means over years, and was positive in every environment for all crosses (P < 0.05). A genetic map generated for the Reeder/Conan RIL allowed identification of a QTL for PTN consistent over environments, located on chromosome 6B. The QTL on chromosome 6B (QTn.mst-6B) explained 9–17% of the variation of PTN and co-segregated with a QTL for yield in the Reeder/Conan RIL. QTn.mst-6B was validated by single marker analysis in the McNeal/Thatcher RIL, McNeal/Reeder RIL, and a set of near isogenic line (NIL) developed for QTn.mst-6B. The allele for high PTN significantly increased PTN by 8.7, 4, and 13% in the McNeal/Reeder RIL, McNeal/Thatcher RIL and Choteau/Reeder NIL, respectively. The allele for high PTN also had a significant positive effect on plot weight in the McNeal/Reeder RIL. Our results suggest that high PTN, controlled to a significant extent by QTn.mst-6B, contributed to increased yield potential over a range of environmental conditions. QTn.mst-6B may be useful for improving spring wheat in the northern Great Plains of North America and similar environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang S, Uszynski G, Mohler V, Lehmensiek A, Kuchel H, Hayden MJ, Howes N, Sharp P, Vaughan P, Rathmell B, Huttner F, Kilian A (2006) Diversity arrays technology (DArT) for high-throughput prowling of the hexaploid wheat genome. Theor Appl Genet 113:1409–1420

    Article  PubMed  CAS  Google Scholar 

  • An DG, Su JY, Liu QY, Zhu YG, Tong YP, Li JM, Jing RL, Li B, Li ZS (2006) Mapping QTL for nitrogen uptake in relation to the early growth of wheat (Triticum aestivum L.). Plant Soil 284:73–84

    Article  CAS  Google Scholar 

  • Babb S, Muehlbauer GJ (2003) Genetic and morphological characterization of the barley uniculm2 (cul2) mutant. Theor Appl Genet 106:846–857

    PubMed  CAS  Google Scholar 

  • Baum M, Grando S, Backes G, Jahoor A, Sabbagh A, Ceccarelli S (2003) QTL for agronomic traits in the Mediterranean environment identified in recombinant inbred lines of the cross ‘Arta’ X H. spontaneum 41–1. Theor Appl Genet 107:1215–1225

    Article  PubMed  CAS  Google Scholar 

  • Blake NK, Lanning SP, Martin JM, Doyle M, Sherman JD, Naruoka Y, Talbert LE (2009) Effect of variation for major growth habit genes on maturity and yield in five spring wheat populations. Crop Sci 49:1211–1220

    Article  CAS  Google Scholar 

  • Blake NK, Stougaard RN, Weaver DK, Sherman JD, Lanning SP, Naruoka Y, Xue Q, Martin JM, Talbert LE (2011) Identification of a quantitative trait locus for resistance to Sitodiplosis mosellana (Gehin), the orange wheat blossom midge in spring wheat. Plant Breed 130:25–30

    Article  CAS  Google Scholar 

  • Chaky JM (2003) Advanced backcross QTL analysis in a mating between Glycine max and Glycine soja. M.S. thesis, University of Nebraska, Lincoln

  • Dabbert T, Okagaki RJ, Cho S, Boddu J, Muehlbauer GJ (2009) The genetics of barley low-tillering mutants: absent lower laterals (als). Theor Appl Genet 118:1351–1360

    Article  PubMed  CAS  Google Scholar 

  • Deng S, Wu X, Wu Y, Zhou R, Wang H, Jia J, Liu S (2011) Characterization and precise mapping of a QTL increasing spike number with pleiotropic effects in wheat. Theor Appl Genet 122:281–289

    Article  PubMed  Google Scholar 

  • Doebley J, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature 386:485–488

    Article  PubMed  CAS  Google Scholar 

  • Donald CM (1968) The breeding of crop ideotypes. Euphytica 17:385–403

    Article  Google Scholar 

  • Elhani S, Martos V, Rharrabti Y, Royo C, García del Moral LF (2007) Contribution of main stem and tillers to durum wheat (Triticum turgidum L. var. durum) grain yield and its components grown in Mediterranean environments. Field Crop Res 103:25–35

    Article  Google Scholar 

  • Franckowiak JD (1996) Revised linkage maps for morphological markers in barley, Hordeum vulgare. Barley Genet Newsl 26:9–21

    Google Scholar 

  • Gallagher JN, Biscoe PV (1978) A physiological analysis of cereal yield. II. Partitioning of dry matter. Agric Prog 53:51–70

    Google Scholar 

  • Grain Genes 2.0: A data base for Triticeae and Avena (2010) http://wheat.pw.usda.gov/GG2/index.shtml. Accessed 21 July 2010

  • Hansen KA, Martin JM, Lanning SP, Talbert LE (2005) Correlation of genotype performance for agronomic and physiological traits in space-panted versus densely seeded conditions. Crop Sci 45:1023–1028

    Article  Google Scholar 

  • Huang XQ, Coster H, Ganal MW, Roder MS (2003) Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theor Appl Genet 106:1379–1389

    PubMed  CAS  Google Scholar 

  • Kato K, Miura H, Sawada S (2000) Mapping QTL controlling grain yield and its components on chromosome 5A of wheat. Theorl Appl Genets 101:1114–1121

    Article  CAS  Google Scholar 

  • Knapp SJ, Stroup WW, Ross WM (1985) Exact confidence intervals for heritability on a progeny mean basis. Crop Sci 25:192–194

    Article  Google Scholar 

  • Kuchel H, Williams KJ, Langridge P, Eagles HA, Jefferies SP (2007) Genetic dissection of grain yield in bread wheat. I. QTL analysis. Theor Appl Genet 115:1029–1041

    Article  PubMed  CAS  Google Scholar 

  • Kumar N, Kulwal PL, Balyan HS, Gupta PK (2007) QTL mapping for yield and yield contributing traits in two mapping populations of bread wheat. Mol Breed 19:163–177

    Article  Google Scholar 

  • Kuraparthy V, Sood S, Dhaliwal HS, Chhuneja P, Gill BS (2007) Identification and mapping of a tiller inhibition gene (tin3) in wheat. Theor Appl Genet 114:285–294

    Article  PubMed  CAS  Google Scholar 

  • Lanning SP, Talbert LE, McGuire CF, Bowman HF, Carlson GR, Jackson GD, Eckhoff JL, Kushnak GD, Stougaard RN, Stallknecht GF, Wichman DM (1994) Registration of McNeal what. Crop Sci 34:1126–1127

    Article  Google Scholar 

  • Lanning SP, Kephart K, Carlson GR, Eckhoff JE, Stougaard RN, Wichman DM, Martin JM, Talbert LE (2010) Climatic change and agronomic performance of hard red spring wheat from 1950 to 2007. Crop Sci 50:835–841

    Article  Google Scholar 

  • Li WL, Nelson JC, Chu CY, Shi LH, Huang SH, Liu DJ (2002) Chromosomal locations and genetic relationships of tiller and spike characters in wheat. Euphytica 125:357–366

    Article  CAS  Google Scholar 

  • Li XY, Qian Q, Fu ZM, Wang YH, Xiong GS, Zeng DL, Wang XQ, Liu XF, Teng S, Fujimoto H, Yuan M, Luo D, Han B, Li JY (2003) Control of tillering in rice. Nature 422:618–621

    Article  PubMed  CAS  Google Scholar 

  • Loss SP, Siddique KHM (1994) Morphological and physiological traits associated with wheat yield increases in Mediterranean environments. Adv Agron 52:229–276

    Article  CAS  Google Scholar 

  • Ma ZQ, Zhao DM, Zhang CQ, Zhang ZZ, Xue SL, Lin F, Kong ZX, Tian DG, Luo QY (2007) Molecular genetic analysis of five spike-related traits in wheat using RIL and immortalized F2 populations. Mol Genet Genomics 277:31–42

    Article  PubMed  CAS  Google Scholar 

  • Malyshev S, Korzun V, Voylokov A, Smirnov V, Borner A (2001) Linkage mapping of mutant loci in rye (Secale cereale L.). Theor Appl Genet 103:70–74

    Article  CAS  Google Scholar 

  • Marza F, Bai GH, Carver BF, Zhou WC (2006) Quantitative trait loci for yield and related traits in the wheat population Ning7840 × Clark. Theor Appl Genet 112:688–698

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto N, Goto Y, Matsui M, Ukai Y, Morita M, Nemoto K (2004) Quantitative trait loci for phyllochron and tillering in rice. Theor Appl Genet 109:700–706

    Article  PubMed  CAS  Google Scholar 

  • Montana Agricultural Statistics (2010) Montana Dep. of Agriculture and U.S. Dep. of Agriculture National Agricultural Statistics Service. www.nass.usda.gov/mt/. Accessed 21 July 2010

  • Narasimhamoorthy B, Gill BS, Fritz AK, Nelson JC, Brown-Guedira GL (2006) Advanced backcross QTL analysis of a hard winter wheat x synthetic wheat population. Theor Appl Genet 112:787–796

    Article  PubMed  CAS  Google Scholar 

  • National Climatic Data Center (2010) Record of climatological observations. Natl. Clim. Data Cent., Asheville, NC. http://cdo.ncdc.noaa.gov/dly/DLY. Accessed 21 July 2010

  • Pinthus JM (1966) Evaluation of winter wheat as a source of high yield potential for the breeding of spring wheat. Euphytica 16:231–251

    Article  Google Scholar 

  • Quarrie SA, Quarrie SP, Radosevic R, Rancic D, Kaminska A, Barnes JD, Leverington M, Ceoloni C, Dodig D (2006) Dissecting a wheat QTL for yield present in a range of environments: from the QTL to candidate genes. J Exp Bot 57:2627–2637

    Article  PubMed  CAS  Google Scholar 

  • Rahman ML, Chu SH, Choi MS, Qiao YL, Jiang W, Piao R, Khanam S, Cho YI, Jeung JU, Jena KK, Koh HJ (2007) Identification of QTL for some agronomic traits in rice using an introgression line from Oryza minuta. Mol Cells 24:16–26

    PubMed  CAS  Google Scholar 

  • Reynolds MP, Skovmand B, Trethowan R, Pfeiffer W (1999) Evaluating a conceptual model for drought tolerance. In: Ribaut JM (ed) Using molecular markers to improve drought tolerance. CIMMYT, Mexico D.F

    Google Scholar 

  • Richards RA (1988) A tiller inhibitor gene in wheat and its effect on plant growth. Aust J Agric Res 39:749–757

    Article  Google Scholar 

  • SAS Institute Inc. (2004) SAS/STAT 9.1 user’s guide. SAS Institute. Inc., Cary, NC

  • Schmitz G, Theres K (2005) Shoot and inflorescence branching. Curr Opin Plant Biol 8:506–511

    Article  PubMed  CAS  Google Scholar 

  • Shah MM, Gill KS, Baenziger PS, Yen Y, Kaeppler SM, Ariyarathne HM (1999) Molecular mapping of loci for agronomic traits on chromosome 3A of bread wheat. Crop Sci 39:1728–1732

    Article  CAS  Google Scholar 

  • Sherman JD, Weaver DK, Hofland ML, Sing SE, Buteler M, Lanning SP, Naruoka Y, Crutcher F, Blake NK, Martin JM, Lamb PF, Carlson GR, Talbert LE (2010) Identification of novel QTL for sawfly resistance in wheat. Crop Sci 50:73–86

    Article  Google Scholar 

  • Sidwell RJ, Smith EL, McNew RW (1976) Inheritance and interrelationships of grain yield and selected yield-related traits in a hard red winter wheat cross. Crop Sci 16:650–654

    Article  Google Scholar 

  • Spielmeyer W, Richards RA (2004) Comparative mapping of wheat chromosome 1AS which contains the tiller inhibition gene (tin) with rice chromosome 5S. Theor Appl Genet 109:1303–1310

    Article  PubMed  CAS  Google Scholar 

  • Tapsell CR, Thomas WTB (1983) Cross predictions studies on spring barley. 2. Estimation of genetic and environmental control of yield and its component characters. Theor Appl Genet 64:353–358

    Article  Google Scholar 

  • Weaver JE (1926) Root development of field crops. McGraw-Hill Book Co., New York

    Google Scholar 

  • Yan JQ, Zhu J, He CX, Benmoussa M, Wu P (1998) Quantitative trait loci analysis for the developmental behavior of tiller number in rice (Oryza sativa L.). Theor Appl Genet 97:267–274

    Article  CAS  Google Scholar 

  • Zeng ZB (1993) The theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci USA 90:10972–10976

    Article  PubMed  CAS  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:14–1457

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from USDA/CSREES-NRICAP (2006-55606-16629), the Montana Wheat and Barley Committee, the Montana Board of Research and Commercialization, and USDA NIFA CAP (2011-68002-30029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Sherman.

Additional information

Communicated by T. Komatsuda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naruoka, Y., Talbert, L.E., Lanning, S.P. et al. Identification of quantitative trait loci for productive tiller number and its relationship to agronomic traits in spring wheat. Theor Appl Genet 123, 1043–1053 (2011). https://doi.org/10.1007/s00122-011-1646-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-011-1646-0

Keywords

Navigation