Skip to main content
Log in

Molecular mapping of a new powdery mildew resistance gene Pm2b in Chinese breeding line KM2939

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

An allele of Pm2 for wheat powdery mildew resistance was identified in a putative Agropyron cristatum -derived line and used in wheat breeding programs.

Abstract

Powdery mildew (caused by Blumeria graminis f. sp. tritici, Bgt) is one of the most devastating wheat diseases worldwide. It is important to exploit varied sources of resistance from common wheat and its relatives in resistance breeding. KM2939, a Chinese breeding line, exhibits high resistance to powdery mildew at both the seedling and adult stages. It carries a single dominant powdery mildew resistance (Pm) allele of Pm2, designated Pm2b, the previous allelic designation Pm2 will be re-designated as Pm2a. Pm2b was mapped to chromosome arm 5DS and flanked by sequence characterized amplified region (SCAR) markers SCAR112 and SCAR203 with genetic distances of 0.5 and 1.3 cM, respectively. Sequence tagged site (STS) marker Mag6176 and simple sequence repeat (SSR) marker Cfd81 co-segregated with SCAR203. Pm2b differs in specificity from donors of Pm2a, Pm46 and PmLX66 on chromosome arm 5DS. Allelism tests indicated that Pm2b, Pm2a and PmLX66 are allelic. Therefore, Pm2b appears to be a new allele at the Pm2 locus. The closely linked markers were used to accelerate transfer of Pm2b to wheat cultivars in current production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AFLP:

Amplified fragment length polymorphism

Bgt :

Blumeria graminis f. sp. tritici

BSA:

Bulked segregant analysis

GISH:

Genomic in situ hybridization

MAS:

Marker-assisted selection

NIL:

Near-isogenic line

Pm :

Powdery mildew resistance gene

RAPD:

Random amplified polymorphic DNA

RFLP:

Restriction fragment length polymorphism

RGC:

Recipient genome composition

SCAR:

Sequence characterized amplified region

SSR:

Simple sequence repeat

STS:

Sequence tagged site

References

  • An DG, Zheng Q, Zhou YL, Ma PT, Lv ZL, Li LH, Li B, Luo QL, Xu HX, Xu YF (2013) Molecular cytogenetic characterization of a new wheat-rye 4R chromosome translocation line resistant to powdery mildew. Chromosome Res 21:419–432

    Article  CAS  PubMed  Google Scholar 

  • Bennett FGA (1984) Resistance to powdery mildew in wheat: a review of its use in agriculture and breeding programmes. Plant Pathol 3:279–300

    Article  Google Scholar 

  • Chen PD, Qi LL, Zhou B, Zhang SZ, Liu DJ (1995) Development and molecular cytogenetic analysis of wheat-Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew. Theor Appl Genet 91:1125–1128

    CAS  PubMed  Google Scholar 

  • Chen PD, You CF, Hu Y, Chen SW, Zhou B, Cao AZ, Wang XE (2013) Radiation-induced translocations with reduced Haynaldia villosa chromatin at the Pm21 locus for powdery mildew resistance in wheat. Mol Breed 31:477–484

    Article  CAS  Google Scholar 

  • Dong YS, Zhou RH, Xu SJ, Li LH, Cauderon Y, Wang RRC (1992) Desirable characteristics in perennial Triticeae collected in China for wheat improvement. Hereditas 116:175–178

    Article  Google Scholar 

  • Friebe B, Heun M, Tuleen N, Zeller FJ, Gill BS (1994) Cytogenetically monitored transfer of powdery mildew resistance from rye into wheat. Crop Sci 34:621–625

    Article  Google Scholar 

  • Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS (1996) Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91:59–87

    Article  Google Scholar 

  • Gao HD, Zhu FF, Jiang YJ, Wu JZ, Yan W, Zhang QF, Jacobi A, Cai SB (2012) Genetic analysis and molecular mapping of a new powdery mildew resistant gene Pm46 in common wheat. Theor Appl Genet 125:967–973

    Article  CAS  PubMed  Google Scholar 

  • Graybosch RA (2001) Uneasy unions: quality effects of rye chromatin transfers to wheat. J Cereal Sci 33:3–16

    Article  CAS  Google Scholar 

  • Gupta PK, Langridge P, Mir RR (2010) Marker-assisted wheat breeding: present status and future possibilities. Mol Breed 261:145–161

    Article  Google Scholar 

  • Hardwick NV, Jenkins JEE, Collins B, Groves SJ (1994) Powdery mildew (Erysiphe graminis) on winter wheat: control with fungicides and the effects on yield. Crop Prot 13:93–98

    Article  CAS  Google Scholar 

  • Hartl L, Weiss H, Stephan U, Zeller FJ, Jahoor A (1995) Molecular identification of powdery mildew resistance genes in common wheat (Triticum aestivum L.). Theor Appl Genet 90:601–606

    Article  PubMed  Google Scholar 

  • He RL, Chang ZJ, Yang ZJ, Yuan ZY, Zhan HX, Zhang XJ, Liu JX (2009) Inheritance and mapping of powdery mildew resistance gene Pm43 introgressed from Thinopyrum intermedium into wheat. Theor Appl Genet 118:1173–1180

    Article  CAS  PubMed  Google Scholar 

  • Heun M, Friebe B, Bushuk W (1990) Chromosomal location of the powdery mildew resistance gene of Amigo wheat. Phytopathology 80:1129–1133

    Article  Google Scholar 

  • Hsam SLK, Zeller FJ (1997) Evidence of allelism between genes Pm8 and Pm17 and chromosomal location of powdery mildew and leaf rust resistance genes in the common wheat cultivar ‘Amigo’. Plant Breed 116:119–122

    Article  Google Scholar 

  • Huang XQ, Röder MS (2004) Molecular mapping of powdery mildew resistance genes in wheat: a review. Euphytica 137:203–223

    Article  CAS  Google Scholar 

  • Huang XQ, Hsam SLK, Zeller FJ, Wenzel G, Mohler V (2000) Molecular mapping of the wheat powdery mildew resistance gene Pm24 and marker validation for molecular breeding. Theor Appl Genet 101:407–414

    Article  CAS  Google Scholar 

  • Huang J, Zhao ZH, Song FJ, Wang XM, Xu HX, Huang Y, An DG, Li HJ (2012) Molecular detection of a gene effective against powdery mildew in the wheat cultivar Liangxing 66. Mol Breed 30:1737–1745

    Article  CAS  Google Scholar 

  • Huang Q, Li X, Chen WQ, Xiang ZP, Zhong SF, Chang ZJ, Zhang M, Zhang HY, Tan FQ, Ren ZL, Luo PG (2014) Genetic mapping of a putative Thinopyrum intermedium-derived stripe rust resistance gene on wheat chromosome 1B. Theor Appl Genet 127:843–853

    Article  CAS  PubMed  Google Scholar 

  • Johnson R (1992) Past, present and future opportunities in breeding for disease resistance, with examples from wheat. Euphytica 63:3–22

    Article  Google Scholar 

  • Karsai I, Vida G, Petrovics S, Petcu E, Kobiljski B, Ivanovska S, Bedö Z, Veisz O (2012) Assessment of the spatial genotypic and phenotypic diversity present in the various winter wheat breeding programs in Southeast Europe. Euphytica 186:139–151

    Article  Google Scholar 

  • Kosambi DD (1944) The estimation of map distance from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Kuraparthy V, Chhuneja P, Dhaliwal HS, Kaur S, Bowden RL, Gill BS (2007a) Characterization and mapping of cryptic alien introgression from Aegilops geniculata with new leaf rust and stripe rust resistance genes Lr57 and Yr40 in wheat. Theor Appl Genet 114:1379–1389

    Article  CAS  PubMed  Google Scholar 

  • Kuraparthy V, Sood S, Chhuneja P, Dhaliwal HS, Kaur S, Bowden RL, Gill BS (2007b) A cryptic wheat-Aegilops triuncialis translocation with leaf rust resistance gene Lr58. Crop Sci 47:1995–2003

    Article  CAS  Google Scholar 

  • Li Z, Zeng S (2002) Wheat rust in China (In Chinese). China Agricultural Press, Beijing

    Google Scholar 

  • Li LH, Dong YS, Zhou RH, Li XQ, Li P, Yang XM (1995) Cytogenetics and self-fertility of intergeneric hybrids between Triticum aestivum L. and Agropyron cristatum (L.) Gaertn. Chin J Genet 22:105–112

    Google Scholar 

  • Li LH, Li XQ, Li P, Dong YC, Zhao GS (1997) Establishment of wheat-Agropyron cristatum alien addition lines. I. Cytology of F3, F2BC1, BC4 and BC3F1 progenies. Acta Genet Sin 24:154–159

    CAS  Google Scholar 

  • Li GQ, Fang TL, Zhu J, Gao LL, Li S, Xie CJ, Yang ZM, Sun QX, Liu ZY (2009) Molecular identification of a powdery mildew resistance gene from common wheat cultivar Brock (In Chinese). Acta Agron Sin 35:1613–1619

    Article  CAS  Google Scholar 

  • Li T, Zhang ZY, Hu YK, Duan XY, Xin ZY (2010) Identification and molecular mapping of a resistance gene to powdery mildew from the synthetic wheat line M53. J Appl Genet 52:137–143

    Article  PubMed  Google Scholar 

  • Lincoln S, Daly M, Lander E (1992) Constructing genetic maps with Mapmaker/EXP30 Whitehead Institute Techn Rep, 3rd edn. Whitehead Institute, Cambridge

    Google Scholar 

  • Liu J, Chang Z, Zhang X, Yang Z, Li X, Jia J, Zhan H, Guo H, Wang J (2013) Putative Thinopyrum intermedium-derived stripe rust resistance gene Yr50 maps on wheat chromosome arm 4BL. Theor Appl Genet 126:265–274

    Article  CAS  PubMed  Google Scholar 

  • Luan Y, Wang XG, Liu WH, Li CY, Zhang JP, Gao AN, Wang YD, Yang XM, Li LH (2010) Production and identification of wheat-Agropyron cristatum 6P translocation lines. Planta 232:501–510

    Article  CAS  PubMed  Google Scholar 

  • Luo PG, Luo HY, Chang ZJ, Zhang HY, Zhang M, Ren ZL (2009) Characterization and chromosomal location of Pm40 in common wheat: a new gene for resistance to powdery mildew derived from Elytrigia intermedium. Theor Appl Genet 118:1059–1064

    Article  CAS  PubMed  Google Scholar 

  • Ma ZQ, Sorrells ME, Tanksley SD (1994) RFLP markers linked to powdery mildew resistance genes Pm1, Pm2, Pm3, and Pm4 in wheat. Genome 37:871–875

    Article  CAS  PubMed  Google Scholar 

  • Ma HQ, Kong ZX, Fu BS, Li N, Zhang LX, Jia HY, Ma ZQ (2011) Identification and mapping of a new powdery mildew resistance gene on chromosome 6D of common wheat. Theor Appl Genet 123:1099–1106

    Article  CAS  PubMed  Google Scholar 

  • Ma PT, Xu HX, Luo QL, Qie YM, Zhou YL, Xu YF, Han HM, Li LH, An DG (2014) Inheritance and genetic mapping of a gene for seedling resistance to powdery mildew in wheat line X3986-2. Euphytica 200:149–157

    Article  CAS  Google Scholar 

  • Martín A, Cabrera A, Esteban E, Hernández P, Ramírez MC, Rubiales D (1999) A fertile amphiploid between diploid wheat (Triticum tauschii) and crested wheatgrass (Agropyron cristatum). Genome 42:519–524

    Article  PubMed  Google Scholar 

  • McIntosh RA, Dubcovsky J, Rogers WJ, Morris C, Appels R, Xia XC (2012) Catalogue of gene symbols for wheat: 2012 supplement. http://www.wheat.pw.usda.gov

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Miranda LM, Murphy JP, Marshall D, Leath S (2006) Pm34: a new powdery mildew resistance gene transferred from Aegilops tauschii Coss. to common wheat (Triticum aestivum L.). Theor Appl Genet 113:1497–1504

    Article  CAS  PubMed  Google Scholar 

  • Miranda LM, Murphy JP, Marshall D, Cowger C, Leath S (2007) Chromosomal location of Pm35, a novel Aegilops tauschii derived powdery mildew resistance gene introgressed into common wheat (Triticum aestivum L.). Theor Appl Genet 114:1451–1456

    Article  CAS  PubMed  Google Scholar 

  • Mohler V, Jahoor A (1996) Allele-specific amplification of polymorphic sites for the detection of powdery mildew resistance loci in cereals. Theor Appl Genet 93:1078–1082

    Article  CAS  PubMed  Google Scholar 

  • Mohler V, Bauer C, Schweizer G, Kempf H, Hartl L (2013) Pm50: a new powdery mildew resistance gene in common wheat derived from cultivated emmer. J Appl Genet 54:259–263

    Article  CAS  PubMed  Google Scholar 

  • Morgounov A, Tufan HA, Sharma R, Akin B, Bagci A, Braun HJ, Kaya Y, Keser M, Payne TS, Sonder K, McIntosh R (2012) Global incidence of wheat rusts and powdery mildew during 1969–2010 and durability of resistance of winter wheat variety Bezostaya 1. Eur J Plant Pathol 132:323–340

    Article  Google Scholar 

  • Muhammad IK, Mir AK, Ma HX, Gul SSK, Abdul JK, Tila M (2011) Selection of parents for crossing based on genotyping and phenotyping for stripe rust (Puccinia striiformis) resistance and agronomic traits in bread wheat breeding. Cytol Genet 45:379–394

    Article  Google Scholar 

  • Nocente F, Gazza L, Pasquini M (2007) Evaluation of leaf rust resistance genes Lr1, Lr9, Lr24, Lr47 and their introgression into common wheat cultivars by marker-assisted selection. Euphytica 155:329–336

    Article  CAS  Google Scholar 

  • Parks R, Carbone I, Murphy JP, Marshall D, Cowger C (2008) Virulence structure of the eastern US wheat powdery mildew population. Plant Dis 92:1047–1082

    Article  Google Scholar 

  • Qiu YC, Sun XL, Zhou RH, Kong XY, Zhang SS, Jia JZ (2006) Identification of microsatellite markers linked to powdery mildew resistance gene Pm2 in wheat. Cereal Res Commun 34:1267–1273

    Article  CAS  Google Scholar 

  • Ryabchenko AS, Serezhkina GV, Mishina GN, Andreev LN (2003) Morphological variability of wheat powdery mildew in the context of its parasitic adaptation to wheat-Aegilops lines with different resistance. Biol Bull Acad Sci 30:255–261

    Article  Google Scholar 

  • Sharp PJ, Kreis M, Shewry PR, Gale MD (1988) Location of β-amylase sequences in wheat and its relatives. Theor Appl Genet 75:286–290

    Article  CAS  Google Scholar 

  • Shi AN, Leath S, Murphy JP (1998) A major gene for powdery mildew resistance transferred to common wheat from wild einkorn wheat. Phytopathology 88:144–147

    Article  CAS  PubMed  Google Scholar 

  • Si QM, Zhang XX, Duan XY, Sheng BQ, Zhou YL (1992) On gene analysis and classification of powdery mildew (Erysiphe graminis f. sp. tritici) resistant wheat varieties. Acta Phytopathol Sin 22:349–355

    Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density wheat microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  CAS  PubMed  Google Scholar 

  • Wan A, Chen X, He Z (2007) Wheat stripe rust in China. Aust J Agric Res 58:605–619

    Article  Google Scholar 

  • Wu J, Yang XM, Wang H, Li HJ, Li LH, Li X, Liu WH (2006) The introgression of chromosome 6P specifying for increased numbers of florets and kernels from Agropyron cristatum into wheat. Theor Appl Genet 114:13–20

    Article  CAS  PubMed  Google Scholar 

  • Wu M, Zhang JP, Wang JC, Yang XM, Gao AN, Zhang XK, Liu WH, Li LH (2010) Cloning and characterization of repetitive sequences and development of SCAR markers specific for the P genome of Agropyron cristatum. Euphytica 172:363–372

    Article  CAS  Google Scholar 

  • Xiao MG, Song FJ, Jiao JF, Wang XM, Xu HX, Li HJ (2013) Identification of the gene Pm47 on chromosome 7BS conferring resistance to powdery mildew in the Chinese wheat landrace Hongyanglazi. Theor Appl Genet 126:1397–1403

    Article  CAS  PubMed  Google Scholar 

  • Xu HX, Yin DD, Li LH, Wang QX, Li XQ, Yang XM, Liu WH, An DG (2012) Development and application of EST based markers specific for chromosome arms of rye (Secale cereale L.). Cytogenet Genome Res 136:220–228

    Article  CAS  PubMed  Google Scholar 

  • Xue SL, Li GQ, Jia HY, Li F, Gao Y, Xu F, Tang MZ, Wang Y, Wu XY, Zhang ZZ, Zhang LX, Kong ZX, Ma ZQ (2010) Marker-assisted development and evaluation of near-isogenic lines for scab resistance QTLs of wheat. Mol Breed 25:397–405

    Article  CAS  Google Scholar 

  • Young ND, Tanksley SD (1989) RFLP analysis of the size chromosomal segments retained around Tm-2 locus of tomato during backcross breeding. Theor Appl Genet 77:353–359

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZY, Xu JS, Xu QJ, Larkin P, Xin ZY (2004) Development of novel PCR markers linked to the BYDV resistance gene Bdv2 useful in wheat for marker-assisted selection. Theor Appl Genet 109:433–439

    Article  CAS  PubMed  Google Scholar 

  • Zhou YL, Duan XY, Chen G, Sheng BQ, Zhang Y (2002) Analyses of resistance genes of 40 wheat cultivars or lines to wheat powdery mildew. Acta Phytopathol Sin 32:301–305

    Google Scholar 

  • Zhuang QS (2003) Wheat improvement and pedigree analysis in China. China Agriculture Press, Beijing

    Google Scholar 

  • Zhuang QS, Li ZQ (1993) Present status of wheat breeding and related genetic study in China. Wheat Inf Serv 76:1–15

    Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. R.A. McIntosh, University of Sydney, Australia for critically reviewing drafts of this paper. This research was financially supported by the National High-Tech Research and Development Program of China No. 2011AA1001, the National Natural Science Foundation of China No. 31171550, the National Scientific and Technological Supporting Program of China No. 2013BAD01B02 and the Chinese Academy of Sciences No. XDA08030107.

Conflict of interest

The authors (Pengtao Ma, Hongxing Xu, Yunfeng Xu, Lihui Li, Yanmin Qie, Qiaoling Luo, Xiaotian Zhang, Xiuquan Li, Yilin Zhou and Diaoguo An) declare that our experiments comply with the current laws of China and we have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lihui Li or Diaoguo An.

Additional information

Communicated by Beat Keller.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, P., Xu, H., Xu, Y. et al. Molecular mapping of a new powdery mildew resistance gene Pm2b in Chinese breeding line KM2939. Theor Appl Genet 128, 613–622 (2015). https://doi.org/10.1007/s00122-015-2457-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-015-2457-5

Keywords

Navigation