Skip to main content
Log in

Pm50: a new powdery mildew resistance gene in common wheat derived from cultivated emmer

  • Plant Genetics • Original Paper
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

Fungal diseases of wheat, including powdery mildew, cause significant crop, yield and quality losses throughout the world. Knowledge of the genetic basis of powdery mildew resistance will greatly support future efforts to develop and cultivate resistant cultivars. Studies were conducted on cultivated emmer-derived wheat line K2 to identify genes involved in powdery mildew resistance at the seedling and adult plant growth stages using a BC1 doubled haploid population derived from a cross between K2 and susceptible cultivar Audace. A single gene was located distal to microsatellite marker Xgwm294 on the long arm of chromosome 2A. Quantitative trait loci (QTL) analysis indicated that the gene was also effective at the adult plant stage, explaining up to 79.0 % of the variation in the progeny. Comparison of genetic maps indicated that the resistance gene in K2 was different from Pm4, the only other formally named resistance gene located on chromosome 2AL, and PmHNK54, a gene derived from Chinese germplasm. The new gene was designated Pm50.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang S, Uszynski G, Mohler V, Lehmensiek A, Kuchel H, Hayden MJ, Howes N, Sharp P, Vaughan P, Rathmell B, Huttner E, Kilian A (2006) Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 113:1409–1420

    Article  PubMed  CAS  Google Scholar 

  • Anonymous (2011) Beschreibende Sortenliste. Deutscher Landwirtschaftsverlag GmbH, Hannover

    Google Scholar 

  • Briggle LW (1966) Transfer of resistance to Erysiphe graminis f. sp. tritici from Khapli emmer and Yuma durum to hexaploid wheat. Crop Sci 6:459–461

    Article  Google Scholar 

  • Cowger C, Miranda L, Griffey C, Hall M, Murphy JP, Maxwell J (2012) Wheat powdery mildew. In: Sharma I (ed) Disease resistance in wheat. CAB International, Wallingford, pp 84–119

    Chapter  Google Scholar 

  • Hao Y, Liu A, Wang Y, Feng D, Gao J, Li X, Liu S, Wang H (2008) Pm23: a new allele of Pm4 located on chromosome 2AL in wheat. Theor Appl Genet 117:1205–1212

    Article  PubMed  CAS  Google Scholar 

  • Huang XQ, Zeller FJ, Hsam SLK, Wenzel G, Mohler V (2000) Chromosomal location of AFLP markers in common wheat utilizing nulli-tetrasomic stocks. Genome 43:298–305

    Article  PubMed  CAS  Google Scholar 

  • Huang BE, George AW, Forrest KL, Kilian A, Hayden MJ, Morell MK, Cavanagh CR (2012) A multiparent advanced generation inter-cross population for genetic analysis in wheat. Plant Biotechnol J 10:826–839

    Article  PubMed  CAS  Google Scholar 

  • Korol A, Ronin Y, Minkov D, Britvin E, Mester D, Korostishevsky M, Malkin I, Frenkel Z, Orion O, Brailovsky A (2005) MultiQTL version 2.5. Institute of Evolution, Haifa University, Haifa, Israel

  • Laurie DA, Bennett MD (1986) Wheat × maize hybridization. Can J Genet Cytol 28:313–316

    Google Scholar 

  • McFadden ES (1930) A successful transfer of emmer characters to vulgare wheat. J Am Soc Agron 22:1020–1034

    Article  Google Scholar 

  • McIntosh RA, Luig NH, Baker EP (1967) Genetic and cytogenetic studies of stem rust, leaf rust, and powdery mildew resistances in Hope and related wheat cultivars. Aust J Biol Sci 20:1181–1192

    Google Scholar 

  • McIntosh RA, Dubcovsky J, Rogers WJ, Morris C, Appels R, Xia XC (2011) Catalogue of gene symbols for wheat: 2011 supplement. Available online at: http://www.shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2011.pdf

  • Niu JS, Wang BQ, Wang YH, Cao AZ, Qi ZJ, Shen TM (2008) Chromosome location and microsatellite markers linked to a powdery mildew resistance gene in wheat line ‘Lankao 90(6)’. Plant Breed 127:346–349

    Article  CAS  Google Scholar 

  • R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Home page at: http://www.R-project.org. Current at 2 April 2013

  • Schmolke M, Mohler V, Hartl L, Zeller FJ, Hsam SLK (2012) A new powdery mildew resistance allele at the Pm4 wheat locus transferred from einkorn (Triticum monococcum). Mol Breeding 29:449–456

    Article  CAS  Google Scholar 

  • Schubert V, Blüthner W-D, Junghanns W, Oertel C, Schuster M (1994) Agronomische leistung hohenthurmer weizenlinien mit resistenz gegenüber echtem mehltau. Vortr Pflanzenzüchtung 28:162–164

    Google Scholar 

  • Schuster M, Blüthner WD (1992) Übertragung der Resistenz gegenüber Weizenmehltau, Erysiphe graminis DC F. sp. tritici March., aus tetraploiden Weizenarten in den Saatweizen. Kühn-Arch 86:51–58

    Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • The TT, McIntosh RA, Bennett FGA (1979) Cytogenetical studies in wheat. IX. Monosomic analyses, telocentric mapping and linkage relationships of genes Sr21, Pm4 and Mle. Aust J Biol Sci 32:115–125

    Google Scholar 

  • Van Ooijen JW, Voorrips RE (2001) JoinMap® version 3.0: software for the calculation of genetic linkage maps. Plant Research International, Wageningen

    Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  PubMed  CAS  Google Scholar 

  • Xu W, Li C, Hu L, Wang H, Dong H, Zhang J, Zan X (2011) Identification and molecular mapping of PmHNK54: a novel powdery mildew resistance gene in common wheat. Plant Breed 130:603–607

    Article  CAS  Google Scholar 

  • Zaharieva M, Ayana NG, Al Hakimi A, Misra SC, Monneveux P (2010) Cultivated emmer wheat (Triticum dicoccon Schrank), an old crop with promising future: a review. Genet Resour Crop Evol 57:937–962

    Article  Google Scholar 

  • Zhu ZD, Zhou RH, Kong XY, Dong YC, Jia JZ (2005) Microsatellite markers linked to 2 powdery mildew resistance genes introgressed from Triticum carthlicum accession PS5 into common wheat. Genome 48:585–590

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The technical assistance provided by Petra Greim and Sabine Schmidt is gratefully acknowledged. The authors would like to thank Prof. Bob McIntosh, The University of Sydney, Plant Breeding Institute Cobbitty, NSW, Australia, for the valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Mohler.

Electronic supplementary material

Below are the links to the electronic supplementary material.

ESM 1

(PDF 13 kb)

ESM 2

(DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohler, V., Bauer, C., Schweizer, G. et al. Pm50: a new powdery mildew resistance gene in common wheat derived from cultivated emmer. J Appl Genetics 54, 259–263 (2013). https://doi.org/10.1007/s13353-013-0158-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13353-013-0158-9

Keywords

Navigation