Skip to main content

New Developments in the Production and Recovery of Amino Acids, Vitamins, and Metabolites from Microbial Sources

  • Chapter
  • First Online:
Industrial Microbiology and Biotechnology

Abstract

In the food, chemical, and pharmaceutical industries, macromolecules like amino acids, vitamins, and metabolites generated by microorganisms using renewable feedstocks are significant due to their low cost and sustainability. In addition to their conventional uses, these are also employed in emerging research fields like the production of bioplastics and aesthetic surgeries. These macromolecules can be manufactured commercially using chemical and biological processes, which is an efficient and environmentally benign technique. Microbial solid cell factories with exceptional resistance to extreme pH conditions, large concentrations of metabolites, and lignocellulosic inhibitors are required for an economically feasible fermentation process. Strain improvement and metabolic engineering are two techniques that can be used to create strains with high productivity. This chapter discusses the biosynthetic pathways, substrates, strain improvement, and upstream techniques for methionine l-glutamate, l-lysine, vitamins B2 and B12, coenzyme Q10 or ubiquinone, lactic acid, itaconic acid, and hyaluronic acid as well as their market perspective and budding challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AA:

Amino acid

ALA:

Aminolevulinate

AMM:

α-Methyl-dl-methionine

CoQ:

Coenzyme Q

ET:

Ethionine

FAD:

Flavin adenine dinucleotide

FMN:

Flavin mononucleotide

GDH:

Glutamate dehydrogenase

Glu:

Glutamate

HA:

Hyaluronic acid

IA:

Itaconic acid

LA:

Lactic acid

MEP:

2-C-methyl-d-erythritol 4-phosphate

MVA:

Mevalonate

NL:

Norleucine

ODHC:

2-Oxoglutarate dehydrogenase complex

RF:

Riboflavin

SSF:

Solid-state fermentation

UQ:

Ubiquinone

UTR:

Untranslated regions

UV:

Ultraviolet

References

  • Abbas CA, Sibirny AA (2011) Genetic control of biosynthesis and transport of riboflavin and flavin nucleotides and construction of robust biotechnological producers. Microbiol Mol Biol Rev 75(2):321–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abdel-Rahman MA, Tashiro Y, Sonomoto K (2011) Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: overview and limits. J Biotechnol 156(4):286–301

    Article  CAS  PubMed  Google Scholar 

  • Abdel-Rahman MA, Tashiro Y, Sonomoto K (2013) Recent advances in lactic acid production by microbial fermentation processes. Biotechnol Adv 31(6):877–902

    Article  CAS  PubMed  Google Scholar 

  • Alexandri M, Blanco-Catalá J, Schneider R, Turon X, Venus J (2020) High L (+)-lactic acid productivity in continuous fermentations using bakery waste and lucerne green juice as renewable substrates. Bioresour Technol 316:123949

    Article  CAS  PubMed  Google Scholar 

  • Allison DD, Grande-Allen KJ (2006) Hyaluronan: a powerful tissue engineering tool. Tissue Eng 12(8):2131–2140

    Article  CAS  PubMed  Google Scholar 

  • Alloul A, Wuyts S, Lebeer S, Vlaeminck SE (2019) Volatile fatty acids impacting phototrophic growth kinetics of purple bacteria: paving the way for protein production on fermented wastewater. Water Res 152:138–147

    Article  CAS  PubMed  Google Scholar 

  • Altenbach SB, Pearson KW, Meeker G, Staraci LC, Sun SS (1989) Enhancement of the methionine content of seed proteins by the expression of a chimeric gene encoding a methionine-rich protein in transgenic plants. Plant Mol Biol 13(5):513–522

    Article  CAS  PubMed  Google Scholar 

  • Amado IR, Vázquez JA, Pastrana L, Teixeira JA (2017) Microbial production of hyaluronic acid from agro-industrial by-products: molasses and corn steep liquor. Biochem Eng J 117:181–187

    Article  CAS  Google Scholar 

  • Anike N, Okafor N (2008) Secretion of methionine by microorganisms associated with Cassava fermentation. Afr J Food Agric Nutr Dev 8(1):77–90

    CAS  Google Scholar 

  • Armstrong D, Cooney M, Johns M (1997) Growth and amino acid requirements of hyaluronic-acid-producing Streptococcus zooepidemicus. Appl Microbiol Biotechnol 47(3):309–312

    Article  CAS  Google Scholar 

  • Avissar YJ, Ormerod JG, Beale SI (1989) Distribution of δ-aminolevulinic acid biosynthetic pathways among phototrophic bacterial groups. Arch Microbiol 151(6):513–519

    Article  CAS  PubMed  Google Scholar 

  • Baek S-H, Kwon EY, Kim YH, Hahn J-S (2016) Metabolic engineering and adaptive evolution for efficient production of d-lactic acid in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 100(6):2737–2748

    Article  CAS  PubMed  Google Scholar 

  • Baek SH, Kwon EY, Bae SJ, Cho BR, Kim SY, Hahn JS (2017) Improvement of d-lactic acid production in Saccharomyces cerevisiae under acidic conditions by evolutionary and rational metabolic engineering. Biotechnol J 12(10):1700015

    Article  Google Scholar 

  • Bagchi SN, Rao NS (1997) Sustained production of amino acids by immobilized analogue-resistant mutants of a cyanobacterium Anacystis nidulans BD-1. J Microbiol Biotechnol 7(5):341–344

    CAS  Google Scholar 

  • Banik A (1975) Effects of minerals on the production of methionine by Micrococcus glutamicus. Indian J Exp Biol 13(5):510–512

    CAS  PubMed  Google Scholar 

  • Barker JL, Frost JW (2001) Microbial synthesis of p-hydroxybenzoic acid from glucose. Biotechnol Bioeng 76(4):376–390

    Article  CAS  PubMed  Google Scholar 

  • Bartlett AT, White P (1985) Species of Bacillus that make a vegetative peptidoglycan containing lysine lack diaminopimelate epimerase but have diaminopimelate dehydrogenase. Microbiology 131(09):2145–2152

    Article  CAS  Google Scholar 

  • Battino M, Ferri E, Gorini A, Villa RF, Huertas JFR, Fiorella P, Genova ML, Lenaz G, Marchetti M (1990) Natural distribution and occurrence of coenzyme Q homologues. Membr Biochem 9(3):179–190

    Article  CAS  PubMed  Google Scholar 

  • Becker J, Zelder O, Häfner S, Schröder H, Wittmann C (2011) From zero to hero—design-based systems metabolic engineering of Corynebacterium glutamicum for l-lysine production. Metab Eng 13(2):159–168

    Article  CAS  PubMed  Google Scholar 

  • Benthin S, Villadsen J (1995) Production of optically pure d-lactate by Lactobacillus bulgaricus and purification by crystallisation and liquid/liquid extraction. Appl Microbiol Biotechnol 42(6):826–829

    Article  CAS  Google Scholar 

  • Berdanier LA (2015) Water-soluble vitamins. In: Advanced nutrition. CRC Press, Boca Raton, pp 422–493

    Chapter  Google Scholar 

  • Berkner KL (2005) The vitamin K-dependent carboxylase. Annu Rev Nutr 25:127

    Article  CAS  PubMed  Google Scholar 

  • Blachier F, Boutry C, Bos C, Tome D (2009) Metabolism and functions of L-glutamate in the epithelial cells of the small and large intestines. Am J Clin Nutr 90(3):814S–821S

    Article  CAS  PubMed  Google Scholar 

  • Blake CJ, Konings EJ (2005) Committee on food nutrition: fat-soluble vitamins: water-soluble vitamins. J AOAC Int 88(1):325–330

    Article  CAS  PubMed  Google Scholar 

  • Blazeck J, Miller J, Pan A, Gengler J, Holden C, Jamoussi M, Alper HS (2014) Metabolic engineering of Saccharomyces cerevisiae for itaconic acid production. Appl Microbiol Biotechnol 98(19):8155–8164

    Article  CAS  PubMed  Google Scholar 

  • Blazeck J, Hill A, Jamoussi M, Pan A, Miller J, Alper HS (2015) Metabolic engineering of Yarrowia lipolytica for itaconic acid production. Metab Eng 32:66–73

    Article  CAS  PubMed  Google Scholar 

  • Blumhoff ML, Steiger MG, Mattanovich D, Sauer M (2013) Targeting enzymes to the right compartment: metabolic engineering for itaconic acid production by Aspergillus niger. Metab Eng 19:26–32

    Article  CAS  PubMed  Google Scholar 

  • Boeriu CG, Springer J, Kooy FK, van den Broek LA, Eggink G (2013) Production methods for hyaluronan. Int J Carbohydr Chem 2013:14. 624967. https://doi.org/10.1155/2013/624967

    Article  CAS  Google Scholar 

  • Bogeski I, Gulaboski R, Kappl R, Mirceski V, Stefova M, Petreska J, Hoth M (2011) Calcium binding and transport by coenzyme Q. J Am Chem Soc 133(24):9293–9303

    Article  CAS  PubMed  Google Scholar 

  • Bolten CJ, Schroder H, Dickschat J, Wittmann C (2010) Towards methionine overproduction in Corynebacterium glutamicum-methanethiol and dimethyldisulfide as reduced sulfur sources. J Microbiol Biotechnol 20(8):1196–1203

    Article  CAS  PubMed  Google Scholar 

  • Born TL, Blanchard JS (1999) Structure/function studies on enzymes in the diaminopimelate pathway of bacterial cell wall biosynthesis. Curr Opin Chem Biol 3(5):607–613

    Article  CAS  PubMed  Google Scholar 

  • Brautaset T, Jakobsen ØM, Degnes KF, Netzer R, Nærdal I, Krog A, Dillingham R, Flickinger MC, Ellingsen TE (2010) Bacillus methanolicus pyruvate carboxylase and homoserine dehydrogenase I and II and their roles for L-lysine production from methanol at 50 C. Appl Microbiol Biotechnol 87(3):951–964

    Article  CAS  PubMed  Google Scholar 

  • Bressler E, Braun S (2000) Conversion of citric acid to itaconic acid in a novel liquid membrane bioreactor. J Chem Technol Biotechnol 75(1):66–72

    Article  CAS  Google Scholar 

  • Brosnan JT, Brosnan ME (2013) Glutamate: a truly functional amino acid. Amino Acids 45(3):413–418

    Article  CAS  PubMed  Google Scholar 

  • Buchholz J, Graf M, Freund A, Busche T, Kalinowski J, Blombach B, Takors R (2014) CO2/HCO3− perturbations of simulated large scale gradients in a scale-down device cause fast transcriptional responses in Corynebacterium glutamicum. Appl Microbiol Biotechnol 98(20):8563–8572

    Article  CAS  PubMed  Google Scholar 

  • Bule MV, Singhal RS (2011) Fermentation kinetics of production of ubiquinone-10 by Paracoccus dinitrificans NRRL B-3785: effect of type and concentration of carbon and nitrogen sources. Food Sci Biotechnol 20(3):607–613

    Article  CAS  Google Scholar 

  • Bule MV, Singhal RS (2012) Development of a protocol for supercritical carbon dioxide extraction of ubiquinone-10 from dried biomass of Pseudomonas diminuta. Bioprocess Biosyst Eng 35(5):809–816

    Article  CAS  PubMed  Google Scholar 

  • Burgess CM, Smid EJ, Rutten G, Van Sinderen D (2006) A general method for selection of riboflavin-overproducing food grade micro-organisms. Microb Cell Factories 5(1):1–12

    Article  Google Scholar 

  • Cao X-L, Xu Y-T, Zhang G-M, Xie S-M, Dong Y-M, Ito Y (2006) Purification of coenzyme Q10 from fermentation extract: High-speed counter-current chromatography versus silica gel column chromatography. J Chromatogr A 1127(1-2):92–96

    Article  CAS  PubMed  Google Scholar 

  • Capone K, Sentongo T (2019) The ABCs of nutrient deficiencies and toxicities. Pediatr Ann 48(11):e434–e440

    Article  PubMed  Google Scholar 

  • Cesari M, Rossi GP, Sticchi D, Pessina AC (2005) Is homocysteine important as risk factor for coronary heart disease? Nutr Metab Cardiovasc Dis 15(2):140–147

    Article  PubMed  Google Scholar 

  • Chahuki FF, Aminzadeh S, Jafarian V, Tabandeh F, Khodabandeh M (2019) Hyaluronic acid production enhancement via genetically modification and culture medium optimization in Lactobacillus acidophilus. Int J Biol Macromol 121:870–881

    Article  CAS  PubMed  Google Scholar 

  • Chao K-C, Foster J (1959) A glutamic acid-producing Bacillus. J Bacteriol 77(6):715–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatterjee S, Chatterjee S (1982) A glutamic acid producing Streptomyces sp. Folia Microbiol 27(2):116–120

    Article  CAS  Google Scholar 

  • Chattopadhyay M, Ghosh AK, Sengupta S, Sengupta D, Sengupta S (1995) Threonine analogue resistant mutants of Escherichia coli K-12. Biotechnol Lett 17(6):567–570

    Article  CAS  Google Scholar 

  • Chavaroche AA, van den Broek LA, Eggink G (2013) Production methods for heparosan, a precursor of heparin and heparan sulfate. Carbohydr Polym 93(1):38–47

    Article  CAS  PubMed  Google Scholar 

  • Chay BP, Galvez FC, Padolina WG (1992) Methionine production by batch fermentation from various carbohydrates. ASEAN Food J 7:34–37

    Google Scholar 

  • Chen X, Zhang D-J, Qi W-T, Gao S-J, Xiu Z-L, Xu P (2003) Microbial fed-batch production of 1, 3-propanediol by Klebsiella pneumoniae under micro-aerobic conditions. Appl Microbiol Biotechnol 63(2):143–146

    Article  CAS  PubMed  Google Scholar 

  • Chen WY, Marcellin E, Hung J, Nielsen LK (2009) Hyaluronan molecular weight is controlled by UDP-N-acetylglucosamine concentration in Streptococcus zooepidemicus. J Biol Chem 284(27):18007–18014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Li S, Liu L (2014) Engineering redox balance through cofactor systems. Trends Biotechnol 32(6):337–343

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Jiang X, Xu M, Zhang M, Huang R, Huang J, Qi F (2019) Co-production of farnesol and coenzyme Q10 from metabolically engineered Rhodobacter sphaeroides. Microb Cell Factories 18(1):1–12

    Article  Google Scholar 

  • Choi G-S, Kim Y-S, Seo J-H, Ryu Y-W (2005) Restricted electron flux increases coenzyme Q10 production in Agrobacterium tumefaciens ATCC4452. Process Biochem 40(10):3225–3229

    Article  CAS  Google Scholar 

  • Choi H-P, Lee Y-M, Yun C-W, Sung H-C (2008) Extracellular 5-aminolevulinic acid production by Escherichia coli containing the Rhodopseudomonas palustris KUGB306 hemA gene. J Microbiol Biotechnol 18(6):1136–1140

    CAS  PubMed  Google Scholar 

  • Choi J-H, Ryu Y-W, Park Y-C, Seo J-H (2009) Synergistic effects of chromosomal ispB deletion and dxs overexpression on coenzyme Q10 production in recombinant Escherichia coli expressing Agrobacterium tumefaciens DPS gene. J Biotechnol 144(1):64–69

    Article  CAS  PubMed  Google Scholar 

  • Chong BF, Nielsen LK (2003) Aerobic cultivation of Streptococcus zooepidemicus and the role of NADH oxidase. Biochem Eng J 16(2):153–162

    Article  CAS  Google Scholar 

  • Chong BF, Blank LM, Mclaughlin R, Nielsen LK (2005) Microbial hyaluronic acid production. Appl Microbiol Biotechnol 66(4):341–351

    Article  CAS  PubMed  Google Scholar 

  • Chung H, Fields M (1986) Production of riboflavin and vitamin B12 by Bacillus megaterium ATCC 13639 and Enterobacter aerogenes in corn meal. J Food Sci 51(6):1514–1517

    Article  CAS  Google Scholar 

  • Clark DP (1989) The fermentation pathways of Escherichia coli. FEMS Microbiol Rev 5(3):223–234

    CAS  PubMed  Google Scholar 

  • Cluis CP, Burja AM, Martin VJ (2007) Current prospects for the production of coenzyme Q10 in microbes. Trends Biotechnol 25(11):514–521

    Article  CAS  PubMed  Google Scholar 

  • Collins MD, Jones D (1981) Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 45(2):316–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cordes T, Michelucci A, Hiller K (2015) Itaconic acid: the surprising role of an industrial compound as a mammalian antimicrobial metabolite. Ann Rev Nutr 35:451–473

    Article  CAS  Google Scholar 

  • Crane EJ III, Parsonage D, Poole LB, Claiborne A (1995) Analysis of the kinetic mechanism of enterococcal NADH peroxidase reveals catalytic roles for NADH complexes with both oxidized and two-electron-reduced enzyme forms. Biochemistry 34(43):14114–14124

    Article  CAS  PubMed  Google Scholar 

  • Cremer J, Eggeling L, Sahm H (1991) Control of the lysine biosynthesis sequence in Corynebacterium glutamicum as analyzed by overexpression of the individual corresponding genes. Appl Environ Microbiol 57(6):1746–1752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui F, Li Y, Wan C (2011) Lactic acid production from corn stover using mixed cultures of Lactobacillus rhamnosus and Lactobacillus brevis. Bioresour Technol 102(2):1831–1836

    Article  CAS  PubMed  Google Scholar 

  • Dai Z, Baker SE (2018) Enhanced itaconic acid production in Aspergillus with increased LaeA expression. Google Patents

    Google Scholar 

  • De Graaf A, Eggeling L, Sahm H (2001) Metabolic engineering for L-lysine production by Corynebacterium glutamicum. Meta Eng 73:9–29. http://link.springer.de/series/abe/

    Article  Google Scholar 

  • DeAngelis PL, Weigel PH (1994) Immunochemical confirmation of the primary structure of streptococcal hyaluronan synthase and synthesis of high molecular weight product by the recombinant enzyme. Biochemistry 33(31):9033–9039

    Article  CAS  PubMed  Google Scholar 

  • DeAngelis PL, Papaconstantinou J, Weigel P (1993) Isolation of a Streptococcus pyogenes gene locus that directs hyaluronan biosynthesis in acapsular mutants and in heterologous bacteria. J Biol Chem 268(20):14568–14571

    Article  CAS  PubMed  Google Scholar 

  • DeAngelis PL, Jing W, Drake RR, Achyuthan AM (1998) Identification and molecular cloning of a unique hyaluronan synthase from Pasteurella multocida. J Biol Chem 273(14):8454–8458

    Article  CAS  PubMed  Google Scholar 

  • Delaunay S, Gourdon P, Lapujade P, Mailly E, Oriol E, Engasser J, Lindley N, Goergen J-L (1999) An improved temperature-triggered process for glutamate production with Corynebacterium glutamicum. Enzym Microb Technol 25(8-9):762–768

    Article  CAS  Google Scholar 

  • Delaunay S, Daran-Lapujade P, Engasser J-M, Goergen J-L (2004) Glutamate as an inhibitor of phosphoenolpyruvate carboxylase activity in Corynebacterium glutamicum. J Ind Microbiol Biotechnol 31(4):183–188

    Article  CAS  PubMed  Google Scholar 

  • Demain AL (1998) Induction of microbial secondary metabolism. Int Microbiol 1(4):259–264

    CAS  PubMed  Google Scholar 

  • Deng Y, Chen X, Wang L, Peng X, Lin M (2019) Characterization of unknown impurities in coenzyme Q10 using LC–MS and NMR. J Pharm Biomed Anal 175:112771

    Article  CAS  PubMed  Google Scholar 

  • Dike K, Ekwealor I (2012) Studies on process and physical parameters for the production of L-methionine from newly isolated Bacillus cereus strains. Asian J Biol Sci 5(2):96–104

    Article  CAS  Google Scholar 

  • Dominguez H, Lindley N (1996) Complete sucrose metabolism requires fructose phosphotransferase activity in Corynebacterium glutamicum to ensure phosphorylation of liberated fructose. Appl Environ Microbiol 62(10):3878–3880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dominguez H, Rollin C, Guyonvarch A, Guerquin-Kern JL, Cocaign-Bousquet M, Lindley ND (1998) Carbon-flux distribution in the central metabolic pathways of Corynebacterium glutamicum during growth on fructose. Eur J Biochem 254(1):96–102

    Article  CAS  PubMed  Google Scholar 

  • Don MM, Shoparwe NF (2010) Kinetics of hyaluronic acid production by Streptococcus zooepidemicus considering the effect of glucose. Biochem Eng J 49(1):95–103

    Article  CAS  Google Scholar 

  • Duan X-J, Yang L, Zhang X, Tan W-S (2008) Effect of oxygen and shear stress on molecular weight of hyaluronic acid produced by Streptococcus zooepidemicus. J Microbiol Biotechnol 18(4):718–724

    CAS  PubMed  Google Scholar 

  • Duan X-J, Niu H-X, Tan W-S, Zhang X (2009) Mechanism analysis of effect of oxygen on molecular weight of hyaluronic acid produced by Streptococcus zooepidemicus. J Microbiol Biotechnol 19(3):299–306

    CAS  PubMed  Google Scholar 

  • Dulaney E, Jones C, Dulaney D (1964) Amino acid accumulation, principally alanine, by auxotrophs of Ustilago maydis. Dev Ind Microbiol 5:242–249

    CAS  Google Scholar 

  • Duperray F, Jezequel D, Ghazi A, Letellier L, Shechter E (1992) Excretion of glutamate from Corynebacterium glutamicum triggered by amine surfactants. Biochim Biophys Acta (BBA)-Biomembr 1103(2):250–258

    Article  CAS  Google Scholar 

  • Eggeling L, Bott M (2015) A giant market and a powerful metabolism: L-lysine provided by Corynebacterium glutamicum. Appl Microbiol Biotechnol 99(8):3387–3394

    Article  CAS  PubMed  Google Scholar 

  • Eggeling L, Sahm H (1999) L-Glutamate and L-lysine: traditional products with impetuous developments. Appl Microbiol Biotechnol 52(2):146–153

    Article  CAS  Google Scholar 

  • Eikmanns BJ, Rittmann D, Sahm H (1995) Cloning, sequence analysis, expression, and inactivation of the Corynebacterium glutamicum icd gene encoding isocitrate dehydrogenase and biochemical characterization of the enzyme. J Bacteriol 177(3):774–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eimhjellen K, Larsen H (1955) The mechanism of itaconic acid formation by Aspergillus terreus. 2. The effect of substrates and inhibitors. Biochem J 60(1):139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Imam AMA, Kazeem MO, Odebisi MB, Abidoye AO (2013) Production of itaconic acid from Jatropha curcas seed cake by Aspergillus terreus. Notulae Sci Biol 5(1):57–61

    Article  Google Scholar 

  • Elshaghabee FM, Bockelmann W, Meske D, De Vrese M, Walte H-G, Schrezenmeir J, Heller KJ (2016) Ethanol production by selected intestinal microorganisms and lactic acid bacteria growing under different nutritional conditions. Front Microbiol 7:47

    Article  PubMed  PubMed Central  Google Scholar 

  • Ertan H (1992) Some properties of glutamate dehydrogenase, glutamine synthetase and glutamate synthase from Corynebacterium callunae. Arch Microbiol 158(1):35–41

    Article  CAS  PubMed  Google Scholar 

  • Eş I, Vieira JDG, Amaral AC (2015) Principles, techniques, and applications of biocatalyst immobilization for industrial application. Appl Microbiol Biotechnol 99(5):2065–2082

    Article  PubMed  Google Scholar 

  • Eş I, Khaneghah AM, Hashemi SMB, Koubaa M (2017) Current advances in biological production of propionic acid. Biotechnol Lett 39(5):635–645

    Article  PubMed  Google Scholar 

  • Escalante-Semerena JC, Warren MJ (2008) Biosynthesis and use of cobalamin (B12). EcoSal Plus 3(1). https://doi.org/10.1128/ecosalplus.3.6.3.8

  • Fagien S, Cassuto D (2012) Reconstituted injectable hyaluronic acid: expanded applications in facial aesthetics and additional thoughts on the mechanism of action in cosmetic medicine. Plast Reconstr Surg 130(1):208–217

    Article  CAS  PubMed  Google Scholar 

  • Fakhravar S, Najafpour G, Heris SZ, Izadi M, Fakhravar A (2012) Fermentative lactic acid from deproteinized whey using Lactobacillus bulgaricus in batch culture. World Appl Sci J 17(9):1083–1086

    CAS  Google Scholar 

  • Fang H, Li D, Kang J, Jiang P, Sun J, Zhang D (2018) Metabolic engineering of Escherichia coli for de novo biosynthesis of vitamin B12. Nat Commun 9(1):1–12

    Article  Google Scholar 

  • Félix FKC, Letti LAJ, de Melo V, Pereira G, Bonfim PGB, Soccol VT, Soccol CR (2019) L-lysine production improvement: A review of the state of the art and patent landscape focusing on strain development and fermentation technologies. Crit Rev Biotechnol 39(8):1031–1055

    Article  PubMed  Google Scholar 

  • Flavin M, Delavier-Klutchko C, Slaughter C (1964) Succinic ester and amide of homoserine: some spontaneous and enzymatic reactions. Science 143(3601):50–52

    Article  CAS  PubMed  Google Scholar 

  • Follettie MT, Peoples O, Agoropoulou C, Sinskey A (1993) Gene structure and expression of the Corynebacterium flavum N13 ask-asd operon. J Bacteriol 175(13):4096–4103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frerman FE (1988) Acyl-CoA dehydrogenases, electron transfer flavoprotein and electron transfer flavoprotein dehydrogenase. Biochem Soc Trans 16(3):416–418

    Article  CAS  PubMed  Google Scholar 

  • Fu W, Lin J, Cen P (2007) 5-Aminolevulinate production with recombinant Escherichia coli using a rare codon optimizer host strain. Appl Microbiol Biotechnol 75(4):777–782

    Article  CAS  PubMed  Google Scholar 

  • Fu W, Lin J, Cen P (2008) Enhancement of 5-aminolevulinate production with recombinant Escherichia coli using batch and fed-batch culture system. Bioresour Technol 99(11):4864–4870

    Article  CAS  PubMed  Google Scholar 

  • Gao H-J, Du G-C, Chen J (2006) Analysis of metabolic fluxes for hyaluronic acid (HA) production by Streptococcus zooepidemicus. World J Microbiol Biotechnol 22(4):399–408

    Article  CAS  Google Scholar 

  • Gao C, Ma C, Xu P (2011) Biotechnological routes based on lactic acid production from biomass. Biotechnol Adv 29(6):930–939

    Article  CAS  PubMed  Google Scholar 

  • Gardner N, Champagne C (2005) Production of Propionibacterium shermanii biomass and vitamin B12 on spent media. J Appl Microbiol 99(5):1236–1245

    Article  CAS  PubMed  Google Scholar 

  • Gedikli S, Güngör G, Toptaş Y, Sezgin DE, Demirbilek M, Yazıhan N, Aytar Çelik P, Denkbaş EB, Bütün V, Çabuk A (2018) Optimization of hyaluronic acid production and its cytotoxicity and degradability characteristics. Prep Biochem Biotechnol 48(7):610–618

    Article  CAS  PubMed  Google Scholar 

  • Geilen FM, Engendahl B, Harwardt A, Marquardt W, Klankermayer J, Leitner W (2010) Selective and flexible transformation of biomass-derived platform chemicals by a multifunctional catalytic system. Angew Chem Int Ed 49(32):5510–5514

    Article  CAS  Google Scholar 

  • Geiser E, Przybilla SK, Friedrich A, Buckel W, Wierckx N, Blank LM, Bölker M (2016) Ustilago maydis produces itaconic acid via the unusual intermediate trans-aconitate. Microb Biotechnol 9(1):116–126

    Article  CAS  PubMed  Google Scholar 

  • Gempel K, Topaloglu H, Talim B, Schneiderat P, Schoser BG, Hans VH, Pálmafy B, Kale G, Tokatli A, Quinzii C (2007) The myopathic form of coenzyme Q10 deficiency is caused by mutations in the electron-transferring-flavoprotein dehydrogenase (ETFDH) gene. Brain 130(8):2037–2044

    Article  PubMed  Google Scholar 

  • Ghosh B, Banerjee A (1986) Production of methionine and glutamic acid from η-alkanes bySerratia marcescens var. kiliensis. Folia Microbiol 31(2):106–112

    Article  CAS  Google Scholar 

  • Goa KL, Benfield P (1994) Hyaluronic acid. Drugs 47(3):536–566

    Article  CAS  PubMed  Google Scholar 

  • Gomes J, Kumar D (2005) Production of L-methionine by submerged fermentation: a review. Enzym Microb Technol 37(1):3–18

    Article  CAS  Google Scholar 

  • Goodson J, Thomson J, Helmbrecht A (2014) Feeding value of l-methionine versus dl-methionine. Animal AG Resource Center, Evonik Whitepaper Aug 2012

    Google Scholar 

  • Gourdon P, Lindley ND (1999) Metabolic analysis of glutamate production by Corynebacterium glutamicum. Metab Eng 1(3):224–231

    Article  CAS  PubMed  Google Scholar 

  • Gunji Y, Yasueda H (2006) Enhancement of L-lysine production in methylotroph Methylophilus methylotrophus by introducing a mutant LysE exporter. J Biotechnol 127(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Haddadin M, Abu-Reesh I, Haddadin F, Robinson R (2001) Utilisation of tomato pomace as a substrate for the production of vitamin B12–a preliminary appraisal. Bioresour Technol 78(3):225–230

    Article  CAS  PubMed  Google Scholar 

  • Hajfarajollah H, Mokhtarani B, Mirzaei M, Afaghi A (2014) Toxicity of various kinds of ionic liquids towards the cell growth and end product formation of the probiotic strain, Propionibacterium freudenreichii. RSC Adv 4(25):13153–13160

    Article  CAS  Google Scholar 

  • Hamano Y, Dairi T, Yamamoto M, Kuzuyama T, Itoh N, Seto H (2002) Growth-phase dependent expression of the mevalonate pathway in a terpenoid antibiotic-producing Streptomyces strain. Biosci Biotechnol Biochem 66(4):808–819

    Article  CAS  PubMed  Google Scholar 

  • Hamid SNIN, Abdullah MF, Zakaria Z, Yusof SJHM, Abdullah R (2016) Formulation of fish feed with optimum protein-bound lysine for African Catfish (Clarias gariepinus) fingerlings. Procedia Eng 148:361–369

    Article  CAS  Google Scholar 

  • Han H-y, Jang S-H, Kim E-C, Park J-K, Han Y-j, Lee C, Park H-S, Kim Y-C, Park H-j (2009) Microorganism producing hyaluronic acid and purification method of hyaluronic acid. Google Patents

    Google Scholar 

  • Harmon PS, Maziarz EP, Liu XM (2012) Detailed characterization of hyaluronan using aqueous size exclusion chromatography with triple detection and multiangle light scattering detection. J Biomed Mater Res B Appl Biomater 100(7):1955–1960

    Article  PubMed  Google Scholar 

  • Hasegawa S, Nagatsuru M, Shibutani M, Yamamoto S, Hasebe S (1999) Productivity of concentrated hyaluronic acid using a Maxblend® fermentor. J Biosci Bioeng 88(1):68–71

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto S (2016) Discovery and History of amino acid fermentation, In: Yokota A, Ikeda M (eds) Amino acid fermentation. Advances in biochemical engineering/biotechnology, vol 159. Springer, Tokyo. https://doi.org/10.1007/10_2016_24

    Book  Google Scholar 

  • Haskins R, Thorn J, Boothroyd B (1955) Biochemistry of the ustilaginales: XI. Metabolic products of Ustilago zeae in submerged culture. Can J Microbiol 1(9):749–756

    Article  CAS  PubMed  Google Scholar 

  • Hazra AB, Tran JL, Crofts TS, Taga ME (2013) Analysis of substrate specificity in CobT homologs reveals widespread preference for DMB, the lower axial ligand of vitamin B12. Chem Biol 20(10):1275–1285

    Article  CAS  PubMed  Google Scholar 

  • He X, Sun F, Liu M, Zhao H (2012) Medium optimization by response surface methodology for itaconic acid production using potato starch. China Brewing 1:025

    Google Scholar 

  • Hermann T, Pfefferle W, Baumann C, Busker E, Schaffer S, Bott M, Sahm H, Dusch N, Kalinowski J, Pühler A (2001) Proteome analysis of Corynebacterium glutamicum. Electrophoresis 22(9):1712–1723

    Article  CAS  PubMed  Google Scholar 

  • Himmel ME, Ding S-Y, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315(5813):804–807

    Article  CAS  PubMed  Google Scholar 

  • Hofvendahl K, Hahn-Hägerdal B (2000) Factors affecting the fermentative lactic acid production from renewable resources. Enzym Microb Technol 26(2-4):87–107

    Article  CAS  Google Scholar 

  • Holmström B, Řičica J (1967) Production of hyaluronic acid by a Streptococcal strain in batch culture. Appl Microbiol 15(6):1409–1413

    Article  PubMed  PubMed Central  Google Scholar 

  • Hong SW, Yung Chil H, Seung Hee C (n.d.) L-Glutamic acid 4E kä0|| 35k F3E (I)

    Google Scholar 

  • Horitsu H (1991) Production of itaconic acid by Aspergillus terreus immobilized in polyacrylamide gels. Eur J Appl Microbial Biotechnol 35:154–158

    Google Scholar 

  • Hou Y, Wu G (2017) Nutritionally nonessential amino acids: a misnomer in nutritional sciences. Adv Nutr 8(1):137–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu J, Lin Y, Zhang Z, Xiang T, Mei Y, Zhao S, Liang Y, Peng N (2016) High-titer lactic acid production by Lactobacillus pentosus FL0421 from corn stover using fed-batch simultaneous saccharification and fermentation. Bioresour Technol 214:74–80

    Article  CAS  PubMed  Google Scholar 

  • Hu C, Jiang Q, Zhang T, Yin Y, Li F, Deng J, Wu G, Kong X (2017) Dietary supplementation with arginine and glutamic acid modifies growth performance, carcass traits, and meat quality in growing-finishing pigs. J Anim Sci 95(6):2680–2689

    CAS  PubMed  Google Scholar 

  • Huang W-C, Chen S-J, Chen T-L (2006) The role of dissolved oxygen and function of agitation in hyaluronic acid fermentation. Biochem Eng J 32(3):239–243

    Article  CAS  Google Scholar 

  • Huang X, Chen M, Lu X, Li Y, Li X, Li J-J (2014a) Direct production of itaconic acid from liquefied corn starch by genetically engineered Aspergillus terreus. Microb Cell Factories 13(1):1–10

    Article  Google Scholar 

  • Huang X, Lu X, Li Y, Li X, Li J-J (2014b) Improving itaconic acid production through genetic engineering of an industrial Aspergillus terreus strain. Microb Cell Factories 13(1):1–9

    Google Scholar 

  • Ikeda M (2003) Amino acid production processes. Microbial production of l-amino acids. pp. 1–35

    Google Scholar 

  • Ikeda M, Nakagawa S (2003) The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol 62(2):99–109

    Article  CAS  PubMed  Google Scholar 

  • Im J-H, Song J-M, Kang J-H, Kang D-J (2009) Optimization of medium components for high-molecular-weight hyaluronic acid production by Streptococcus sp. ID9102 via a statistical approach. J Ind Microb Biotechnol 36(11):1337

    Article  CAS  Google Scholar 

  • Imaizumi A, Takikawa R, Koseki C, Usuda Y, Yasueda H, Kojima H, Matsui K, Sugimoto S-i (2005) Improved production of L-lysine by disruption of stationary phase-specific rmf gene in Escherichia coli. J Biotechnol 117(1):111–118

    Article  CAS  PubMed  Google Scholar 

  • Imaizumi A, Kojima H, Matsui K (2006) The effect of intracellular ppGpp levels on glutamate and lysine overproduction in Escherichia coli. J Biotechnol 125(3):328–337

    Article  CAS  PubMed  Google Scholar 

  • Iqbal M, Saeed A (2005) Novel method for cell immobilization and its application for production of organic acid. Lett Appl Microbiol 40(3):178–182

    Article  CAS  PubMed  Google Scholar 

  • Izawa N, Hanamizu T, Iizuka R, Sone T, Mizukoshi H, Kimura K, Chiba K (2009) Streptococcus thermophilus produces exopolysaccharides including hyaluronic acid. J Biosci Bioeng 107(2):119–123

    Article  CAS  PubMed  Google Scholar 

  • Izawa N, Serata M, Sone T, Omasa T, Ohtake H (2011) Hyaluronic acid production by recombinant Streptococcus thermophilus. J Biosci Bioeng 111(6):665–670

    Article  CAS  PubMed  Google Scholar 

  • Jagannath S, Ramachandran K (2010) Influence of competing metabolic processes on the molecular weight of hyaluronic acid synthesized by Streptococcus zooepidemicus. Biochem Eng J 48(2):148–158

    Article  CAS  Google Scholar 

  • Jäger W, Peters-Wendisch PG, Kalinowski J, Pühler A (1996) A Corynebacterium glutamicum gene encoding a two-domain protein similar to biotin carboxylases and biotin-carboxyl-carrier proteins. Arch Microbiol 166(2):76–82

    Article  PubMed  Google Scholar 

  • Jaklitsch WM, Kubicek CP, Scrutton MC (1991) The subcellular organization of itaconate biosynthesis in Aspergillus terreus. Microbiology 137(3):533–539

    CAS  Google Scholar 

  • Jakobsen ØM, Brautaset T, Degnes KF, Heggeset TM, Balzer S, Flickinger MC, Valla S, Ellingsen TE (2009) Overexpression of wild-type aspartokinase increases L-lysine production in the thermotolerant methylotrophic bacterium Bacillus methanolicus. Appl Environ Microbiol 75(3):652–661

    Article  CAS  PubMed  Google Scholar 

  • Jan G, Leverrier P, Proudy I, Roland N (2002) Survival and beneficial effects of propionibacteria in the human gut: in vivo and in vitro investigations. Lait 82(1):131–144

    Article  CAS  Google Scholar 

  • Jeong E, Shim WY, Kim JH (2014) Metabolic engineering of Pichia pastoris for production of hyaluronic acid with high molecular weight. J Biotechnol 185:28–36

    Article  CAS  PubMed  Google Scholar 

  • Jeong B-Y, Wittmann C, Kato T, Park EY (2015) Comparative metabolic flux analysis of an Ashbya gossypii wild type strain and a high riboflavin-producing mutant strain. J Biosci Bioeng 119(1):101–106

    Article  CAS  PubMed  Google Scholar 

  • Jetten MS, Sinskey AJ (1995) Recent advances in the physiology and genetics of amino acid-producing bacteria. Crit Rev Biotechnol 15(1):73–103

    Article  CAS  PubMed  Google Scholar 

  • Jian X, Shouwen C, Ziniu Y (2005) Optimization of process parameters for poly γ-glutamate production under solid state fermentation from Bacillus subtilis CCTCC202048. Process Biochem 40(9):3075–3081

    Article  Google Scholar 

  • Johns MR, Goh L-T, Oeggerli A (1994) Effect of pH, agitation and aeration on hyaluronic acid production by Streptococcus zooepidemicus. Biotechnol Lett 16(5):507–512

    Article  CAS  Google Scholar 

  • Joosten V, van Berkel WJ (2007) Flavoenzymes. Curr Opin Chem Biol 11(2):195–202

    Article  CAS  PubMed  Google Scholar 

  • Ju DK (1976) Studies on the production of amino acids by methanol-utilizing bacteria. 미생물학회지 14(1):8–16

    CAS  Google Scholar 

  • Jyothi A, Sasikiran K, Nambisan B, Balagopalan C (2005) Optimisation of glutamic acid production from cassava starch factory residues using Brevibacterium divaricatum. Process Biochem 40(11):3576–3579

    Article  CAS  Google Scholar 

  • Kalingan A, Liao C-M (2002) Influence of type and concentration of flavinogenic factors on production of riboflavin by Eremothecium ashbyii NRRL 1363. Bioresour Technol 82(3):219–224

    Article  CAS  PubMed  Google Scholar 

  • Kalinowski J, Cremer J, Bachmann B, Eggeling L, Sahm H, Pühler A (1991) Genetic and biochemical analysis of the aspartokinase from Corynebacterium glutamicum. Mol Microbiol 5(5):1197–1204

    Article  CAS  PubMed  Google Scholar 

  • Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J Biotechnol 104(1-3):5–25

    Article  CAS  PubMed  Google Scholar 

  • Kamiyama H, Hotta Y, Tanaka T, Nishikawa S, Sasaki K (2000) Production of 5-aminolevulinic acid by a mutant strain of a photosynthetic bacterium. 生物工学会誌 78(2):48–55

    CAS  Google Scholar 

  • Kandler O (1983) Carbohydrate metabolism in lactic acid bacteria. Antonie Van Leeuwenhoek 49(3):209–224

    Article  CAS  PubMed  Google Scholar 

  • Kang Z, Zhang J, Zhou J, Qi Q, Du G, Chen J (2012) Recent advances in microbial production of δ-aminolevulinic acid and vitamin B12. Biotechnol Adv 30(6):1533–1542

    Article  CAS  PubMed  Google Scholar 

  • Kanzaki T, Isobe K, Okazaki H, Motizuki K, Fukuda H (1967) l-Glutamic acid fermentation: Part I. Selection of an oleic acid-requiring mutant and its properties: Part II. The production of l-glutamic acid by an oleic acid-requiring mutant. Agric Biol Chem 31(11):1307–1317

    CAS  Google Scholar 

  • Kaplan P, Kučera I, Dadák V (1993) Effect of oxygen on ubiquinone-10 production by Paracoccus denitrificans. Biotechnol Lett 15(10):1001–1002

    Article  CAS  Google Scholar 

  • Kase H, Nakayama K (1974) Production of O-acetyl-l-homoserme by methionine analogresistant mutants and regulation of homosenne-O-transacetylase in Gorynebacterium glutamicum. Agric Biol Chem 38(10):2021–2030

    CAS  Google Scholar 

  • Kase H, Nakayama K (1975a) Isolation and characterization of S-adenosylmethionine-requiring mutants and role of S-adenosylmethionine in the regulation of methionine biosynthesis in Corynebacterium glutamicum. Agric Biol Chem 39(1):161–168

    CAS  Google Scholar 

  • Kase H, Nakayama K (1975b) L-Methionine production by methionine analog-resistant mutants of Corynebacterium glutamicum. Agric Biol Chem 39(1):153–160

    CAS  Google Scholar 

  • Kase H, Nakayama K (1975c) O-Acetylhomoserine as an intermediate in methionine biosynthesis in Arthrobacter paraffineus, Corynebacterium glutamicum and Bacillus species. Agric Biol Chem 39(3):687–693

    CAS  Google Scholar 

  • Käß F, Hariskos I, Michel A, Brandt H-J, Spann R, Junne S, Wiechert W, Neubauer P, Oldiges M (2014) Assessment of robustness against dissolved oxygen/substrate oscillations for C. glutamicum DM1933 in two-compartment bioreactor. Bioprocess Biosyst Eng 37(6):1151–1162

    Article  PubMed  Google Scholar 

  • Kautola H, Rymowicz W, Linko Y-Y, Linko P (1991) Itaconic acid production by immobilized Aspergillus terreus with varied metal additions. Appl Microbiol Biotechnol 35(2):154–158

    Article  CAS  Google Scholar 

  • Kawahara Y, Nakamura T, Yoshihara Y, Ikeda S, Yoshii H (1990) Effect of glycine betaine on the sucrose catabolism of an L-lysine producing mutant of Brevibacterium lactofermentum. Appl Microbiol Biotechnol 34(3):340–343

    Article  CAS  Google Scholar 

  • Kawahara Y, Takahashi-Fuke K, Shimizu E, Nakamatsu T, Nakamori S (1997) Relationship between the glutamate production and the activity of 2-oxoglutarate dehydrogenase in Brevibacterium lactofermentum. Biosci Biotechnol Biochem 61(7):1109–1112

    Article  CAS  PubMed  Google Scholar 

  • Kawamukai M (2002) Biosynthesis, bioproduction and novel roles of ubiquinone. J Biosci Bioeng 94(6):511–517

    Article  CAS  PubMed  Google Scholar 

  • Kawamura D, Furuhashi M, Saito O, Matsui H (1981) Production of itaconic acid by fermentation. Jpn Pat 56137893

    Google Scholar 

  • Kelle R, Laufer B, Brunzema C, Weuster-Botz D, Krämer R, Wandrey C (1996) Reaction engineering analysis of l-lysine transport by Corynebacterium glutamicum. Biotechnol Bioeng 51(1):40–50

    Article  CAS  PubMed  Google Scholar 

  • Kelle R, Hermann T, Bathe B (2005) 20 L-Lysine production. In: Handbook of Corynebacterium glutamicum. CRC Press, Boca Raton, FL, pp 465–488

    Google Scholar 

  • Kendall FE, Heidelberger M, Dawson MH (1937) A serologically inactive polysaccharide elaborated by mucoid strains of group A hemolytic streptococcus. J Biol Chem 118(1):61–69

    Article  CAS  Google Scholar 

  • Kerr DS, Flavin M (1970) The regulation of methionine synthesis and the nature of cystathionine γ-synthase in Neurospora. J Biol Chem 245(7):1842–1855

    Article  CAS  PubMed  Google Scholar 

  • Kiene RP, Linn LJ, González J, Moran MA, Bruton JA (1999) Dimethylsulfoniopropionate and methanethiol are important precursors of methionine and protein-sulfur in marine bacterioplankton. Appl Environ Microbiol 65(10):4549–4558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J-H, Yoo S-J, Oh D-K, Kweon Y-G, Park D-W, Lee C-H, Gil G-H (1996) Selection of a Streptococcus equi mutant and optimization of culture conditions for the production of high molecular weight hyaluronic acid. Enzym Microb Technol 19(6):440–445

    Article  CAS  Google Scholar 

  • Kimura K (1962) The significance of glutamic dehydrogenase in glutamic acid fermentation. J Gen Appl Microbiol 8(4):253–260

    Article  CAS  Google Scholar 

  • Kimura E (2005) 19L-glutamate production. In: Handbook of Corynebacterium glutamicum. CRC Press, Boca Raton, FL, p 439

    Chapter  Google Scholar 

  • Kinoshita K (1932) Über die Produktion von Itaconsäure und Mannit durch einen neuen Schimmelpilz Aspergillus itaconicus. Acta Phytochim 5:271–287

    Google Scholar 

  • Kitamoto HK, Nakahara T (1994) Isolation of an L-methionine-enriched mutant of Kluyveromyces lactis grown on whey permeate. Process Biochem 29(2):127–131

    Article  CAS  Google Scholar 

  • Kleerebezem R, van Loosdrecht MC (2007) Mixed culture biotechnology for bioenergy production. Curr Opin Biotechnol 18(3):207–212

    Article  CAS  PubMed  Google Scholar 

  • Klement T, Büchs J (2013) Itaconic acid—a biotechnological process in change. Bioresour Technol 135:422–431

    Article  CAS  PubMed  Google Scholar 

  • Klement T, Milker S, Jäger G, Grande PM, Domínguez de María P, Büchs J (2012) Biomass pretreatment affects Ustilago maydis in producing itaconic acid. Microb Cell Factories 11(1):1–13

    Article  Google Scholar 

  • Klingen AR, Palsdottir H, Hunte C, Ullmann GM (2007) Redox-linked protonation state changes in cytochrome bc1 identified by Poisson–Boltzmann electrostatics calculations. Biochim Biophys Acta (BBA)-Bioenerget 1767(3):204–221

    Article  CAS  Google Scholar 

  • Kocabas A, Ogel ZB, Bakir U (2014) Xylanase and itaconic acid production by Aspergillus terreus NRRL 1960 within a biorefinery concept. Ann Microbiol 64(1):75–84

    Article  CAS  Google Scholar 

  • Kogan G, Šoltés L, Stern R, Gemeiner P (2007) Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol Lett 29(1):17–25

    Article  CAS  PubMed  Google Scholar 

  • Koizumi S, Yonetani Y, Maruyama A, Teshiba S (2000) Production of riboflavin by metabolically engineered Corynebacterium ammoniagenes. Appl Microbiol Biotechnol 53(6):674–679

    Article  CAS  PubMed  Google Scholar 

  • Kośmider A, Białas W, Kubiak P, Drożdżyńska A, Czaczyk K (2012) Vitamin B12 production from crude glycerol by Propionibacterium freudenreichii ssp. shermanii: optimization of medium composition through statistical experimental designs. Bioresour Technol 105:128–133

    Article  PubMed  Google Scholar 

  • Kotzamanidis C, Roukas T, Skaracis G (2002) Optimization of lactic acid production from beet molasses by Lactobacillus delbrueckii NCIMB 8130. World J Microbiol Biotechnol 18(5):441–448

    Article  CAS  Google Scholar 

  • Krömer JO, Wittmann C, Schröder H, Heinzle E (2006) Metabolic pathway analysis for rational design of L-methionine production by Escherichia coli and Corynebacterium glutamicum. Metab Eng 8(4):353–369

    Article  PubMed  Google Scholar 

  • Kuenz A, Gallenmüller Y, Willke T, Vorlop K-D (2012) Microbial production of itaconic acid: developing a stable platform for high product concentrations. Appl Microbiol Biotechnol 96(5):1209–1216

    Article  CAS  PubMed  Google Scholar 

  • Kumar D, Garg S, Bisaria V, Sreekrishnan T, Gomes J (2003) Production of methionine by a multi-analogue resistant mutant of Corynebacterium lilium. Process Biochem 38(8):1165–1171

    Article  CAS  Google Scholar 

  • Kunioka M, Goto A (1994) Biosynthesis of poly (γ-glutamic acid) from L-glutamic acid, citric acid, and ammonium sulfate in Bacillus subtilis IFO3335. Appl Microbiol Biotechnol 40(6):867–872

    Article  CAS  Google Scholar 

  • Kylä-Nikkilä K, Hujanen M, Leisola M, Palva A (2000) Metabolic engineering of Lactobacillus helveticus CNRZ32 for production of Pure l-(+)-lactic acid. Appl Environ Microbiol 66(9):3835–3841

    Article  PubMed  PubMed Central  Google Scholar 

  • Lago BD, Demain AL (1969) Alternate requirement for vitamin B12 or methionine in mutants of Pseudomonas denitrificans, a vitamin B12-producing bacterium. J Bacteriol 99(1):347–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lagoutte E, Mimoun S, Andriamihaja M, Chaumontet C, Blachier F, Bouillaud F (2010) Oxidation of hydrogen sulfide remains a priority in mammalian cells and causes reverse electron transfer in colonocytes. Biochim Biophys Acta (BBA)-Bioenerget 1797(8):1500–1511

    Article  CAS  Google Scholar 

  • Lapierre L, Germond J-E, Ott A, Delley M, Mollet B (1999) D-Lactate dehydrogenase gene (ldhD) inactivation and resulting metabolic effects in the Lactobacillus johnsonii strains La1 and N312. Appl Environ Microbiol 65(9):4002–4007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lass A, Sohal RS (1998) Electron transport-linked ubiquinone-dependent recycling of α-tocopherol inhibits autooxidation of mitochondrial membranes. Arch Biochem Biophys 352(2):229–236

    Article  CAS  PubMed  Google Scholar 

  • Lawrence D, Smith D, Rowbury R (1968) Regulation of methionine synthesis in Salmonella typhimurium: mutants resistant to inhibition by analogues of methionine. Genetics 58(4):473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JK, Her G, Kim SY, Seo JH (2004) Cloning and functional expression of the dps gene encoding decaprenyl diphosphate synthase from Agrobacterium tumefaciens. Biotechnol Prog 20(1):51–56

    Article  CAS  PubMed  Google Scholar 

  • Lee KH, Park YH, Han JK, Park JH, Lee KH, Choi H (2006) Microorganism for producing riboflavin and method for producing riboflavin using the same. Google Patents

    Google Scholar 

  • Legmann R, Margalith P (1986) Ethanol formation by hybrid yeasts. Appl Microbiol Biotechnol 23(3):198–202

    CAS  Google Scholar 

  • Lenaz G, Fato R, Di Bernardo S, Jarreta D, Costa A, Genova ML, Castelli GP (1999) Localization and mobility of coenzyme Q in lipid bilayers and membranes. Biofactors 9(2-4):87–93

    Article  CAS  PubMed  Google Scholar 

  • Lenaz G, Fato R, Formiggini G, Genova ML (2007) The role of Coenzyme Q in mitochondrial electron transport. Mitochondrion 7:S8–S33

    Article  CAS  PubMed  Google Scholar 

  • Leuchtenberger W (2001) Amino acids–technical production and use. Biotechnol Set 465-502. https://doi.org/10.1002/9783527620999.ch14af

  • Levinson WE, Kurtzman CP, Kuo TM (2006) Production of itaconic acid by Pseudozyma antarctica NRRL Y-7808 under nitrogen-limited growth conditions. Enzym Microb Technol 39(4):824–827

    Article  CAS  Google Scholar 

  • Levit R, de Giori GS, de Moreno de LeBlanc LeBlanc A, LeBlanc GJ (2017) Evaluation of the effect of soymilk fermented by a riboflavin-producing Lactobacillus plantarum strain in a murine model of colitis. Benef Microbes 8(1):65–72

    Article  CAS  PubMed  Google Scholar 

  • Leviton L (1946) Microbiological Production of Riboflavin Patent US2477812

    Google Scholar 

  • Li K-T, Liu D-H, Chu J, Wang Y-H, Zhuang Y-P, Zhang S-L (2008a) An effective and simplified pH-stat control strategy for the industrial fermentation of vitamin B12 by Pseudomonas denitrificans. Bioprocess Biosyst Eng 31(6):605–610

    Article  CAS  PubMed  Google Scholar 

  • Li K-T, Liu D-H, Li Y-L, Chu J, Wang Y-H, Zhuang Y-P, Zhang S-L (2008b) Improved large-scale production of vitamin B12 by Pseudomonas denitrificans with betaine feeding. Bioresour Technol 99(17):8516–8520

    Article  CAS  PubMed  Google Scholar 

  • Li K-T, Liu D-H, Zhuang Y-P, Wang Y-H, Chu J, Zhang S-L (2008c) Influence of Zn2+, Co2+ and dimethylbenzimidazole on vitamin B12 biosynthesis by Pseudomonas denitrificans. World J Microbiol Biotechnol 24(11):2525–2530

    Article  CAS  Google Scholar 

  • Li A, van Luijk N, ter Beek M, Caspers M, Punt P, van der Werf M (2011) A clone-based transcriptomics approach for the identification of genes relevant for itaconic acid production in Aspergillus. Fungal Genet Biol 48(6):602–611

    Article  CAS  PubMed  Google Scholar 

  • Li A, Pfelzer N, Zuijderwijk R, Punt P (2012) Enhanced itaconic acid production in Aspergillus niger using genetic modification and medium optimization. BMC Biotechnol 12(1):1–9

    Article  Google Scholar 

  • Lichtenthaler HK, Rohmer M, Schwender J (1997) Two independent biochemical pathways for isopentenyl diphosphate and isoprenoid biosynthesis in higher plants. Physiol Plant 101(3):643–652

    Article  CAS  Google Scholar 

  • Liebl W (2005) Corynebacterium taxonomy. In: Handbook of Corynebacterium glutamicum. CRC Press, Boca Raton, FL, pp 9–34

    Chapter  Google Scholar 

  • Liebl W, Ehrmann M, Ludwig W, Schleifer K (1991) Transfer of Brevibacterium divaricatum DSM 20297T,“Brevibacterium flavum” DSM 20411, “Brevibacterium lactofermentum” DSM 20412 and DSM 1412, and Corynebacterium lilium DSM 20137T to Corynebacterium glutamicum and their distinction by rRNA gene restriction patterns. Int J Syst Evol Microbiol 41(2):255–260

    CAS  Google Scholar 

  • Lienhart W-D, Gudipati V, Macheroux P (2013) The human flavoproteome. Arch Biochem Biophys 535(2):150–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lievense JC (1993) Biosynthesis of methionine using a reduced source of sulfur. Google Patents

    Google Scholar 

  • Lim SH, Choi JS, Park EY (2001) Microbial production of riboflavin using riboflavin overproducers, Ashbya gossypii, Bacillus subtilis, and Candida famate: an overview. Biotechnol Bioprocess Eng 6(2):75–88

    Article  CAS  Google Scholar 

  • Lin J, Fu W, Cen P (2009) Characterization of 5-aminolevulinate synthase from Agrobacterium radiobacter, screening new inhibitors for 5-aminolevulinate dehydratase from Escherichia coli and their potential use for high 5-aminolevulinate production. Bioresour Technol 100(7):2293–2297

    Article  CAS  PubMed  Google Scholar 

  • Lipshutz BH, Mollard P, Pfeiffer SS, Chrisman W (2002) A short, highly efficient synthesis of coenzyme Q10. J Am Chem Soc 124(48):14282–14283

    Article  CAS  PubMed  Google Scholar 

  • Litchfield J (2009) Lactic acid, microbially produced, pp. 362–372

    Google Scholar 

  • Liu L, Du G, Chen J, Wang M, Sun J (2009a) Comparative study on the influence of dissolved oxygen control approaches on the microbial hyaluronic acid production of Streptococcus zooepidemicus. Bioprocess Biosyst Eng 32(6):755–763

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Sun J, Xu W, Du G, Chen J (2009b) Modeling and optimization of microbial hyaluronic acid production by Streptococcus zooepidemicus using radial basis function neural network coupling quantum-behaved particle swarm optimization algorithm. Biotechnol Prog 25(6):1819–1825

    PubMed  Google Scholar 

  • Liu XX, Wang L, Wang YJ, Cai LL (2010) D-glucose enhanced 5-aminolevulinic acid production in recombinant Escherichia coli culture. Appl Biochem Biotechnol 160(3):822–830

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Liu Y, Li J, Du G, Chen J (2011) Microbial production of hyaluronic acid: current state, challenges, and perspectives. Microb Cell Factories 10(1):99

    Article  CAS  Google Scholar 

  • Lockwood L, Reeves M (1945) Some factors affecting the production of itaconic acid by Aspergillus terreus. Arch Biochem 6(3):455–469

    CAS  Google Scholar 

  • Lu H, Zhang G, Zheng Z, Meng F, Du T, He S (2019) Bio-conversion of photosynthetic bacteria from non-toxic wastewater to realize wastewater treatment and bioresource recovery: a review. Bioresour Technol 278:383–399

    Article  CAS  PubMed  Google Scholar 

  • Lüssling T, Müller K, Schreyer G, Theissen F (1981) Patent to Deutsche Gold-und Silber-Scheideanstalt formerly Roessler (Degussa): Process for the recovery of methionine and potassium bicarbonate. US4303621 (A)

    Google Scholar 

  • Macheroux P, Kappes B, Ealick SE (2011) Flavogenomics–a genomic and structural view of flavin-dependent proteins. FEBS J 278(15):2625–2634

    Article  CAS  PubMed  Google Scholar 

  • Magalhães AI, de Carvalho JC, Medina JDC, Soccol CR (2017) Downstream process development in biotechnological itaconic acid manufacturing. Appl Microbiol Biotechnol 101(1):1–12

    Article  PubMed  Google Scholar 

  • Magnuson JK, Lasure LL (2004) Organic acid production by filamentous fungi. In: Advances in fungal biotechnology for industry, agriculture, and medicine. Springer, pp 307–340

    Chapter  Google Scholar 

  • Malin G, Bourd G (1991) Phosphotransferase-dependent glucose transport in Corynebacterium glutamicum. J Appl Bacteriol 71(6):517–523

    Article  CAS  Google Scholar 

  • Malumbres M, Martin JF (1996) Molecular control mechanisms of lysine and threonine biosynthesis in amino acid-producing corynebacteria: redirecting carbon flow. FEMS Microbiol Lett 143(2-3):103–114

    Article  CAS  PubMed  Google Scholar 

  • Mancuso M, Orsucci D, Volpi L, Calsolaro V, Siciliano G (2010) Coenzyme Q10 in neuromuscular and neurodegenerative disorders. Curr Drug Targets 11(1):111–121

    Article  CAS  PubMed  Google Scholar 

  • Mansoorabadi SO, Thibodeaux CJ, Liu H-w (2007) The diverse roles of flavin coenzymes nature's most versatile thespians. J Org Chem 72(17):6329–6342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao Z, Chen RR (2007) Recombinant synthesis of hyaluronan by Agrobacterium sp. Biotechnol Prog 23(5):1038–1042

    CAS  PubMed  Google Scholar 

  • Marie Sych J, Lacroix C, Stevens MJ (2016) Vitamin B12–physiology, production and application. In: Industrial biotechnology of vitamins biopigments, and antioxidants, pp 129–159. https://doi.org/10.1002/9783527681754.ch6

  • Marques S, Santos JA, Gírio FM, Roseiro JC (2008) Lactic acid production from recycled paper sludge by simultaneous saccharification and fermentation. Biochem Eng J 41(3):210–216

    Article  CAS  Google Scholar 

  • Martens J-H, Barg H, Ma W, Jahn D (2002) Microbial production of vitamin B12. Appl Microbiol Biotechnol 58(3):275–285

    Article  CAS  PubMed  Google Scholar 

  • Martin SF, Burón I, Espinosa JC, Castilla J, Villalba JM, Torres JM (2007) Coenzyme Q and protein/lipid oxidation in a BSE-infected transgenic mouse model. Free Radic Biol Med 42(11):1723–1729

    Article  CAS  PubMed  Google Scholar 

  • Martinez FAC, Balciunas EM, Salgado JM, González JMD, Converti A, de Souza Oliveira RP (2013) Lactic acid properties, applications and production: a review. Trends Food Sci Technol 30(1):70–83

    Article  CAS  Google Scholar 

  • Martínez I, Méndez C, Berríos J, Altamirano C, Díaz-Barrera A (2015) Batch production of coenzyme Q10 by recombinant Escherichia coli containing the decaprenyl diphosphate synthase gene from Sphingomonas baekryungensis. J Ind Microbiol Biotechnol 42(9):1283–1289

    Article  PubMed  Google Scholar 

  • Matousek WM, Ciani B, Fitch CA, Kammerer RA, Alexandrescu AT (2007) Electrostatic contributions to the stability of the GCN4 leucine zipper structure. J Mol Biol 374(1):206–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsunaga T, Nakamura N, Tsuzaki N, Takeda H (1988) Selective production of glutamate by an immobilized marine blue-green alga, Synechococcus sp. Appl Microbiol Biotechnol 28(4):373–376

    Article  CAS  Google Scholar 

  • May O, Nguyen PT, Arnold FH (2000) Inverting enantioselectivity by directed evolution of hydantoinase for improved production of L-methionine. Nat Biotechnol 18(3):317–320

    Article  CAS  PubMed  Google Scholar 

  • May O, Verseck S, Bommarius A, Drauz K (2002) Development of dynamic kinetic resolution processes for biocatalytic production of natural and nonnatural L-amino acids. Org Process Res Dev 6(4):452–457

    Article  CAS  Google Scholar 

  • McCoy AJ, Adams NE, Hudson AO, Gilvarg C, Leustek T, Maurelli AT (2006) L,L-diaminopimelate aminotransferase, a trans-kingdom enzyme shared by Chlamydia and plants for synthesis of diaminopimelate/lysine. Proc Natl Acad Sci 103(47):17909–17914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meganathan R (2001) Ubiquinone biosynthesis in microorganisms. FEMS Microbiol Lett 203(2):131–139

    Article  CAS  PubMed  Google Scholar 

  • Mehta AP, Abdelwahed SH, Fenwick MK, Hazra AB, Taga ME, Zhang Y, Ealick SE, Begley TP (2015) Anaerobic 5-hydroxybenzimidazole formation from aminoimidazole ribotide: An unanticipated intersection of thiamin and vitamin B12 biosynthesis. J Am Chem Soc 137(33):10444–10447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng F, Yang A, Zhang G, Li J, Zou Z, Zhang Y (2019) Effects of C/N ratio on pollution removal efficiency and cell proliferation during the bioconversion of wastewater by photosynthetic bacteria. Desalin Water Treat 156:68–77

    Article  CAS  Google Scholar 

  • Misra N, Koubaa M, Roohinejad S, Juliano P, Alpas H, Inácio RS, Saraiva JA, Barba FJ (2017) Landmarks in the historical development of twenty first century food processing technologies. Food Res Int 97:318–339

    Article  CAS  PubMed  Google Scholar 

  • Miyachi N (1998) Preparation and chemical properties of 5-aminolevulinic acid and its derivatives. Porphyrins 7:342–347

    Google Scholar 

  • Momose H, Takagi T (1978) Glutamic acid production in biotin-rich media by temperature-sensitive mutants of Brevibacterium lactofermentum, a novel fermentation process. Agric Biol Chem 42(10):1911–1917

    CAS  Google Scholar 

  • Mondal S, Chatterjee S (1994) Enhancement of methionine production by methionine analogue ethionine resistant mutants of Brevibacterium heali. Acta Biotechnol 14(2):199–204

    Article  CAS  Google Scholar 

  • Moon M-W, Kim H-J, Oh T-K, Shin C-S, Lee J-S, Kim S-J, Lee J-K (2005) Analyses of enzyme II gene mutants for sugar transport and heterologous expression of fructokinase gene in Corynebacterium glutamicum ATCC 13032. FEMS Microbiol Lett 244(2):259–266

    Article  CAS  PubMed  Google Scholar 

  • Mori M, Shiio I (1985) Purification and some properties of phosphoenolpyruvate carboxylase from Brevibacterium flavum and its aspartate-overproducing mutant. J Biochem 97(4):1119–1128

    Article  CAS  PubMed  Google Scholar 

  • Morinaga Y, Tani Y, Yamada H (1982) L-Methionine production by ethionine-resistant mutants of a facultative methylotroph, Pseudomonas FM 518. Agric Biol Chem 46(2):473–480

    CAS  Google Scholar 

  • Morinaga Y, Tani Y, Yamada H (1983) Biosynthesis of homocysteine in a facultative methylotroph, Pseudomonas FM518. Agric Biol Chem 47(12):2855–2860

    CAS  Google Scholar 

  • Motoyama H, Anazawa H, Katsumata R, Araki K, Teshiba S (1993) Amino acid production from methanol by Methylobacillus glycogenes mutants: isolation of L-glutamic acid hyper-producing mutants from M. glycogenes strains, and derivation of L-threonine and L-lysine-producing mutants from them. Biosci Biotechnol Biochem 57(1):82–87

    Article  CAS  PubMed  Google Scholar 

  • Mu F-S, Luo M, Fu Y-J, Zhang X, Yu P, Zu Y-G (2011) Synthesis of the key intermediate of coenzyme Q10. Molecules 16(5):4097–4103

    Article  CAS  PubMed Central  Google Scholar 

  • Nakao Y, Kikuchi M, Suzuki M, Doi M (1970) Microbial production of L-glutamic acid from n-paraffin by glycerol auxotrophs. Agric Biol Chem 34(12):1875–1876

    Article  CAS  Google Scholar 

  • Nampoothiri KM, Pandey A (1995) Effect of different carbon sources on growth and glutamic acid fermentation by Brevibacterium sp. J Basic Microbiol 35(4):249–254

    Article  CAS  Google Scholar 

  • Nancib A, Nancib N, Boudrant J (2009) Production of lactic acid from date juice extract with free cells of single and mixed cultures of Lactobacillus casei and Lactococcus lactis. World J Microbiol Biotechnol 25(8):1423–1429

    Article  CAS  Google Scholar 

  • Neidle E, Kaplan S (1993) Expression of the Rhodobacter sphaeroides hemA and hemT genes, encoding two 5-aminolevulinic acid synthase isozymes. J Bacteriol 175(8):2292–2303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen L, Davis DA (2016) Comparison of crystalline lysine and intact lysine used as a supplement in practical diets of channel catfish (Ictalurus punctatus) and Nile tilapia (Oreochromis niloticus). Aquaculture 464:331–339

    Article  CAS  Google Scholar 

  • Nguyen CM, Kim J-S, Hwang HJ, Park MS, Choi GJ, Choi YH, Jang KS, Kim J-C (2012a) Production of L-lactic acid from a green microalga, Hydrodictyon reticulum, by Lactobacillus paracasei LA104 isolated from the traditional Korean food, makgeolli. Bioresour Technol 110:552–559

    Article  CAS  PubMed  Google Scholar 

  • Nguyen CM, Kim J-S, Song JK, Choi GJ, Choi YH, Jang KS, Kim J-C (2012b) D-Lactic acid production from dry biomass of Hydrodictyon reticulatum by simultaneous saccharification and co-fermentation using Lactobacillus coryniformis subsp. torquens. Biotechnol Lett 34(12):2235–2240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nie G, Yang X, Liu H, Wang L, Gong G, Jin W, Zheng Z (2013) N+ ion beam implantation of tannase-producing Aspergillus niger and optimization of its process parameters under submerged fermentation. Ann Microbiol 63(1):279–287

    Article  CAS  Google Scholar 

  • Nikolay V, Almudena M, Gilberto M, Antonia G, Vanessa M, Maria V (2013) Solubilization of animal bone char by a filamentous fungus employed in solid state fermentation. Ecol Eng 58:165–169

    Article  Google Scholar 

  • Nishikawa S, Watanabe K, Tanaka T, Miyachi N, Hotta Y, Murooka Y (1999) Rhodobacter sphaeroides mutants which accumulate 5-aminolevulinic acid under aerobic and dark conditions. J Biosci Bioeng 87(6):798–804

    Article  CAS  PubMed  Google Scholar 

  • Nunheimer T, Birnbaum J, Ihnen E, Demain A (1970) Product inhibition of the fermentative formation of glutamic acid. Appl Microbiol 20(2):215–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nwachukwu R, Ekwealor I (2009) Methionine-producing Streptomyces species isolated from Southern Nigeria soil. Afr J Microbiol Res 3(9):478–481

    CAS  Google Scholar 

  • Odunfa S, Adeniran S, Teniola O, Nordstrom J (2001) Evaluation of lysine and methionine production in some lactobacilli and yeasts from Ogi. Int J Food Microbiol 63(1-2):159–163

    Article  CAS  PubMed  Google Scholar 

  • Ogawa Y, Yamaguchi F, Yuasa K, Tahara Y (1997) Efficient production of γ-polyglutamic acid by Bacillus subtilis (natto) in jar fermenters. Biosci Biotechnol Biochem 61(10):1684–1687

    Article  CAS  PubMed  Google Scholar 

  • Oh ET, Jin Kim H, Taek OJ, Su L, Yun I, Nam K, Min JH, Woo Kim J, Koo S (2012) Synthesis of coenzyme Q10. Eur J Org Chem 26:4954–4962

    Article  Google Scholar 

  • Okabe M, Lies D, Kanamasa S, Park EY (2009) Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus. Appl Microbiol Biotechnol 84(4):597–606

    Article  CAS  PubMed  Google Scholar 

  • Okazaki H, Kanzaki T, Doi M, Sumino Y, Fukuda H (1967) L-Glutamic acid fermentation. Part II. The production of L-glutamic acid by an oleic acid-requiring mutant. Agric Biol Chem 31(11):1314–1317

    Article  CAS  Google Scholar 

  • Oki T, Kitai A, Kouno K, Ozaki A (1973) Production of L-glutamic acid by methanol-utilizing bacteria. J Gen Appl Microbiol 19(1):79–83

    Article  CAS  Google Scholar 

  • Orihara N, Kuzuyama T, Takahashi S, Furihata K, Seto H (1998) Studies on the biosynthesis of terpenoid compounds produced by actinomycetes 3. Biosynthesis of the isoprenoid side chain of novobiocin via the non-mevalonate pathway in Streptomyces niveus. J Antibiot 51(7):676–678

    Article  CAS  Google Scholar 

  • Otten A, Brocker M, Bott M (2015) Metabolic engineering of Corynebacterium glutamicum for the production of itaconate. Metab Eng 30:156–165

    Article  CAS  PubMed  Google Scholar 

  • Pack M (2004) Aminosäuren in der Tierernährung. Elements-Degussa Sci Newslett 6:30–33

    Google Scholar 

  • Pandey AK, Pandey K, Singh LK (2020) Microbial production and applications of L-lysine. In: Innovations in food technology. Springer, pp 211–229

    Chapter  Google Scholar 

  • Panesar PS, Kennedy JF, Gandhi DN, Bunko K (2007) Bioutilisation of whey for lactic acid production. Food Chem 105(1):1–14

    Article  CAS  Google Scholar 

  • Papagianni M, Avramidis N (2011) Lactococcus lactis as a cell factory: a twofold increase in phosphofructokinase activity results in a proportional increase in specific rates of glucose uptake and lactate formation. Enzym Microb Technol 49(2):197–202

    Article  CAS  Google Scholar 

  • Papagianni M, Avramidis N, Filiousis G (2007) Glycolysis and the regulation of glucose transport in Lactococcus lactis spp. lactis in batch and fed-batch culture. Microb Cell Factories 6(1):1–13

    Article  Google Scholar 

  • Park YS, Ohta N, Okabe M (1993) Effect of dissolved oxygen concentration and impeller tip speed on itaconic acid production by Aspergillus terreus. Biotechnol Lett 15(6):583–586

    Article  CAS  Google Scholar 

  • Park Y-C, Kim S-J, Choi J-H, Lee W-H, Park K-M, Kawamukai M, Ryu Y-W, Seo J-H (2005) Batch and fed-batch production of coenzyme Q10 in recombinant Escherichia coli containing the decaprenyl diphosphate synthase gene from Gluconobacter suboxydans. Appl Microbiol Biotechnol 67(2):192–196

    Article  CAS  PubMed  Google Scholar 

  • Park E, Zhang J, Tajima S, Dwiarti L (2007) Isolation of Ashbya gossypii mutant for an improved riboflavin production targeting for biorefinery technology. J Appl Microbiol 103(2):468–476

    Article  CAS  PubMed  Google Scholar 

  • Patte J-C, le Bras G, Cohen GN (1967) Regulation by methionine of the synthesis of third aspartokinase and of a second homoserine dehydrogenase in Escherichia coli K 12. Biochim Biophys Acta (BBA)-Gen Subjects 136(2):245–257

    Article  CAS  Google Scholar 

  • Paul BD, Sbodio JI, Xu R, Vandiver MS, Cha JY, Snowman AM, Snyder SH (2014) Cystathionine γ-lyase deficiency mediates neurodegeneration in Huntington’s disease. Nature 509(7498):96–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Payet L-A, Leroux M, Willison JC, Kihara A, Pelosi L, Pierrel F (2016) Mechanistic details of early steps in coenzyme Q biosynthesis pathway in yeast. Cell Chem Biol 23(10):1241–1250

    Article  CAS  PubMed  Google Scholar 

  • Pedrolli DB, Jankowitsch F, Schwarz J, Langer S, Nakanishi S, Mack M (2014) Natural riboflavin analogs. In: Flavins and flavoproteins. Humana Press, New York, NY, pp 41–63

    Chapter  Google Scholar 

  • Perkins J, Sloma A, Hermann T, Theriault K, Zachgo E, Erdenberger T, Hannett N, Chatterjee N, Williams VGR II, Hatch R (1999) Genetic engineering of Bacillus subtilis for the commercial production of riboflavin. J Ind Microbiol Biotechnol 22(1):8–18

    Article  CAS  Google Scholar 

  • Petruccioli M, Pulci V, Federici F (1999) Itaconic acid production by Aspergillus terreus on raw starchy materials. Lett Appl Microbiol 28(4):309–312

    Article  CAS  Google Scholar 

  • Pham CG, Padolina F (n.d.) Título: methionine production by batch fermentation from various carbohydrates. Producción de metionina por fermentación de varios carbohidratos

    Google Scholar 

  • Piao Y, Yamashita M, Kawaraichi N, Asegawa R, Ono H, Murooka Y (2004) Production of vitamin B12 in genetically engineered Propionibacterium freudenreichii. J Biosci Bioeng 98(3):167–173

    Article  CAS  PubMed  Google Scholar 

  • Pina A, Calderon I, Benítez T (1986) Intergeneric hybrids of Saccharomyces cerevisiae and Zygosaccharomyces fermentati obtained by protoplast fusion. Appl Environ Microbiol 51(5):995–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prehm P (1984) Hyaluronate is synthesized at plasma membranes. Biochem J 220(2):597–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin G, Lin J, Liu X, Cen P (2006) Effects of medium composition on production of 5-aminolevulinic acid by recombinant Escherichia coli. J Biosci Bioeng 102(4):316–322

    Article  CAS  PubMed  Google Scholar 

  • Qiu L, Ding H, Wang W, Kong Z, Li X, Shi Y, Zhong W (2012) Coenzyme Q10 production by immobilized Sphingomonas sp. ZUTE03 via a conversion–extraction coupled process in a three-phase fluidized bed reactor. Enzym Microb Technol 50(2):137–142

    Article  CAS  Google Scholar 

  • Quesada-Chanto A, Afschar AS, Wagner F (1994) Microbial production of propionic acid and vitamin B12 using molasses or sugar. Appl Microbiol Biotechnol 41(4):378–383

    CAS  PubMed  Google Scholar 

  • Quinzii CM, DiMauro S, Hirano M (2007) Human coenzyme Q10 deficiency. Neurochem Res 32(4):723–727

    Article  CAS  PubMed  Google Scholar 

  • Raftari M, Ghafourian S, Bakar FA (2013) Metabolic engineering of Lactococcus lactis influence of the overproduction of lipase enzyme. J Dairy Res 80(4):490–495

    Article  CAS  PubMed  Google Scholar 

  • Raux E, McVeigh T, Peters SE, Leustek T, Warren MJ (1999) The role of Saccharomyces cerevisiae Met1p and Met8p in sirohaem and cobalamin biosynthesis. Biochem J 338(3):701–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy C, Singh R (2002) Enhanced production of itaconic acid from corn starch and market refuse fruits by genetically manipulated Aspergillus terreus SKR10. Bioresour Technol 85(1):69–71

    Article  CAS  PubMed  Google Scholar 

  • Reddy G, Altaf M, Naveena B, Venkateshwar M, Kumar EV (2008) Amylolytic bacterial lactic acid fermentation—a review. Biotechnol Adv 26(1):22–34

    Article  CAS  PubMed  Google Scholar 

  • Ren J, Kotaka M, Lockyer M, Lamb HK, Hawkins AR, Stammers DK (2005) GTP cyclohydrolase II structure and mechanism. J Biol Chem 280(44):36912–36919

    Article  CAS  PubMed  Google Scholar 

  • Revillas J, Rodelas B, Pozo C, Martinez-Toledo M, López JG (2005) Production of amino acids by Azotobacter vinelandii and Azotobacter chroococcum with phenolic compounds as sole carbon source under diazotrophic and adiazotrophic conditions. Amino Acids 28(4):421–425

    Article  CAS  PubMed  Google Scholar 

  • Revuelta JL, Buey RM, Ledesma-Amaro R, Vandamme EJ (2016) Microbial biotechnology for the synthesis of (pro) vitamins, biopigments and antioxidants: challenges and opportunities. Microb Biotechnol 9(5):564–567

    Article  PubMed  PubMed Central  Google Scholar 

  • Rezaei R, Knabe DA, Tekwe CD, Dahanayaka S, Ficken MD, Fielder SE, Eide SJ, Lovering SL, Wu G (2013) Dietary supplementation with monosodium glutamate is safe and improves growth performance in postweaning pigs. Amino Acids 44(3):911–923

    Article  CAS  PubMed  Google Scholar 

  • Riscaldati E, Moresi M, Petruccioli M, Federici F (2000) Effect of pH and stirring rate on itaconate production by Aspergillus terreus. J Biotechnol 83(3):219–230

    Article  CAS  PubMed  Google Scholar 

  • Rohmer M, Knani M, Simonin P, Sutter B, Sahm H (1993) Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J 295(2):517–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rohmer M, Seemann M, Horbach S, Bringer-Meyer S, Sahm H (1996) Glyceraldehyde 3-phosphate and pyruvate as precursors of isoprenic units in an alternative non-mevalonate pathway for terpenoid biosynthesis. J Am Chem Soc 118(11):2564–2566

    Article  CAS  Google Scholar 

  • Rose WC (1938) The nutritive significance of the amino acids. Physiol Rev 18(1):109–136

    Article  Google Scholar 

  • Roth JR, Lawrence JG, Rubenfield M, Kieffer-Higgins S, Church GM (1993) Characterization of the cobalamin (vitamin B12) biosynthetic genes of Salmonella typhimurium. J Bacteriol 175(11):3303–3316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rötig A, Appelkvist E-L, Geromel V, Chretien D, Kadhom N, Edery P, Lebideau M, Dallner G, Munnich A, Ernster L (2000) Quinone-responsive multiple respiratory-chain dysfunction due to widespread coenzyme Q10 deficiency. Lancet 356(9227):391–395

    Article  PubMed  Google Scholar 

  • Rowbury R, Woods D (1961) Further studies on the repression of methionine synthesis in Escherichia coli. Microbiology 24(1):129–144

    CAS  Google Scholar 

  • Roy D, Chatterjee S (1982) Production of glutamic acid by an Arthrobacter sp. I. Identification and nutritional requirement in relation to glutamic acid production. Acta Microbiol Pol 31(2):153–158

    CAS  PubMed  Google Scholar 

  • Rückert C, Pühler A, Kalinowski J (2003) Genome-wide analysis of the L-methionine biosynthetic pathway in Corynebacterium glutamicum by targeted gene deletion and homologous complementation. J Biotechnol 104(1-3):213–228

    Article  PubMed  Google Scholar 

  • Rychtera M, Wase DJ (1981) The growth of Aspergillus terreus and the production of itaconic acid in batch and continuous cultures. The influence of pH. J Chem Technol Biotechnol 31(1):509–521

    Article  CAS  Google Scholar 

  • Rytter JV, Helmark S, Chen J, Lezyk MJ, Solem C, Jensen PR (2014) Synthetic promoter libraries for Corynebacterium glutamicum. Appl Microbiol Biotechnol 98(6):2617–2623

    Article  CAS  PubMed  Google Scholar 

  • Saikeur A, Choorit W, Prasertsan P, Kantachote D, Sasaki K (2009) Influence of precursors and inhibitor on the production of extracellular 5-aminolevulinic acid and biomass by Rhodopseudomonas palustris KG31. Biosci Biotechnol Biochem 73(5):987–992

    Article  CAS  PubMed  Google Scholar 

  • Sakato K, Tanaka H (1992) Advanced control of glutathione fermentation process. Biotechnol Bioeng 40(8):904–912. https://doi.org/10.1002/bit.260400806

    Article  CAS  PubMed  Google Scholar 

  • Sano C (2009) History of glutamate production. Am J Clin Nutr 90(3):728S–732S

    Article  CAS  PubMed  Google Scholar 

  • Sasaki K, Watanabe M, Tanaka T (2002) Biosynthesis, biotechnological production and applications of 5-aminolevulinic acid. Appl Microbiol Biotechnol 58(1):23–29

    Article  CAS  PubMed  Google Scholar 

  • Sassi AH, Fauvart L, Deschamps A, Lebeault J (1998) Fed-batch production of L-lysine by Corynebacterium glutamicum. Biochem Eng J 1(1):85–90

    Article  CAS  Google Scholar 

  • Sato H, Orishimo K, Shirai T, Hirasawa T, Nagahisa K, Shimizu H, Wachi M (2008) Distinct roles of two anaplerotic pathways in glutamate production induced by biotin limitation in Corynebacterium glutamicum. J Biosci Bioeng 106(1):51–58

    Article  CAS  PubMed  Google Scholar 

  • Sauer U, Hatzimanikatis V, Hohmann H-P, Manneberg M, Van Loon A, Bailey JE (1996) Physiology and metabolic fluxes of wild-type and riboflavin-producing Bacillus subtilis. Appl Environ Microbiol 62(10):3687–3696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schallmey M, Singh A, Ward OP (2004) Developments in the use of Bacillus species for industrial production. Can J Microbiol 50(1):1–17

    Article  CAS  PubMed  Google Scholar 

  • Schiraldi C, Annalisa L, Mario D (2010) Biotechnological production and application of hyaluronan. In: Elnashar M (ed) Biopolymers. InTech. ISBN: 978-953-307-109-1

    Google Scholar 

  • Schmidt G, Stahmann K-P, Kaesler B, Sahm H (1996a) Correlation of isocitrate lyase activity and riboflavin formation in the riboflavin overproducer Ashbya gossypii. Microbiology 142(2):419–426

    Article  CAS  PubMed  Google Scholar 

  • Schmidt G, Stahmann K-P, Sahm H (1996b) Inhibition of purified isocitrate lyase identified itaconate and oxalate as potential antimetabolites for the riboflavin overproducer Ashbya gossypii. Microbiology 142(2):411–417

    Article  CAS  PubMed  Google Scholar 

  • Schneider J, Niermann K, Wendisch VF (2011) Production of the amino acids L-glutamate, L-lysine, L-ornithine and L-arginine from arabinose by recombinant Corynebacterium glutamicum. J Biotechnol 154(2-3):191–198

    Article  CAS  PubMed  Google Scholar 

  • Schrumpf B, Schwarzer A, Kalinowski J, Pühler A, Eggeling L, Sahm H (1991) A functionally split pathway for lysine synthesis in Corynebacterium glutamicum. J Bacteriol 173(14):4510–4516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwechheimer SK, Park EY, Revuelta JL, Becker J, Wittmann C (2016) Biotechnology of riboflavin. Appl Microbiol Biotechnol 100(5):2107–2119

    Article  CAS  PubMed  Google Scholar 

  • Schwechheimer SK, Becker J, Peyriga L, Portais J-C, Wittmann C (2018) Metabolic flux analysis in Ashbya gossypii using 13C-labeled yeast extract: industrial riboflavin production under complex nutrient conditions. Microb Cell Factories 17(1):1–22

    Article  Google Scholar 

  • Sharma A, Fonarow GC, Butler J, Ezekowitz JA, Felker GM (2016) Coenzyme Q10 and heart failure: a state-of-the-art review. Circulation. Heart Failure 9(4):e002639

    CAS  PubMed  Google Scholar 

  • Sheng J, Ling P, Zhu X, Guo X, Zhang T, He Y, Wang F (2009) Use of induction promoters to regulate hyaluronan synthase and UDP-glucose-6-dehydrogenase of Streptococcus zooepidemicus expression in Lactococcus lactis: a case study of the regulation mechanism of hyaluronic acid polymer. J Appl Microbiol 107(1):136–144

    Article  CAS  PubMed  Google Scholar 

  • Shi S, Chen T, Zhang Z, Chen X, Zhao X (2009) Transcriptome analysis guided metabolic engineering of Bacillus subtilis for riboflavin production. Metab Eng 11(4-5):243–252

    Article  CAS  PubMed  Google Scholar 

  • Shiedlin A, Bigelow R, Christopher W, Arbabi S, Yang L, Maier RV, Wainwright N, Childs A, Miller RJ (2004) Evaluation of hyaluronan from different sources: Streptococcus zooepidemicus, rooster comb, bovine vitreous, and human umbilical cord. Biomacromolecules 5(6):2122–2127

    Article  CAS  PubMed  Google Scholar 

  • Shiio I, Uchio R (1969) Microbial production of amino acids from hydrocarbons IV. L-Glutamic acid production by Corynebacterium hydrocarboclastus R-7. J Gen Appl Microbiol 15(1):65–84

    Article  CAS  Google Scholar 

  • Shiio I, Ujigawa K (1978) Enzymes of the glutamate and aspartate synthetic pathways in a glutamate-producing bacterium, Brevibacterium flavum. J Biochem 84(3):647–657

    Article  CAS  PubMed  Google Scholar 

  • Shiio I, Ôtsuka S-I, Takahashi M (1962) Effect of biotin on the bacterial formation of glutamic acid: I. Glutamate formation and cellular permeability of amino acids. J Biochem 51(1):56–62

    Article  CAS  PubMed  Google Scholar 

  • Shiio I, Ozaki H, Ujigawa K (1977) Regulation of citrate synthase in Brevibacterium flavum, a glutamate-producing bacterium. J Biochem 82(2):395–405

    CAS  PubMed  Google Scholar 

  • Shingu H (1971) Studies on the process of glutamic acid fermentation at the enzyme level: I. On the changes of α-ketoglutaric acid dehydrogenase in the course of culture. J Ferment Technol 49:400–405

    CAS  Google Scholar 

  • Shiratsuchi M, Kuronuma H, Kawahara Y, Yoshihara Y, Miwa H, Nakamori S (1995) Simultaneous and high fermentative production of L-lysine and L-glutamic acid using a strain of Brevibacterium lactofermentum. Biosci Biotechnol Biochem 59(1):83–86

    Article  CAS  Google Scholar 

  • Shukla P, Anand S, Srivastava P, Mishra A (2022) Hyaluronic acid production by utilizing agro-industrial waste cane molasses. 3 Biotech 12(9):1–16

    Article  Google Scholar 

  • Shukuo K, Kiyoshi N, Sohei K (1961) Method of producing l-lysine by fermentation. Google Patents

    Google Scholar 

  • Singh SK, Ahmed SU, Pandey A (2006) Metabolic engineering approaches for lactic acid production. Process Biochem 41(5):991–1000

    Article  CAS  Google Scholar 

  • Sirisansaneeyakul S, Luangpipat T, Vanichsriratana W, Srinophakun T, Chen HH-H, Chisti Y (2007) Optimization of lactic acid production by immobilized Lactococcus lactis IO-1. J Ind Microbiol Biotechnol 34(5):381. https://doi.org/10.1007/s10295-007-0208-6

    Article  CAS  PubMed  Google Scholar 

  • Skjerdal O, Sletta H, Flenstad S, Josefsen K, Levine D, Ellingsen T (1995) Changes in cell volume, growth and respiration rate in response to hyperosmotic stress of NaCl, sucrose and glutamic acid in Brevibacterium lactofermentum and Corynebacterium glutamicum. Appl Microbiol Biotechnol 43(6):1099–1106

    Article  CAS  Google Scholar 

  • Šoltés L, Mendichi R, Lath D, Mach M, Bakoš D (2002) Molecular characteristics of some commercial high-molecular-weight hyaluronans. Biomed Chromatogr 16(7):459–462

    Article  PubMed  Google Scholar 

  • Somerville RL, Herrmann KM (1983) Amino acids: biosynthesis and genetic regulation. Addison-Wesley

    Google Scholar 

  • Song J, Liu H, Wang L, Dai J, Liu Y, Liu H, Zhao G, Wang P, Zheng Z (2014) Enhanced production of vitamin K 2 from Bacillus subtilis (natto) by mutation and optimization of the fermentation medium. Braz Arch Biol Technol 57:606–612

    CAS  Google Scholar 

  • Stadtman ER, Cohen G, LeBras G, de Robichon-Szulmajster H (1961) Feed-back inhibition and repression of aspartokinase activity in Escherichia coli and Saccharomyces cerevisiae. J Biol Chem 236(7):2033–2038

    Article  CAS  Google Scholar 

  • Stahmann K-P, Revuelta J, Seulberger H (2000) Three biotechnical processes using Ashbya gossypii, Candida famata, or Bacillus subtilis compete with chemical riboflavin production. Appl Microbiol Biotechnol 53(5):509–516

    Article  CAS  PubMed  Google Scholar 

  • Steiger MG, Blumhoff ML, Mattanovich D, Sauer M (2013) Biochemistry of microbial itaconic acid production. Front Microbiol 4:23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strelko CL, Lu W, Dufort FJ, Seyfried TN, Chiles TC, Rabinowitz JD, Roberts MF (2011) Itaconic acid is a mammalian metabolite induced during macrophage activation. J Am Chem Soc 133(41):16386–16389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugimoto M, Tanaka A, Suzuki T, Matsui H, Nakamori S, Takagi H (1997) Sequence analysis of functional regions of homoserine dehydrogenase genes from L-lysine and L-threonine-producing mutants of Brevibacterium lactofermentum. Biosci Biotechnol Biochem 61(10):1760–1762

    Article  CAS  PubMed  Google Scholar 

  • Sugimoto T, Morimoto A, Nariyama M, Kato T, Park EY (2010) Isolation of an oxalate-resistant Ashbya gossypii strain and its improved riboflavin production. J Ind Microbiol Biotechnol 37(1):57

    Article  CAS  PubMed  Google Scholar 

  • Sung H-C, Tachiki T, Kumagai H, Tochikura T (1984) Production and preparation of glutamate synthase from Brevibacterium flavum. J Ferment Technol 62(4):371–376

    CAS  Google Scholar 

  • Sung H-C, Takahashi M, Tamaki H, Tachiki T, Kumagai H, Tochikura T (1985) Ammonia assimilation by glutamine synthetase/glutamate synthase system in Brevibacterium flavum. J Ferment Technol 63(1):5–10

    CAS  Google Scholar 

  • Sunguroğlu C, Sezgin DE, Aytar Çelik P, Çabuk A (2018) Higher titer hyaluronic acid production in recombinant Lactococcus lactis. Prep Biochem Biotechnol 48(8):734–742

    Article  PubMed  Google Scholar 

  • Survase SA, Bajaj IB, Singhal RS (2006) Biotechnological production of vitamins. Food Technol Biotechnol 44(3):381–396

    CAS  Google Scholar 

  • Suter PM (2020) The B-vitamins. In: Essential and toxic trace elements and vitamins in human health. Elsevier, pp 217–239

    Chapter  Google Scholar 

  • Suwannakham S, Huang Y, Yang ST (2006) Construction and characterization of ack knock-out mutants of Propionibacterium acidipropionici for enhanced propionic acid fermentation. Biotechnol Bioeng 94(2):383–395

    Article  CAS  PubMed  Google Scholar 

  • Swapan K, Mishra A, Nanda G (1984) Extracellular production of L-methionine by Bacillus megaterium B71 isolated from soil. Curr Sci 53(24):1296–1297

    Google Scholar 

  • Szcześniak T, Karabin L, Szczepankowska M, Wituch K (1971) Biosynthesis of riboflavin by Ashbya gossypii. I. The influence of fats of the animal origin on the riboflavin production. Acta Microbiol Polonica Ser B: Microbiol Appl 3(1):29–34

    Google Scholar 

  • Tabuchi T, Nakahara T (1980) Preparation of itaconic acid. JP-Patent 55(034):017

    Google Scholar 

  • Tabuchi T, Sugisawa T, Ishidori T, Nakahara T, Sugiyama J (1981) Itaconic acid fermentation by a yeast belonging to the genus Candida. Agric Biol Chem 45(2):475–479

    CAS  Google Scholar 

  • Taga ME, Larsen NA, Howard-Jones AR, Walsh CT, Walker GC (2007) BluB cannibalizes flavin to form the lower ligand of vitamin B12. Nature 446(7134):449–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tajima S, Itoh Y, Sugimoto T, Kato T, Park EY (2009) Increased riboflavin production from activated bleaching earth by a mutant strain of Ashbya gossypii. J Biosci Bioeng 108(4):325–329

    Article  CAS  PubMed  Google Scholar 

  • Takahashi S, Nishino T, Koyama T (2003) Isolation and expression of Paracoccus denitrificans decaprenyl diphosphate synthase gene for production of ubiquinone-10 in Escherichia coli. Biochem Eng J 16(2):183–190

    Article  CAS  Google Scholar 

  • Takahashi S, Ohtani T, Satoh H, Nakamura Y, Kawamukai M, Kadowaki K-i (2010) Development of coenzyme Q10-enriched rice using sugary and shrunken mutants. Biosci Biotechnol Biochem 74(1):182–184

    Article  CAS  PubMed  Google Scholar 

  • Takinami K, Yoshii H, Tsuri H, Okada H (1965) Biochemical effects of fatty acid and its derivatives on L-glutamic acid fermentation: Part III. Biotin-Tween 60 relationship in the accumulation of L-glutamic acid and the growth of Brevibacterium lactofermentum. Agric Biol Chem 29(4):351–359

    CAS  Google Scholar 

  • Tammi RH, Kultti A, Kosma V-M, Pirinen R, Auvinen P, Tammi MI (2008) Hyaluronan in human tumors: pathobiological and prognostic messages from cell-associated and stromal hyaluronan. In: Seminars in cancer biology, vol 4. Elsevier, pp 288–295

    Google Scholar 

  • Tani Y, Lim W-J, Yang H-C (1988) Isolation of L-methionine-enriched mutant of a methylotrophic yeast, Candida boidinii no. 2201. J Ferment Technol 66(2):153–158

    Article  CAS  Google Scholar 

  • Taniguchi H, Wendisch VF (2015) Exploring the role of sigma factor gene expression on production by Corynebacterium glutamicum: sigma factor H and FMN as example. Front Microbiol 6:740

    Article  PubMed  PubMed Central  Google Scholar 

  • Tännler S, Zamboni N, Kiraly C, Aymerich S, Sauer U (2008) Screening of Bacillus subtilis transposon mutants with altered riboflavin production. Metab Eng 10(5):216–226

    Article  PubMed  Google Scholar 

  • Tauch A, Kaiser O, Hain T, Goesmann A, Weisshaar B, Albersmeier A, Bekel T, Bischoff N, Brune I, Chakraborty T (2005) Complete genome sequence and analysis of the multiresistant nosocomial pathogen Corynebacterium jeikeium K411, a lipid-requiring bacterium of the human skin flora. J Bacteriol 187(13):4671–4682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tevž G, Benčina M, Legiša M (2010) Enhancing itaconic acid production by Aspergillus terreus. Appl Microbiol Biotechnol 87(5):1657–1664

    Article  PubMed  Google Scholar 

  • Thakur K, Tomar SK (2016) Invitro study of riboflavin producing lactobacilli as potential probiotic. LWT-Food Sci Technol 68:570–578

    Article  CAS  Google Scholar 

  • Thakur K, Tomar SK, Brahma B, De S (2016a) Screening of riboflavin-producing lactobacilli by a polymerase-chain-reaction-based approach and microbiological assay. J Agric Food Chem 64(9):1950–1956

    Article  CAS  PubMed  Google Scholar 

  • Thakur K, Tomar SK, De S (2016b) Lactic acid bacteria as a cell factory for riboflavin production. Microb Biotechnol 9(4):441–451

    Article  CAS  PubMed  Google Scholar 

  • Tian Y, Yue T, Yuan Y, Soma PK, Lo YM (2010) Improvement of cultivation medium for enhanced production of coenzyme Q10 by photosynthetic Rhodospirillum rubrum. Biochem Eng J 51(3):160–166

    Article  CAS  Google Scholar 

  • Tokdar P, Sanakal A, Ranadive P, Khora SS, George S, Deshmukh SK (2015) Molecular, physiological and phenotypic characterization of Paracoccus denitrificans ATCC 19367 mutant strain P-87 producing improved coenzyme Q10. Indian J Microbiol 55(2):184–193

    Article  CAS  PubMed  Google Scholar 

  • Troy FA (1973) Chemistry and biosynthesis of the poly (γ-d-glutamyl) capsule in Bacillus licheniformis: I. Properties of the membrane-mediated biosynthetic reaction. J Biol Chem 248(1):305–315

    Article  CAS  PubMed  Google Scholar 

  • Tsai Y-C, Huang M-C, Lin S-F, Su Y-C (2001) Method for the production of itaconic acid using Aspergillus terreus solid state fermentation. Google Patents

    Google Scholar 

  • Udaka S (1960) Screening method for microorganisms accumulating metabolites and its use in the isolation of Micrococcus glutamicus. J Bacteriol 79(5):754–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umerie S, Ekwealor I, Nwagbo I (2000) Lysine production by Bacillus laterosporus from various carbohydrates and seed meals. Bioresour Technol 75(3):249–252

    Article  CAS  Google Scholar 

  • Upadhyaya BP, DeVeaux LC, Christopher LP (2014) Metabolic engineering as a tool for enhanced lactic acid production. Trends Biotechnol 32(12):637–644

    Article  CAS  PubMed  Google Scholar 

  • Vázquez JA, Montemayor MI, Fraguas J, Murado MA (2010) Hyaluronic acid production by Streptococcus zooepidemicus in marine by-products media from mussel processing wastewaters and tuna peptone viscera. Microb Cell Factories 9(1):1–10

    Article  Google Scholar 

  • Velasco A, Leguina J, Lazcano A (2002) Molecular evolution of the lysine biosynthetic pathways. J Mol Evol 55(4):445–449

    Article  CAS  PubMed  Google Scholar 

  • Vuoristo KS, Mars AE, Sangra JV, Springer J, Eggink G, Sanders JP, Weusthuis RA (2015) Metabolic engineering of itaconate production in Escherichia coli. Appl Microbiol Biotechnol 99(1):221–228

    Article  CAS  PubMed  Google Scholar 

  • Wagner T, Hantke B, Wagner F (1996) Production of L-methionine from D, L-5-(2-methylthioethyl) hydantoin by resting cells of a new mutant strain of Arthrobacter species DSM 7330. J Biotechnol 46(1):63–68

    Article  CAS  Google Scholar 

  • Walsh CT, Wencewicz TA (2013) Flavoenzymes: versatile catalysts in biosynthetic pathways. Nat Prod Rep 30(1):175–200

    Article  CAS  PubMed  Google Scholar 

  • Wang Z-J, Wang H-Y, Li Y-L, Chu J, Huang M-Z, Zhuang Y-P, Zhang S-L (2010) Improved vitamin B12 production by step-wise reduction of oxygen uptake rate under dissolved oxygen limiting level during fermentation process. Bioresour Technol 101(8):2845–2852

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Wang Y, Liu Y, Shi H, Su Z (2012a) Novel in situ product removal technique for simultaneous production of propionic acid and vitamin B12 by expanded bed adsorption bioreactor. Bioresour Technol 104:652–659

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Wang Y, Su Z (2012b) Improvement of adenosylcobalamin production by metabolic control strategy in Propionibacterium freudenreichii. Appl Biochem Biotechnol 167(1):62–72

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Wang Q, Qi Q (2015) Identification of riboflavin: revealing different metabolic characteristics between Escherichia coli BL21 (DE3) and MG1655. FEMS Microbiol Lett 362(11)

    Google Scholar 

  • Wang Y, Meng H, Cai D, Wang B, Qin P, Wang Z, Tan T (2016) Improvement of l-lactic acid productivity from sweet sorghum juice by repeated batch fermentation coupled with membrane separation. Bioresour Technol 211:291–297

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Shi T, Chen T, Wang X, Wang Y, Liu D, Guo J, Fu J, Feng L, Wang Z (2018) Integrated whole-genome and transcriptome sequence analysis reveals the genetic characteristics of a riboflavin-overproducing Bacillus subtilis. Metab Eng 48:138–149

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Chen S, Liu J, Lv P, Cai D, Zhao G (2019) Efficient production of coenzyme Q 10 from acid hydrolysate of sweet sorghum juice by Rhodobacter sphaeroides. RSC Adv 9(39):22336–22342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward O (1989) Fermentations raw materials. Fermentation biotechnology: principles, processes and products Saddle. Prentice Hall, River, NJ, pp 59–71

    Google Scholar 

  • Wehrmann A, Phillipp B, Sahm H, Eggeling L (1998) Different modes of diaminopimelate synthesis and their role in cell wall integrity: a study with Corynebacterium glutamicum. J Bacteriol 180(12):3159–3165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinert DJ (2009) Nutrition and muscle protein synthesis: a descriptive review. J Can Chiropr Assoc 53(3):186

    PubMed  PubMed Central  Google Scholar 

  • Werpy T, Petersen G (2004) Top value added chemicals from biomass: volume I--results of screening for potential candidates from sugars and synthesis gas. National Renewable Energy Lab, Golden, CO (US)

    Google Scholar 

  • Wessels MR, Moses AE, Goldberg JB, DiCesare TJ (1991) Hyaluronic acid capsule is a virulence factor for mucoid group A streptococci. Proc Natl Acad Sci 88(19):8317–8321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White P (1983) The essential role of diaminopimelate dehydrogenase in the biosynthesis of lysine by Bacillus sphaericus. Microbiology 129(3):739–749

    Article  CAS  Google Scholar 

  • Willke T (2014) Methionine production—a critical review. Appl Microbiol Biotechnol 98(24):9893–9914

    Article  CAS  PubMed  Google Scholar 

  • Willke T, Vorlop K-D (2001) Biotechnological production of itaconic acid. Appl Microbiol Biotechnol 56(3):289–295

    Article  CAS  PubMed  Google Scholar 

  • Willke T, Hartwich T, Reershemius H, Jurchescu I, Lang S, Vorlop K (2010) Ökologisch produziertes Methionin aus Mikroorganismen. Praxis trifft Forschung Neues aus der Ökologischen Tierhaltung 2010:125

    Google Scholar 

  • Wittmann C, Becker J (2007) The L-lysine story: from metabolic pathways to industrial production. In: Amino acid biosynthesis pathways, regulation and metabolic engineering. Springer, pp 39–70

    Chapter  Google Scholar 

  • Wöltinger J, Karau A, Leuchtenberger W, Drauz K (2005) Membrane reactors at Degussa. In: Technology transfer biotechnology, pp 289–316

    Chapter  Google Scholar 

  • Woo JE, Seong HJ, Lee SY, Jang Y-S (2019) Metabolic engineering of Escherichia coli for the production of hyaluronic acid from glucose and galactose. Front Bioeng Biotechnol 7:351

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu G (2017) Principles of animal nutrition. CRC Press

    Book  Google Scholar 

  • Wu H-S, Tsai J-J (2013) Separation and purification of coenzyme Q10 from Rhodobacter sphaeroides. J Taiwan Inst Chem Eng 44(6):872–878

    Article  CAS  Google Scholar 

  • Wu W, Zhang B (2019) Lactic acid bacteria and b vitamins. In: Lactic acid bacteria. Springer, pp 43–60

    Chapter  Google Scholar 

  • Wu G, Bazer FW, Cudd TA, Meininger CJ, Spencer TE (2004) Maternal nutrition and fetal development. J Nutr 134(9):2169–2172

    Article  CAS  PubMed  Google Scholar 

  • Wu Q-L, Chen T, Gan Y, Chen X, Zhao X-M (2007) Optimization of riboflavin production by recombinant Bacillus subtilis RH44 using statistical designs. Appl Microbiol Biotechnol 76(4):783–794

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Burghardt RC, Cudd TA, Johnson GA, Satterfield MC, Spencer TE (2009a) Impacts of functional amino acids on fetal growth. In: Amino acids, vol 37. Springer, New York, NY, p 6

    Google Scholar 

  • Wu TF, Huang WC, Chen YC, Tsay YG, Chang CS (2009b) Proteomic investigation of the impact of oxygen on the protein profiles of hyaluronic acid-producing Streptococcus zooepidemicus. Proteomics–Clinical Applications.

    Google Scholar 

  • Xie L, Eiteman M, Altman E (2003a) Production of 5-aminolevulinic acid by an Escherichia coli aminolevulinate dehydratase mutant that overproduces Rhodobacter sphaeroides aminolevulinate synthase. Biotechnol Lett 25(20):1751–1755

    Article  CAS  PubMed  Google Scholar 

  • Xie L, Hall D, Eiteman M, Altman E (2003b) Optimization of recombinant aminolevulinate synthase production in Escherichia coli using factorial design. Appl Microbiol Biotechnol 63(3):267–273

    Article  CAS  PubMed  Google Scholar 

  • Yamada T, Kawasaki T (2005) Microbial synthesis of hyaluronan and chitin: new approaches. J Biosci Bioeng 99(6):521–528

    Article  CAS  PubMed  Google Scholar 

  • Yamada K, Komagata K (1972) Taxonomic studies on coryneform bacteria V. Classification of coryneform bacteria. J Gen Appl Microbiol 18(6):417–431

    Article  Google Scholar 

  • Yamada H, Morinaga Y, Tani Y (1982) l-Methionine overproduction by ethionine-resistant mutants of obligate methylotroph strain OM 33. Agric Biol Chem 46(1):47–55

    CAS  Google Scholar 

  • Yamane H, Tomonaga S, Suenaga R, Denbow DM, Furuse M (2007) Intracerebroventricular injection of glutathione and its derivative induces sedative and hypnotic effects under an acute stress in neonatal chicks. Neurosci Lett 418(1):87–91

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Xu H (2016) Industrial fermentation of vitamin C. In: Industrial biotechnology of vitamins, biopigments, and antioxidants, pp 161–192

    Chapter  Google Scholar 

  • Yao H, Tian Y-C, Tadé MO, Ang H (2001) Variations and modelling of oxygen demand in amino acid production. Chem Eng Process Process Intensif 40(4):401–409

    Article  CAS  Google Scholar 

  • Yatsyshyn VY, Fedorovych D, Sibirny A (2009) The microbial synthesis of flavin nucleotides: a review. Appl Biochem Microbiol 45(2):115–124

    Article  CAS  Google Scholar 

  • Ye C, Luo Q, Guo L, Gao C, Xu N, Zhang L, Liu L, Chen X (2020) Improving lysine production through construction of an Escherichia coli enzyme-constrained model. Biotechnol Bioeng 117(11):3533–3544

    Article  CAS  PubMed  Google Scholar 

  • Yin L, Bauer CE (2013) Controlling the delicate balance of tetrapyrrole biosynthesis. Philos Trans Royal Soc B: Biol Sci 368(1622):20120262

    Article  Google Scholar 

  • Yong X, Raza W, Yu G, Ran W, Shen Q, Yang X (2011) Optimization of the production of poly-γ-glutamic acid by Bacillus amyloliquefaciens C1 in solid-state fermentation using dairy manure compost and monosodium glutamate production residues as basic substrates. Bioresour Technol 102(16):7548–7554

    Article  CAS  PubMed  Google Scholar 

  • Yoshida H, Kotani Y, Ochiai K, Araki K (1998) Production of ubiquinone-10 using bacteria. J Gen Appl Microbiol 44(1):19–26

    Article  CAS  PubMed  Google Scholar 

  • Yoshida Y, Hayakawa M, Habuchi Y, Niki E (2006) Evaluation of the dietary effects of coenzyme Q in vivo by the oxidative stress marker, hydroxyoctadecadienoic acid and its stereoisomer ratio. Biochim Biophys Acta (BBA)-Gen Subjects 1760(10):1558–1568

    Article  CAS  Google Scholar 

  • Yuan YJ, Wang SH, Song ZX, Gao RC (2002) Production of l-methionine by immobilized pellets of Aspergillus oryzae in a packed bed reactor. J Chem Technol Biotechnol 77(5):602–606

    Article  CAS  Google Scholar 

  • Yuan P, Cui S, Liu Y, Li J, Du G, Liu L (2020) Metabolic engineering for the production of fat-soluble vitamins: advances and perspectives. Appl Microbiol Biotechnol 104(3):935–951

    Article  CAS  PubMed  Google Scholar 

  • Zappa S, Li K, Bauer CE (2010) The tetrapyrrole biosynthetic pathway and its regulation in Rhodobacter capsulatus. In: Recent advances in phototrophic prokaryotes, pp 229–250

    Chapter  Google Scholar 

  • Zayas CL, Escalante-Semerena JC (2007) Reassessment of the late steps of coenzyme B12 synthesis in Salmonella enterica: evidence that dephosphorylation of adenosylcobalamin-5′-phosphate by the CobC phosphatase is the last step of the pathway. J Bacteriol 189(6):2210–2218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Vadlani PV (2015) Lactic acid production from biomass-derived sugars via co-fermentation of Lactobacillus brevis and Lactobacillus plantarum. J Biosci Bioeng 119(6):694–699

    Article  CAS  PubMed  Google Scholar 

  • Zhang A, Yang ST (2009) Engineering Propionibacterium acidipropionici for enhanced propionic acid tolerance and fermentation. Biotechnol Bioeng 104(4):766–773

    CAS  PubMed  Google Scholar 

  • Zhang J, Ding X, Yang L, Kong Z (2006) A serum-free medium for colony growth and hyaluronic acid production by Streptococcus zooepidemicus NJUST01. Appl Microbiol Biotechnol 72(1):168–172

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Bastard P, Liu Z, Le Pen J, Moncada-Velez M, Chen J, Ogishi M, Sabli IK, Hodeib S, Korol C (2020) Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science 370(6515):eabd4570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou S, Causey T, Hasona A, Shanmugam K, Ingram L (2003) Production of optically pure D-lactic acid in mineral salts medium by metabolically engineered Escherichia coli W3110. Appl Environ Microbiol 69(1):399–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Egawa T, Yeh S-R, Yu L, Yu C-A (2007) Simultaneous reduction of iron–sulfur protein and cytochrome b L during ubiquinol oxidation in cytochrome bc 1 complex. Proc Natl Acad Sci 104(12):4864–4869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Ye L, Chen Z, Hu W, Shi Y, Chen J, Wang C, Li Y, Li W, Yu H (2017) Synergic regulation of redox potential and oxygen uptake to enhance production of coenzyme Q10 in Rhodobacter sphaeroides. Enzym Microb Technol 101:36–43

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abha Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shukla, P., Srivastava, P., Mishra, A. (2023). New Developments in the Production and Recovery of Amino Acids, Vitamins, and Metabolites from Microbial Sources. In: Verma, P. (eds) Industrial Microbiology and Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-99-2816-3_7

Download citation

Publish with us

Policies and ethics