Skip to main content
Log in

d-glucose Enhanced 5-Aminolevulinic Acid Production in Recombinant Escherichia coli Culture

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, we introduced a new strategy, feeding d-glucose, to overproduce extracellular 5-aminolevulinic acid (ALA) in the recombinant Escherichia coli. We investigated that the d-glucose concentration is dependent on extracellular ALA production. The results indicated that increasing d-glucose concentration in bacteria culture enhanced final cell density and ALA yield and simultaneously decreased the activities of ALA synthase (ALAS) and ALA dehydratase (ALAD); then, the inhibitory effect of d-glucose on ALAS activity was relieved with the metabolism of d-glucose. when 4.0 g/L d-glucose was added at late exponential phase; 1.46 g/L ALA was achieved in shaking culture, which is 47% or 109% higher than the ALA yields with 30 mM levulinic acid of ALAD inhibitor or no inhibitor. In jar fermenter, final extracellular ALA concentration reached 3.1 g/L by feeding with d-glucose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Beale, S. I., & Weinstein, J. D. (1990). Biosynthesis of heme and chlorophylls, pp. 287–391. New York: McGraw-Hill.

    Google Scholar 

  2. Vladimir, Y. B., Demain, A. L., & Zaitseva, N. I. (1997). Critical Reviews in Biotechnology, 17, 21–37. doi:10.3109/07388559709146605.

    Article  Google Scholar 

  3. Sasikala, C. H., Ramana, V., & Raghuveer, R. P. (1994). Biotechnology Progress, 10, 451–459. doi:10.1021/bp00029a001.

    Article  CAS  Google Scholar 

  4. Hotta, Y., & Watanabe, K. (1999). Chemical Regulation of Plants, 34, 85–96.

    Google Scholar 

  5. Chen, H. M., Chen, C. T., Yang, H., Lee, M. I., Kuo, M. Y., Kuo, Y. S., et al. (2005). Journal of Oral Pathology & Medicine, 34, 253–256. doi:10.1111/j.1600-0714.2004.00267.x.

    Article  Google Scholar 

  6. Tobias, J. B., Marius, B., Saulius, B., Zita, K., Wolfgang, B., Ronald, S., et al. (2007). Journal of Photochemistry and Photobiology B, Biology , 87, 174–182. doi:10.1016/j.jphotobiol.2007.03.008.

    Article  Google Scholar 

  7. Jordan, P. M. (1991). Biosynthesis of tetrapyrroles, vol. 19: New comprehensive biochemistry, pp. 1–24. Amsterdam: Elsevier.

    Book  Google Scholar 

  8. Sasaki, K., Ikeda, S., Nishizawa, Y., & Hayashi, M. (1987). Journal of Fermentation Technology, 65, 511–515.

    Article  CAS  Google Scholar 

  9. Choi, C., Hong, B. S., Sung, H. C., Lee, H. S., & Kim, J. H. (1999). Biotechnology Letters, 21, 551–554. doi:10.1023/A:1005520007230.

    Article  CAS  Google Scholar 

  10. Vemuri, G. N., Eiteman, M. A., & Altman, E. (2002). Journal of Industrial Microbiology & Biotechnology, 28, 325–332. doi:10.1038/sj.jim.7000250.

    Article  CAS  Google Scholar 

  11. Lee, D. H., Jun, W. J., Shin, D. H., Cho, H. Y., & Hong, B. S. (2005). Bioscience, Biotechnology, and Biochemistry, 69, 470–476. doi:10.1271/bbb.69.470.

    Article  CAS  Google Scholar 

  12. Alan, J. B., Keith, C., David, H., Karl, I., & Karen, S. (2002). Journal of Bacteriology, 184, 1685–1692. doi:10.1128/JB.184.6.1685-1692.2002.

    Article  Google Scholar 

  13. Xie, L., Hall, D., Eiteman, M. A., & Altman, E. (2003). Applied Microbiology and Biotechnology, 63, 267–273. doi:10.1007/s00253-003-1388-2.

    Article  CAS  Google Scholar 

  14. Liu, X. X., Lin, J. P., Qin, G., & Cen, P. L. (2005). Chinese Journal of Chemical Engineering, 13, 522–528.

    CAS  Google Scholar 

  15. Mauzerall, S., & Granick, S. (1956). Journal of Biological Chemistry, 219, 435–442.

    CAS  Google Scholar 

  16. Burnham, B. F. (1970). Methods in Enzymology, 17A, 195–204. doi:10.1016/0076-6879(71)17179-0.

    Article  Google Scholar 

  17. Mitchell, L. W., & Jaffe, E. M. (1993). Archives of Biochemistry and Biophysics, 300, 169–177. doi:10.1006/abbi.1993.1024.

    Article  CAS  Google Scholar 

  18. Laemnli, U. K. (1970). Nature, 227, 680–685. doi:10.1038/227680a0.

    Article  Google Scholar 

  19. Qin, G., Lin, J. P., & Liu, X. X. (2006). Journal of Bioscience and Bioengineering, 102, 316–322. doi:10.1263/jbb.102.316.

    Article  CAS  Google Scholar 

  20. Chung, S. Y., Seo, K. H., & Rhee, J. I. (2005). Process Biochemistry, 40, 385–394. doi:10.1016/j.procbio.2004.01.024.

    Article  CAS  Google Scholar 

  21. Lee, D. H., Jun, W. J., Kim, K. M., Shin, D. H., Cho, H. Y., & Hong, B. S. (2003). Enzyme and Microbial Technology, 32, 27–34. doi:10.1016/S0141-0229(02)00241-7.

    Article  CAS  Google Scholar 

  22. Akihiko, A., Hitoshi, F., Katsumi, N., & Yoshinori, N. (2000). Journal of Bioscience and Bioengineering, 89, 176–180. doi:10.1016/S1389-1723(00)88733-2.

    Article  Google Scholar 

  23. Echelard, Y., Dymetryszyn, J., Drolet, M., & Sasarman, A. (1988). Nucleotide sequence of the hemB gene of Escherichia coli K12. Molecular & General Genetics, 214, 503–508. doi:10.1007/BF00330487.

    Article  CAS  Google Scholar 

  24. Brownlee, M. (1994). Glycation and diabetic complications. Diabetes, 43, 836–841.

    CAS  Google Scholar 

  25. Jain, S., & Palmer, N. (1997). The effects of oxygen radicals metabolites and vitamin E on glycosylation of proteins. Free Radical Biology & Medicine, 22, 593–596. doi:10.1016/S0891-5849(96)00377-2.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Meng, F. J., Ph.D., for revising the manuscript. This study was supported by the Scientific Research Fund of the Zhejiang Provincial Education Department (no. 20070617).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Xia Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X.X., Wang, L., Wang, Y.J. et al. d-glucose Enhanced 5-Aminolevulinic Acid Production in Recombinant Escherichia coli Culture. Appl Biochem Biotechnol 160, 822–830 (2010). https://doi.org/10.1007/s12010-009-8608-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8608-x

Keywords

Navigation