Skip to main content
Log in

Principles, techniques, and applications of biocatalyst immobilization for industrial application

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Immobilization is one of the most effective and powerful tools used in industry, which has been studied and improved since the last century. Various immobilization techniques and support materials have been used on both laboratory and industrial scale. Each immobilization technique is applicable for a specific production mostly depending on the cost and sensibility of process. Compared to free biocatalyst systems, immobilization techniques often offer better stability, increased activity and selectivity, higher resistance, improved separation and purification, reuse of enzymes, and consequently more efficient process. Recently, many reviews have been published about immobilization systems; however, most of them have focused on a specific application or not emphasized in details. This review focuses on most commonly used techniques in industry with many recent applications including using bioreactor systems for industrial production. It is also aimed to emphasize the advantages and disadvantages of the immobilization techniques and how these systems improve process productivity compared to non-immobilized systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdulla R, Ravindra P (2013) Immobilized Burkholderia cepacia lipase for biodiesel production from crude Jatropha curcas L. oil. Biomass Bioenergy 56:8–13

  • Aehle W (2006) Enzymes in industry: products and applications. John Wiley & Sons pp 73

  • Aguilera JM, Barbosa-Cánovas GV, Simpson R, Welti-Chanes J, Bermúdez-Aguirre D (2010) Food engineering interfaces. Springer pp 121

  • Akashi N, Kuroda S (2015) Preparation and characterization of protein A-immobilized PVDF and PES membranes. Express Polym Lett 9(1):2–13

    Article  CAS  Google Scholar 

  • Akin C (1987) In: Russell GE (ed) Biotechnology and Genetic engineering reviews: biocatalysis with immobilized cells 5(1):319–367

  • Albertsson PA (1986) Partitioning of cell particles and macromolecules, 3rd edn. Wiley, New York

    Google Scholar 

  • Almonacid SF, Nájera AL, Young ME, Simpson RJ, Acevedo CA (2012) A comparative study of stout beer batch fermentation using free and microencapsulated yeasts. Food Bioprocess Technol 5(2):750–758

    Article  CAS  Google Scholar 

  • Amaral AC, Felipe MS (2013) Nanobiotechnology: an efficient approach to drug delivery of unstable biomolecules. Curr Protein Pept Sci Curr 14:588–594

    Article  CAS  Google Scholar 

  • Araki T, Tsukube H (1990) Liquid membranes: chemical applications. CRC Press pp 35

  • Arenas E, Castillón FF, Farías MH (2012) EDC and sulfo-NHS functionalized on PVC-g-PEGMA for streptokinase immobilization. Des Monomers Polym 15(4):369–378

    Article  CAS  Google Scholar 

  • Arora DK (2003) Handbook of fungal biotechnology. CRC Press pp 294

  • Ateş S, Mehmetoğlu Ü (1997) A new method for immobilization of β-galactosidase and its utilization in a plug flow reactor. Process Biochem 32(5):433–436

    Article  Google Scholar 

  • Atkinson B, Black GM, Pinches A (1980) Process intensification using cell support systems. Process Biochem 15:24–32

    Google Scholar 

  • Bahreini E, Aghaiypour K, Abbasalipourkabir R, Mokarram AR, Goodarzi MT, Saidijam M (2014) Preparation and nanoencapsulation of l-asparaginase II in chitosan-tripolyphosphate nanoparticles and in vitro release study. Nanoscale Res Lett 9(1):1–13

    Article  CAS  Google Scholar 

  • Bayramoğlu G, Yilmaz M, Arica YM (2010) Reversible immobilization of laccase to poly-4-vinylpyridine grafted and Cu (II) chelated magnetic beads: biodegradation of reactive dyes. Bioresour Technol 101(17):6615–6621

    Article  PubMed  Google Scholar 

  • Bhamidimarri SMR (1990) In: Tyagi RD, Vembu K (ed) Wastewater treatment by immobilized cells. CRC Press pp 30

  • Bódalo A, Bastida J, Máximo MF, Montiel MC, Gómez M, Murcia MD (2008) A comparative study of free and immobilized soybean and horseradish peroxidases for 4-chlorophenol removal: protective effects of immobilization. Bioprocess Biosyst Eng 31(6):587–593

    Article  PubMed  Google Scholar 

  • Bolivar JM, Nidetzky B (2012) Oriented and selective enzyme immobilization on functionalized silica carrier using the cationic binding module Zbasic2: design of a heterogeneous d‐amino acid oxidase catalyst on porous glass. Biotechnol Bioeng 109(6):1490–1498

    Article  CAS  PubMed  Google Scholar 

  • Branyik T, Vicente AA, Dostalek P, Teixeira JA (2005) Continuous beer fermentation using immobilized yeast cell bioreactor systems. Biotechnol Prog 21(3):653–663

    Article  CAS  PubMed  Google Scholar 

  • Brar SK, Dhillon GS, Fernandes M (2014) Biotransformation of waste biomass into high value biochemicals. Das D, Goyal AIn: (ed) Pharmaceutical enzymes Springer pp 367–387

  • Breguet V, Vojinovic V, Marison IW (2010) In: Zuidam NJ, Nedovic V (ed) Encapsulation technologies for active food ingredients and food processing pp 367

  • Brodelius P, Nilsson K (1980) Entrapment of plants cells in different matrices: a comparative study. FEBS Lett 122(2):312–316

    Article  CAS  Google Scholar 

  • Bronzino JD (2000) Biomedical engineering handbook. Vol 2 CRC press pp X4

  • Cao L (2006) Carrier-bound immobilized enzymes: principles, applications and design. John Wiley & Sons pp 131

  • Carrea G, Riva S (2008) Organic synthesis with enzymes in non-aqueous media. John Wiley & Sons pp 216–222

  • Cazes M, Belleville MP, Petit E, Llorca M, Rodriguez-Mozaz S, Gunzbrurg J, Barcelo D, Sanchez-Marcano J (2014) Design and optimization of an enzymatic membrane reactor for tetracycline degradation. Catal Today 236:146–152

    Article  Google Scholar 

  • Chakraborty S, Drioli E, Giorno L (2012) Development of a two separate phase submerged biocatalytic membrane reactor for the production of fatty acids and glycerol from residual vegetable oil streams. Biomass Bioenergy 46:574–583

    Article  CAS  Google Scholar 

  • Chen C, Ko YM, Shieh CJ, Liu YC (2011) Direct penicillin G acylase immobilization by using the self-prepared immobilized metal affinity membrane. J Membr Sci 380(1):34–40

    Article  CAS  Google Scholar 

  • Chen W, Chen H, Xia Y, Yang J, Zhao J, Tian F, Zhang HP, Zhang H (2009) Immobilization of recombinant thermostable β-galactosidase from Bacillus stearothermophilus for lactose hydrolysis in milk. J Dairy Sci 92(2):491–498

    Article  CAS  PubMed  Google Scholar 

  • Chibata I, Tosa T, Sato T, Mori T (1976) Production of ʟ-amino acids by aminoacylase adsorbed on DEAE-sephadex. Methods Enzymol 44:746–759

    Article  CAS  PubMed  Google Scholar 

  • Cho GH, Cha YC, Yang DC, Moon HH (1981) Continuous ethanol production by immobilized yeast in a fluidized reactor. Biotechnol lett 11(3):667–671

  • Conley SP (2006) What is biodiesel? Purdue Extension Bioenerg series ID-336-337

  • Cullinan P, Harris JM, Taylor AJ, Hole AM, Jones M, Barnes F, Jolliffe G (2000) An outbreak of asthma in a modern detergent factory. Lancet 356(9245):1899–1900

    Article  CAS  PubMed  Google Scholar 

  • Dai Y, Shao R, Qi G, Ding BB (2014) Enhanced dibenzothiophene biodesulfurization by immobilized cells of Brevibacterium lutescens in n-octane–water biphasic system. Appl Biochem Biotechnol 174(6):2236–2244

    Article  CAS  PubMed  Google Scholar 

  • Darnall DW, Greene B, Henzl MT, Hosea JM, McPherson RA, Sneddon J, Alexander MD (1986) Selective recovery of gold and other metal ions from an algal biomass. Environ Sci Technol 20(2):206–208

    Article  CAS  PubMed  Google Scholar 

  • Denbigh KG, Turner JCR (1984) Chemical reactor theory: an introduction. CUP Archive pp 64

  • Dolui AK, Sahana S, Kumar A (2011) Studies on production of 6-aminopenicillanic acid by free and κ-carrageenan immobilized soil bacteria. Indian J Pharm Educ Res 46(1):70–74

    Google Scholar 

  • Drioli E, Giorno L (1998) Biocatalytic membrane reactors: applications in biotechnology and the pharmaceutical industry. CRC Press pp 51–52

  • Dumitriu S (2004) Polysaccharides: structural diversity and functional versatility. CRC Press pp 868

  • Esawy MA, Gamal AA, Kamel Z, Ismail AMS, Abdel-Fattah AF (2013) Evaluation of free and immobilized Aspergillus niger NRC1ami pectinase applicable in industrial processes. Carbohydr Polym 92(2):1463–1469

    Article  CAS  PubMed  Google Scholar 

  • Fjerbaek L, Christensen KV, Norddahl B (2009) A review of the current state of biodiesel production using enzymatic transesterification. Biotechnol Bioeng 102(5):1298–1315

    Article  CAS  PubMed  Google Scholar 

  • Freire MG, Claudio AFM, Araujo JMM, Coutinho JAP, Marrucho IM, Lopes JNC, Rebelo LPN (2012) Aqueous biphasic systems: a boost brought about by using ionic liquids. Chem Soc Rev 41(14):4966–4995

    Article  CAS  PubMed  Google Scholar 

  • Ganatsios V, Koutinas AA, Bekatorou A, Kanellaki M, Nigam P (2014) Promotion of maltose fermentation at extremely low temperatures using a cryotolerant Saccharomyces cerevisiae strain immobilized on porous cellulosic material. Enzym Microb Technol 66:56–59

    Article  CAS  Google Scholar 

  • Genisheva Z, Mussatto SI, Oliveira JM, Teixeira JA (2011) Evaluating the potential of wine-making residues and corn cobs as support materials for cell immobilization for ethanol production. Ind Crop Prod 34(1):979–985

    Article  CAS  Google Scholar 

  • Ghosh S, Chaganti SR, Prakasham RS (2012) Polyaniline nanofiber as a novel immobilization matrix for the anti-leukemia enzyme l-asparaginase. J Mol Catal B Enzym 74(1):132–137

    Article  CAS  Google Scholar 

  • Goosen MFA (1992) Fundamentals of animal cell encapsulation and immobilization. CRC Press pp 301

  • Guisan JM (2006) Immobilization of enzymes and cells. Humana Press, Totowa, pp 5–78

    Book  Google Scholar 

  • Gungormusler M, Gonen C, Azbar N (2011) Continuous production of 1, 3-propanediol using raw glycerol with immobilized Clostridium beijerinckii NRRL B-593 in comparison to suspended culture. Bioprocess Biosyst Eng 34(6):727–733

    Article  CAS  PubMed  Google Scholar 

  • Gupta R, Beg Q, Lorenz P (2002) Bacterial alkaline proteases: molecular approaches and industrial applications. Appl Microbiol Biotechnol 59(1):15–32

    Article  CAS  PubMed  Google Scholar 

  • Gupta R, Gigras P, Mohapatra H, Goswami VK, Chauhan B (2003) Microbial α-amylases: a biotechnological perspective. Process Biochem 38(11):1599–1616

    Article  CAS  Google Scholar 

  • Gupta K, Jana AK, Kumar S, Maiti M (2013) Immobilization of α-amylase and amyloglucosidase onto ion-exchange resin beads and hydrolysis of natural starch at high concentration. Bioprocess Biosyst Eng 36(11):1715–1724

    Article  CAS  PubMed  Google Scholar 

  • Haider T, Husain Q (2009) Hydrolysis of milk/whey lactose by β-galactosidase: a comparative study of stirred batch process and packed bed reactor prepared with calcium alginate entrapped enzyme. Chem Eng Process Process Intensif 48(1):576–580

    Article  CAS  Google Scholar 

  • Harriott P (2002) Chemical reactor design. CRC Press pp: 99

  • Hasan F, Shah AA, Hameed A (2006) Industrial applications of microbial lipases. Enzym Microb Technol 39(2):235–251

    Article  CAS  Google Scholar 

  • Hashemizadeh SN, Tavakoli O, Tabandeh F, Karkhane AA, Forghanipour Z (2011) A comparative study of immobilized-whole cell and commercial lipase as a biocatalyst for biodiesel production from soybean oil. World renewable energy congress pp 311–318

  • Hildebrand F, Lütz S (2006) Immobilisation of alcohol dehydrogenase from Lactobacillus brevis and its application in a plug-flow reactor. Tetrahedron Asymmetry 17(23):3219–3225

    Article  CAS  Google Scholar 

  • Ivanova V, Petrova P, Hristov J (2011) Application in the ethanol fermentation of immobilized yeast cells in matrix of alginate/magnetic nanoparticles, on chitosan-magnetite microparticles and cellulose-coated magnetic nanoparticles. Int Rev Chem Eng 3:289–299

    Google Scholar 

  • Jack TR, Zajic JE (1997) Advances in biochemical engineering: the immobilization of whole cells, vol 5. Springer, Berlin, pp 125–145

    Google Scholar 

  • Jogdand VG, Chavan PA, Ghogare PD, Jadhav AG (2012) Remediation of textile industry waste water using immobilized Aspergillus terreus. Eur J Exp Biol 2(5):1550–1555

    CAS  Google Scholar 

  • Jun SH, Lee J, Kim BC, Lee JR, Joo J, Park H, Lee JO, Lee SM, Lee D, Kim S, Koo YM, Shin CH, Kim SW, Hyeon T, Kim J (2012) Highly efficient enzyme immobilization and stabilization within meso-structured onion-like silica for biodiesel production. Chem Mater 24(5):924–929

    Article  CAS  Google Scholar 

  • Katchalski-Katzir E (1993) Immobilized enzymes: learning from past successes and failures. Trends Biotechnol 11(11):471–478

    Article  CAS  PubMed  Google Scholar 

  • Katchalski-Katzir E, Kraemer DM (2000) Eupergit® C, a carrier for immobilization of enzymes of industrial potential. J Mol Catal B Enzym 10(1):157–176

    Article  CAS  Google Scholar 

  • Keskin T, Giusti L, Azbar N (2012) Continuous biohydrogen production in immobilized biofilm system versus suspended cell culture. Int J Hydrog Energy 37(2):1418–1424

    Article  CAS  Google Scholar 

  • Khan AA, Alzohairy MA (2010) Recent advances and applications of immobilized enzyme technologies: a review. Res J Biol Sci 5(8):565–575

    Article  Google Scholar 

  • Kim DH, Baek H, Hong SU, Lee HK (2011) Study on immobilized liquid membrane using ionic liquid and PVDF hollow fiber as a support for CO2/N2 separation. J Membr Sci 372(1):346–354

    Article  CAS  Google Scholar 

  • Kingstad KP, Lindstrom PK (1984) Spent liquors from pulp bleaching. Environ Sci Technol 18:236A–248A

    Article  Google Scholar 

  • Kirk O, Borchert TV, Fuglsang CC (2002) Industrial enzyme applications. Curr Opin Biotechnol 13(4):345–351

    Article  CAS  PubMed  Google Scholar 

  • Kislik VS (2009) Liquid membranes: principles and applications in chemical separations and wastewater treatment. Elsevier pp 5

  • Krishna PN (2011) Enzyme technology: pacemaker of biotechnology. PHI Learn Pvt Ltd pp 264

  • Kök FN, Bozoglu F, Hasirci V (2001a) Immobilization of acetylcholinesterase and choline oxidase in/on pHEMA membrane for biosensor construction. J Biomater Sci Polym 12(11):1161–1176

    Article  Google Scholar 

  • Kök FN, Hasirci V, Arica MY (2001b) In: Wise DL, Trantolo DJ, Cichon EJ, Inyang HI, Stottmeister U (ed) Bioremediation of contaminated soils. CRC Press. pp 134–135

  • Kuhtreiber WM, Lanza RP, Chick WL (1999) Cell encapsulation technology and therapeutics. Springer pp 307

  • Kulkarni G (2002) Biotechnology and its application in pharmacy. Jaypee Brothers Publ pp 66

  • Kuo CH, Peng LT, Kan SC, Liu YC, Shieh CJ (2013) Lipase-immobilized biocatalytic membranes for biodiesel production. Bioresour Technol 145:229–232

    Article  CAS  PubMed  Google Scholar 

  • Leskosek-Cukalovic IJ, Nedovic VA (2005) Immobilized cell technology in beer brewing: current experience and results. Proc Natl Sci 109:129–141

    Google Scholar 

  • Li C, Li Y, Cheng X, Feng L, Xi C, Zhang Y (2013) Immobilization of Rhodococcus rhodochrous BX2 (an acetonitrile-degrading bacterium) with biofilm-forming bacteria for wastewater treatment. Bioresour Technol 131:390–396

    Article  CAS  PubMed  Google Scholar 

  • Ligler FS, Taitt CR (2011) Optical biosensors: today and tomorrow. Elsevier pp 151

  • Lin R, Wu R, Huang X, Xie T (2011) Immobilization of oxalate decarboxylase to Eupergit and properties of the immobilized enzyme. Prep Biochem Biotechnol 41(2):154–165

    Article  CAS  PubMed  Google Scholar 

  • Liu CH, Huang CC, Wang YW, Lee DJ, Chang JS (2012a) Biodiesel production by enzymatic transesterification catalyzed by Burkholderia lipase immobilized on hydrophobic magnetic particles. Appl Energy 100:41–46

    Article  CAS  Google Scholar 

  • Liu K, Zhao G, He B, Chen L, Huang L (2012b) Immobilization of lipase on chitosan beads for removal of pitch particles from whitewater during papermaking. Bio Resour 7(4):5460–5468

    Google Scholar 

  • Lloret L, Eibes G, Feijoo G, Moreira MT, Lema JM (2012) Continuous operation of a fluidized bed reactor for the removal of estrogens by immobilized laccase on Eupergit supports. J Biotechnol 162(4):404–406

    Article  CAS  PubMed  Google Scholar 

  • Ma F, Hanna MA (1999) Biodiesel production: a review. Bioresour Technol 70(1):1–15

    Article  CAS  Google Scholar 

  • Ma X, Deng S, Su E, Wei D (2014) One-pot enzymatic production of deacetyl-7-aminocephalosporanic acid from cephalosporin C via immobilized cephalosporin C acylase and deacetylase. Biochem Eng J 95:1–8

    Article  Google Scholar 

  • Malaviya P, Rathore VS (2007) Bioremediation of pulp and paper mill effluent by a novel fungal consortium isolated from polluted soil. Bioresour Technol 98(18):3647–3651

    Article  CAS  PubMed  Google Scholar 

  • Malik SV, Kalia V, Pundir CS (2000) Immobilization of porcine pancreas lipase on zirconia coated alkylamine glass using glutaraldehyde. Indian J Chem Technol 7(2):64–67

    CAS  Google Scholar 

  • Matto M, Husain Q (2009) Calcium alginate–starch hybrid support for both surface immobilization and entrapment of bitter gourd Momordica charantia peroxidase. J Mol Catal B Enzym 57(1):164–170

    Article  CAS  Google Scholar 

  • Mensour NA, Margaritis A, Briends CL, Pilkington H, Russell I (1996) Application of immobilized yeast cells in the brewing industry. Elsevier Sci pp 661–662

  • Mishra CSK, Champagne P (2009) Biotechnology applications. I. K. Int pp 39

  • Modaresi SMS, Faramarzi MA, Soltani A, Baharifar H, Amani A (2014) Use of artificial neural networks to examine parameters affecting the immobilization of streptokinase in chitosan. Iran J Pharm Res 13(4):1379–1386

    PubMed Central  PubMed  Google Scholar 

  • Mohanty K, Purkait MK (2011) Membrane technologies and applications. CRC Press pp 448–449

  • Mojsov K (2011) Application of enzymes in the textile industry: a review (II. International Congress of Engineering, Ecology and Materials in the Processing Industry) pp 230–239

  • Mosafa L, Shahedi M, Moghadam M (2014) Magnetite nanoparticles immobilized pectinase: preparation, characterization and application for the Fruit Juices Clarification. J Chin Chem Soc 61(3):329–336

    Article  CAS  Google Scholar 

  • Mrudula S, Nidhi S (2012) Immobilization of Bacillus megaterium MTCC 2444 by Ca-alginate entrapment method for enhanced alkaline protease production. Braz Arch Biol Technol 55(1):135–144

    Article  CAS  Google Scholar 

  • National Biodiesel Board. Biodiesel Report (March 1996)

  • Nedovic V, Willaert R (2004) Fundamentals of cell immobilization biotechnology. Vol. 1 Springer pp 22–23, 414–419

  • Niladevi KN, Prema P (2008) Immobilization of laccase from Streptomyces psammoticus and its application in phenol removal using packed bed reactor. World J Microbiol Biotechnol 24(7):1215–1222

    Article  CAS  Google Scholar 

  • Numanoğlu Y, Sungur S (2004) β-Galactosidase from Kluyveromyces lactis cell disruption and enzyme immobilization using a cellulose–gelatin carrier system. Process Biochem 39(6):705–711

    Article  Google Scholar 

  • Nussinovitch A (1997) Hydrocolloid applications: gum technology in the food and other industries. Blackie Academic & Prof, London, p 251

    Book  Google Scholar 

  • Panesar PS, Marwaha SS, Chopra HK (2010) Enzymes in food processing: fundamentals and potential applications. I.K. Int p 122

  • Park JM, Kim M, Park HS, Jang A, Min J, Kim YH (2013) Immobilization of lysozyme-CLEA onto electrospun chitosan nanofiber for effective antibacterial applications. Int J Biol Macromol 54:37–43

    Article  CAS  PubMed  Google Scholar 

  • Parmar A, Kumar H, Marwaha SS, Kennedy JF (2000) Advance in enzymatic transformation of penicillins to 6-amino penicillanic acid (6-APA). Biotechnol Adv 18(4):289–301

    Article  CAS  PubMed  Google Scholar 

  • Pazarlioğlu NK, Sariişik M, Telefoncu A (2005) Treating denim fabrics with immobilized commercial cellulases. Process Biochem 40(2):767–771

    Article  Google Scholar 

  • Prasertkittikul S, Chisti Y, Hansupalak N (2013) Deproteinization of natural rubber using protease immobilized on epichlorohydrin cross-linked chitosan beads. Ind Eng Chem Res 52(33):11723–11731

    Article  CAS  Google Scholar 

  • Pundir CS, Chauhan C (2012) Co-immobilization of detergent enzymes onto a plastic bucket and brush for their application in cloth washing. Ind Eng Chem Res 51(9):3556–3563

    Article  CAS  Google Scholar 

  • Quevedo R, Jaramillo M, Díaz O, Pedreschi F, Aguilera J (2009) Quantification of enzymatic browning in apple slices applying the fractal texture Fourier image. J Food Eng 95:285–290

    Article  CAS  Google Scholar 

  • Ramakrishna S, Ma Z, Matssura T (2011) Polymer Membranes in Biotechnology: preparation, functionalization and application. World Scientific pp 242

  • Rao DG (2010) Introduction to biochemical engineering. Tata McGraw-Hill Education pp 76

  • Ragunathan R, Swaminathan K (2004) Biological treatment of a pulp and paper industry effluent by Pleurotus spp. World J Microbiol Biotechnol 20(4):389–393

    Article  CAS  Google Scholar 

  • Reis RL, Román JS (2004) Biodegradable systems in tissue engineering and regenerative medicine. CRC Press pp 359–367

  • Rehman HU, Aman A, Silipo A, Qader SAU, Molinaro A, Ansari A (2013) Degradation of complex carbohydrate: immobilization of pectinase from Bacillus licheniformis KIBGE-IB21 using calcium alginate as a support. Food Chem 139(1):1081–1086

    Article  PubMed  Google Scholar 

  • Ross JRH (2011) Heterogeneous catalysis: fundamentals and applications. Elsevier pp 109

  • Salleh AB, Abdul-Rahman RNZR, Basri M (2006) New lipases and proteases. Nova Publishers pp 114

  • Shanmugam S, Sathishkumar T (2009) Enzyme technology. I. K. Int Pvt Ltd pp 110

  • Sheldon RA (2007) Enzyme immobilisation: the quest for optimum performance. Adv Synth Catal 349(8–9):1289–1307

    Article  CAS  Google Scholar 

  • Shiotani T, Yamané T (1981) A horizontal packed-bed bioreactor to reduce CO2 gas holdup in the continuous production of ethanol by immobilized yeast cells. Eur J Appl Microbiol Biotechnol 13(2):96–101

    Article  CAS  Google Scholar 

  • Singh AN, Singh S, Suthar N, Dubey VK (2011) Glutaraldehyde-activated chitosan matrix for immobilization of a novel cysteine protease, Procerain B. J Agric Food Chem 59(11):6256–6262

    Article  CAS  PubMed  Google Scholar 

  • Sio CF, Quax WJ (2004) Improved beta-lactam acylases and their use as industrial biocatalysts. Curr Opin Biotechnol 15:349–355

    Article  CAS  PubMed  Google Scholar 

  • Soleimani M, Khani A, Najafzadeh K (2012) α-Amylase immobilization on the silica nanoparticles for cleaning performance towards starch soils in laundry detergents. J Mol Catal B Enzym 74(1):1–5

    Article  CAS  Google Scholar 

  • Sundaramoorthi C, Rajakumari R, Dharamsi VKA (2012) Production and immobilization of ʟ-asparaginase from marine source. Int J Pharm Pharm Sci 4:229–232

    CAS  Google Scholar 

  • Tampion J, Tampion MD (1987) Immobilized cells: principles and applications. Cambridge Univ Press pp 91

  • Taylor RF, Schultz JS (1996) Handbook of chemical and biological sensors. CRC Press pp 209

  • Torabizadeh H, Tavakoli M, Safari M (2014) Immobilization of thermostable α-amylase from Bacillus licheniformis by cross-linked enzyme aggregates method using calcium and sodium ions as additives. J Mol Catal B Enzym 108:13–20

    Article  CAS  Google Scholar 

  • Torchilin VP (1987) Immobilised enzymes as drugs. Adv Drug Deliv Rev 1(1):41–86

    Article  CAS  Google Scholar 

  • Tóta D, Tóta A, Heinrich S, Mörl L (2010) In: Seiden-Morgenstern A (ed) Membrane reactors: distributing reactants to improve selectivity and yield. John Wiley & Sons pp 167

  • Uhlig H (1998) Industrial enzymes and their applications. John Wiley & Sons pp 209–210

  • Wang B, Cheng F, Lu Y, Ge W, Zhang M, Yue B (2013) Immobilization of pectinase from Penicillium oxalicum F67 onto magnetic cornstarch microspheres: characterization and application in juice production. J Mol Catal B Enzym 97:137–143

    Article  CAS  Google Scholar 

  • Wang SG, Jiang X, Chen PC, Yu AG, Huang XJ (2012) Preparation of coaxial-electrospun poly [bis(p-methylphenoxy)] phosphazene nanofiber membrane for enzyme immobilization. Int J Mol Sci 13(11):14136–14148

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wei H, Bing W, Xiaoye L, Chunyu L, Liran Y, Yongfeng L (2012) Fermentative hydrogen production from molasses in an activated sludge immobilized bioreactor. Int J Energy Eng 2(1):28–31

    Article  Google Scholar 

  • Wong KS, Fong WP, Tsang PWK (2011) Entrapment of a Trigonopsis variabilis d-amino acid oxidase variant F54Y for oxidative deamination of cephalosporin C. Eng Life Sci 11(5):491–495

    Article  CAS  Google Scholar 

  • Wu X, Chen C, Liu N, Yijun C (2011) Preparation of ethyl 3R,5S-6-(benzyloxy)-3,5-dihydroxy-hexanoate by recombinant diketoreductase in a biphasic system. Bioresour Technol 102(3):3649–3652

    Article  CAS  PubMed  Google Scholar 

  • Wukasch RF (1994) Proceedings of the 49th industrial waste conference, Purdue University. CRC Press pp 520

  • Yücel Y (2011) Biodiesel production from pomace oil by using lipase immobilized onto olive pomace. Bioresour Technol 102(4):3977–3980

    Article  PubMed  Google Scholar 

  • Zaslavsky BY (1994) Aqueous two-phase partitioning. Marcel Dekker Inc, New York, 1994

    Google Scholar 

  • Zhai R, Zhang B, Wan Y, Li C, Wang J, Liu J (2013) Chitosan–halloysite hybrid-nanotubes: horseradish peroxidase immobilization and applications in phenol removal. Chem Eng J 214:304–309

    Article  CAS  Google Scholar 

  • Zhang B, Weng Y, Xu H, Mao Z (2012a) Enzyme immobilization for biodiesel production. Appl Microbiol Biotechnol 93(1):61–70

    Article  PubMed  Google Scholar 

  • Zhang BB, Cheng J, Lou WY, Wang P, Zong MH (2012b) Efficient anti-Prelog enantioselective reduction of acetyltrimethylsilane to (R)-1-trimethylsilylethanol by immobilized Candida parapsilosis CCTCC M203011 cells in ionic liquid-based biphasic systems. Microb Cell Factories 11(1):108

    Article  Google Scholar 

  • Zhao J, Wang Y, Luo G, Zhu S (2011) Immobilization of penicillin G acylase on macro-mesoporous silica spheres. Bioresour Technol 102(2):529–535

    Article  CAS  PubMed  Google Scholar 

  • Zhou GX, Chen GY, Yan BB (2014) Biodiesel production in a magnetically-stabilized, fluidized bed reactor with an immobilized lipase in magnetic chitosan microspheres. Biotechnol Lett 36(1):63–68

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Authors thank the Coordenação de Aperfeiçoamento de Pessoas de Nível Superior (CAPES) for the scholarship for Ismail Eş.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Corrêa Amaral.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eş, I., Vieira, J.D.G. & Amaral, A.C. Principles, techniques, and applications of biocatalyst immobilization for industrial application. Appl Microbiol Biotechnol 99, 2065–2082 (2015). https://doi.org/10.1007/s00253-015-6390-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6390-y

Keywords

Navigation