Skip to main content
Log in

Synthetic promoter libraries for Corynebacterium glutamicum

  • Methods and protocols
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The ability to modulate gene expression is an important genetic tool in systems biology and biotechnology. Here, we demonstrate that a previously published easy and fast PCR-based method for modulating gene expression in lactic acid bacteria is also applicable to Corynebacterium glutamicum. We constructed constitutive promoter libraries based on various combinations of a previously reported C. glutamicum -10 consensus sequence (gngnTA(c/t)aaTgg) and the Escherichia coli -35 consensus, either with or without an AT-rich region upstream. A promoter library based on consensus sequences frequently found in low-GC Gram-positive microorganisms was also included. The strongest promoters were found in the library with a -35 region and a C. glutamicum -10 consensus, and this library also represents the largest activity span. Using the alternative -10 consensus TATAAT, which can be found in many other prokaryotes, resulted in a weaker but still useful promoter library. The upstream AT-rich region did not appear to affect promoter strength in C. glutamicum. In addition to the constitutive promoters, a synthetic inducible promoter library, based on the E. coli lac-promoter, was constructed by randomizing the 17-bp spacer between -35 and -10 consensus sequences and the sequences surrounding these. The inducible promoter library was shown to result in β-galactosidase activities ranging from 284 to 1,665 Miller units when induced by IPTG, and the induction fold ranged from 7–59. We find that the synthetic promoter library (SPL) technology is convenient for modulating gene expression in C. glutamicum and should have many future applications, within basic research as well as for optimizing industrial production organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Becker J, Zelder O, Häfner S, Scröder H, Wittmann C (2011) From zero to hero—design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production. Metab Eng 13:159–168

    Article  CAS  PubMed  Google Scholar 

  • Ben-Samoun K, Leblon G, Reyes O (1999) Positively regulated expression of the Escherichia coli araBAD promoter in Corynebacterium glutamicum. FEMS Microbiol Lett 174:125–130

    Article  CAS  PubMed  Google Scholar 

  • Casadaban MJ, Cohen SN (1980) Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. J Mol Biol 138:179–207

    Article  CAS  PubMed  Google Scholar 

  • Eggeling L, Reyes O (2005) Experiments. In: Eggeling L and Reyes O (eds) Handbook of Corynebacterium glutamicum. CRC Press, pages 535–566

  • Gough JA, Murray NE (1983) Sequence diversity among related genes for recognition of specific targets in DNA molecules. J Mol Biol 166:1–19

    Article  CAS  PubMed  Google Scholar 

  • Hermann T (2003) Industrial production of amino acids by coryneform bacteria. J Biotechnol 104:155–172

    Article  CAS  PubMed  Google Scholar 

  • Israelsen H, Madsen SM, Vrang A, Hansen EB, Johansen E (1995) Cloning and partial characterization of regulated promoters from Lactococcus lactis Tn917-lacZ integrants with the new promoter probe vector, pAK80. Appl Environ Microbiol 61:2540–2547

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jensen PR, Hammer K (1998) The sequence of spacers between the consensus sequences modulates the strength of prokaryotic promoters. Appl Environ Microbiol 64:82–87

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jensen PR, Westerhoff H, Michelsen O (1993) The use of lac-type promoters in control analysis. Eur J Biochem 211:181–191

    Article  CAS  PubMed  Google Scholar 

  • Jeppsson M, Johansson B, Jensen PR, Hahn-Hägerdal B, Gorwa-Grauslund MF (2003) The level of glucose-6-phosphate dehydrogenase activity strongly influences xylose fermentation and inhibitor sensitivity in recombinant Saccharomyces cerevisiae strains. Yeast 20:1263–1272

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita S, Udaka S, Shimono M (1957) Studies on the amino acid fermentation. Part I. Production of L-glutamic acid by various microorganisms. J Gen Microbiol 3:193–205

    Article  CAS  Google Scholar 

  • Kirchner O, Tauch A (2003) Tools for genetic engineering in the amino acid-producing bacterium Corynebacterium glutamicum. J Biotechnol 104:287–299

    Article  CAS  PubMed  Google Scholar 

  • Liebl W (2005) Corynebacterium taxonomy. In: Eggeling L, Bott M (eds) Handbook on Corynebacterium glutamicum. CRC Press, Boca Raton, pp 9–34

    Google Scholar 

  • Marx A, Hans S, Möckel B, Bathe B, de Graaf AA (2003) Metabolic phenotype of phosphoglucose isomerase mutants of Corynebacterium glutamicum. J Biotechnol 104:185–197

    Article  CAS  PubMed  Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harb Lab, NY, p. 352–359

  • Morinaga Y, Tsuchiya M, Miwa K, Sano K (1987) Expression of Escherichia coli promoters in Brevibacterium lactofermentum using the shuttle vector pEB003. J Biotechnol 5:305–312

    Article  CAS  Google Scholar 

  • Neidhardt FC, Bloch PL, Smith DF (1974) Culture medium for enterobacteria. J Bacteriol 119:736–747

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nešvera J, Pátek M (2011) Tools for genetic manipulations in Corynebacterium glutamicum and their applications. Appl Microbiol Biotechnol 90:1641–1654

    Article  PubMed  Google Scholar 

  • Oehler S, Eismann ER, Krämer H, Müller-Hill B (1990) The three operators of the lac operon cooperate in repression. EMBO J 4:973–979

    Google Scholar 

  • Ohnishi J, Mitsuhashi S, Hayashi M, Ando S, Yokoi H, Ochiai K, Ikeda M (2002) A novel methodology employing Corynebacterium glutamicum genome information to generate a new L-lysine-producing mutant. Appl Microbiol Biotechnol 58:217–223

    Article  CAS  PubMed  Google Scholar 

  • Pátek M, Nesvera J, Guyonvarch A, Reyes O, Leblon G (2003) Promoters of Corynebacterium glutamicum. J Biotechnol 104:311–323

    Article  PubMed  Google Scholar 

  • Pátek M, Holátko J, Busche T, Kalinowski J, Nešvera J (2013) Corynebacterium glutamicum promoters: a practical approach. Microbial Biotechnol 6:103–117

    Article  Google Scholar 

  • Ravasi P, Peiru S, Gramajo H, Menzella HG (2012) Design and testing of a synthetic biology framework for genetic engineering of Corynebacterium glutamicum. Microb Cell Fact 11:147

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rud I, Jensen PR, Naterstad K, Axelsson L (2006) A synthetic promoter library for constitutive gene expression in Lactobacillus plantarum. Microbiol 152:1011–1019

    Article  CAS  Google Scholar 

  • Sambrook J (1989) Molecular cloning: a laboratory manual. In: Sambrook J, Fritsch EF, Maniatis T (eds) New York: Cold Spring Harbor Laboratory Press

  • Seghezzi N, Amar P, Jensen PR, Virolle MJ (2011) The construction of a library of synthetic promoters revealed some specific features of strong Streptomyces promoters. Appl Microbiol Biotechnol 90:615–623

    Article  CAS  PubMed  Google Scholar 

  • Shiio I, S-i S, Toride Y (1984) Studies on mechanism for lysine production by pyruvate kinase-deficient mutants of Brevibacterium flavum. Agric Biol Chem 48:1551–1558

    Article  Google Scholar 

  • Solem C, Jensen PR (2002) Modulation of gene expression made easy. Appl Environ Microbiol 68:2397–2403

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tauch A, Kirchner O, Löffler B, Götker S, Pühler A, Kalinowski J (2002) Efficient electrotransformation of Corynebacterium diphtheriae with a mini-replicon derived from the Corynebacterium glutamicum plasmid pGA1. Curr Microbiol 45:362–367

    Article  CAS  PubMed  Google Scholar 

  • Tornøe J, Kusk P, Johansen TE, Jensen PR (2002) Generation of a synthetic promoter library by modification of sequences spacing transcription factor binding sites. Gene 297:21–32

    Article  PubMed  Google Scholar 

  • Tsuchiya M, Morinaga Y (1988) Genetic control systems of Escherichia coli can confer inducible expression of cloned genes in coryneform bacteria. Bio/Technology 6:428–430

    Article  CAS  Google Scholar 

  • Yim SS, An SJ, Kang M, Lee J, Jeong KJ (2013) Isolation of fully synthetic promoters for high-level gene expression in Corynebacterium glutamicum. Biotechnol Bioeng. doi:10.1002/bit.24954

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Danish Directorate for Food Fisheries and Agri Business (j.nr. 3412-08-02215 (LYSIN)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Solem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rytter, J.V., Helmark, S., Chen, J. et al. Synthetic promoter libraries for Corynebacterium glutamicum . Appl Microbiol Biotechnol 98, 2617–2623 (2014). https://doi.org/10.1007/s00253-013-5481-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5481-x

Keywords

Navigation