Skip to main content
Log in

The Corynebacterium glutamicum genome: features and impacts on biotechnological processes

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Corynebacterium glutamicum has played a principal role in the progress of the amino acid fermentation industry. The complete genome sequence of the representative wild-type strain of C. glutamicum, ATCC 13032, has been determined and analyzed to improve our understanding of the molecular biology and physiology of this organism, and to advance the development of more efficient production strains. Genome annotation has helped in elucidation of the gene repertoire defining a desired pathway, which is accelerating pathway engineering. Post genome technologies such as DNA arrays and proteomics are currently undergoing rapid development in C. glutamicum. Such progress has already exposed new regulatory networks and functions that had so far been unidentified in this microbe. The next goal of these studies is to integrate the fruits of genomics into strain development technology. A novel methodology that merges genomics with classical strain improvement has been developed and applied for the reconstruction of classically derived production strains. How can traditional fermentation benefit from the C. glutamicum genomic data? The path from genomics to biotechnological processes is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  • Bailey JE (1991) Toward a science of metabolic engineering. Science 252:1668–1675

    CAS  PubMed  Google Scholar 

  • Bathe B, Kalinowski J, Pühler A (1996) A physical and genetic map of the Corynebacterium glutamicum ATCC 13032 chromosome. Mol Gen Genet 252:255–265

    Article  CAS  PubMed  Google Scholar 

  • Bellmann A, Vrljic M, Patek M, Sahm H, Kramer R, Eggeling L (2001) Expression control and specificity of the basic amino acid exporter LysE of Corynebacterium glutamicum. Microbiology 147:1765–1774

    CAS  PubMed  Google Scholar 

  • Besemer J, Lomsadze A, Borodovsky M (2001) GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 29:2607–2618

    Article  CAS  PubMed  Google Scholar 

  • Bukanov NO, Nashchokina OO, Borinskaia SA, Lobashev AV, Fonshtein MIu, Gusiatiner MM, Debabov VG, Iankovskii NK (1998) Construction and characteristics of a cosmid library of genes of the bacterium Corynebacterium glutamicum ATCC13032. Genetika 34:438–41

    CAS  PubMed  Google Scholar 

  • Burkovski A, Krämer R (2002) Bacterial amino acid transport proteins: occurrence, functions, and significance for biotechnological applications. Appl Microbiol Biotechnol 58:265–274

    CAS  PubMed  Google Scholar 

  • Cameron DC, Tong I-T (1993) Cellular and metabolic engineering. Appl Biochem Biotechnol 38:105–140

    CAS  PubMed  Google Scholar 

  • Claes WA, Pühler A, Kalinowski J (2002) Identification of two prpDBC gene clusters in Corynebacterium glutamicum and their involvement in propionate degradation via the 2-methylcitrate cycle. J Bacteriol 184:2728–2739

    Article  CAS  PubMed  Google Scholar 

  • Delcher AL, Harmon D, Kasif S, White O, Salzberg SL (1999) Improved microbial gene identification with GLIMMER. Nucleic Acids Res 27:4636–4641

    Google Scholar 

  • Eggeling L, Sahm H (1999) Amino acid production: principles of metabolic engineering. In: Lee SY, Papoutsakis ET (eds) Metabolic engineering. Dekker, New York, pp 153–176

  • Eggeling L, Sahm H (2001) The cell wall barrier of Corynebacterium glutamicum and amino acid efflux. J Biosci Bioeng 92:201–213

    Article  CAS  Google Scholar 

  • Eggeling L, Sahm H, Graaf AA de (1996) Quantifying and directing metabolic flux: application to amino acid overproduction. Adv Biochem Eng Biotechnol 54:1–30

    CAS  Google Scholar 

  • Eggeling L, Oberle S, Sahm H (1998) Improved l-lysine yield with Corynebacterium glutamicum: use of dapA resulting in increased flux combined with growth limitation. Appl Microbiol Biotechnol 49:24–30

    Article  CAS  PubMed  Google Scholar 

  • Fillinger S, Boschi-Muller S, Azza S, Dervyn E, Branlant G, Aymerich S (2000) Two glyceraldehyde-3-phosphate dehydrogenases with opposite physiological roles in a nonphotosynthetic bacterium. J Biol Chem 275:14031–14037

    CAS  PubMed  Google Scholar 

  • Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512

    PubMed  Google Scholar 

  • Fudou R, Jojima Y, Seto A, Yamada K, Kimura E, Nakamatsu T, Hiraishi A, Yamanaka S (2002) Corynebacterium efficiens sp. nov., a glutamic-acid-producing species from soil and vegetables. Int J Syst Evol Microbiol 52:1127–1131

    Article  CAS  PubMed  Google Scholar 

  • Fujio T (2001) Minimum genome factory (MGF). In: New development of chiral technology. CMC, Tokyo, pp 8–16

  • Gordon D, Abajian C, Green P (1998) Consed: a graphical tool for sequence finishing. Genome Res 8:195–202

    CAS  PubMed  Google Scholar 

  • Gordon D, Desmarais C, Green P (2001) Automated finishing with autofinish. Genome Res 11:614–625

    Article  CAS  PubMed  Google Scholar 

  • Guillouet S, Rodal AA, An G, Lessard PA, Sinskey AJ (1999) Expression of the Escherichia coli catabolic threonine dehydratase in Corynebacterium glutamicum and its effect on isoleucine production. Appl Environ Microbiol 65:3100–3107

    CAS  PubMed  Google Scholar 

  • Haberhauer G, Schröder H, Pompejus M, Zelder O, Kröger B (2001) Corynebacterium glutamicum genes encoding proteins involved in membrane synthesis and membrane transport. Patent WO 01/00805

  • Hayashi M, Mizoguchi H, Shiraishi N, Obayashi M, Nakagawa S, Imai J, Watanabe S, Ota T, Ikeda M (2002) Transcriptome analysis of acetate metabolism in Corynebacterium glutamicum using a newly developed metabolic array. Biosci Biotechnol Biochem 66:1337–1344

    Google Scholar 

  • Haynes JA, Britz ML (1990) The effect of growth conditions of Corynebacterium glutamicum on the transformation frequency obtained by electroporation. J Gen Microbiol 136:255–263

    CAS  Google Scholar 

  • Hermann T, Wersch G, Uhlemann EM, Schmid R, Burkovski A (1998) Mapping and identification of Corynebacterium glutamicum proteins by two-dimensional gel electrophoresis and microsequencing. Electrophoresis 19:3217–3221

    CAS  PubMed  Google Scholar 

  • Hermann T, Finkemeier M, Pfefferle W, Wersch G, Krämer R, Burkovski A (2000) Two-dimensional electrophoretic analysis of Corynebacterium glutamicum membrane fraction and surface proteins. Electrophoresis 21:654–659

    Article  CAS  PubMed  Google Scholar 

  • Hermann T, Pfefferle W, Baumann C, Busker E, Schaffer S, Bott M, Sahm H, Dusch N, Kalinowski J, Pühler A, Bendt AK, Krämer R, Burkovski A (2001) Proteome analysis of Corynebacterium glutamicum. Electrophoresis 22:1712–1723

    Article  CAS  PubMed  Google Scholar 

  • Hirokawa T, Boon-Chieng S, Mitaku S (1998) SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics 14:378–379

    CAS  PubMed  Google Scholar 

  • Ikeda M (2002) Genome breeding of amino acid-producing Corynebacterium glutamicum. In: Proceedings of Metabolic Engineering IV, Tuscany, Italy, 6–11 October 2002

  • Ikeda M (2003) Amino acid production processes. In: Faurie R, Thommel J (eds) Adv Biochem Eng Biotechnol, vol 79. Microbial production of l-amino acids. Springer, Berlin Heidelberg New York, pp 1–35

  • Ikeda M, Katsumata R (1992) Metabolic engineering to produce tyrosine or phenylalanine in a tryptophan-producing Corynebacterium glutamicum strain. Appl Environ Microbiol 58:781–785

    CAS  Google Scholar 

  • Ikeda M, Katsumata R (1998) A novel system with positive selection for the chromosomal integration of replicative plasmid DNA in Corynebacterium glutamicum. Microbiology 144:1863–1868

    CAS  PubMed  Google Scholar 

  • Ikeda M, Katsumata R (1999) Hyperproduction of tryptophan by Corynebacterium glutamicum with the modified pentose phosphate pathway. Appl Environ Microbiol 65:2497–2502

    CAS  PubMed  Google Scholar 

  • Ikeda M, Nakanishi K, Kino K, Katsumata R (1994) Fermentative production of tryptophan by a stable recombinant strain of Corynebacterium glutamicum with a modified serine-biosynthetic pathway. Biosci Biotechnol Biochem 58:674–678

    CAS  PubMed  Google Scholar 

  • Ikeda M, Okamoto K, Katsumata R (1999) Cloning of the transketolase gene and the effect of its dosage on aromatic amino acid production in Corynebacterium glutamicum. Appl Microbiol Biotechnol 51:201–206

    Google Scholar 

  • Ishino S, Shimomura-Nishimura J, Yamaguchi K, Shirahata K, Araki K (1991) 13C Nuclear magnetic resonance studies of glucose metabolism in l-glutamic acid and l-lysine fermentation by Corynebacterium glutamicum. J Gen Appl Microbiol 37:157–165

    CAS  Google Scholar 

  • Jetten MSM, Sinskey AJ (1995) Recent advances in the physiology and genetics of amino acid-producing bacteria. Crit Rev Biotechnol 15:73–103

    CAS  PubMed  Google Scholar 

  • Kaneko H, Sakaguchi K (1979) Fusion of protoplasts and genetic recombination of Brevibacterium flavum. Agric Biol Chem 43:1007–1013

    CAS  Google Scholar 

  • Karasawa M, Tosaka O, Ikeda S, Yoshii H (1986) Application of protoplast fusion to the development of l-threonine and l-lysine producers. Agric Biol Chem 50:339–346

    CAS  Google Scholar 

  • Katsumata R, Ikeda M (1993) Hyperproduction of tryptophan in Corynebacterium glutamicum by pathway engineering. Biotechnology 11:921–925

    CAS  Google Scholar 

  • Katsumata R, Ozaki A, Oka T, Furuya A (1984) Protoplast transformation of glutamate-producing bacteria with plasmid DNA. J Bacteriol 159:306–311

    CAS  PubMed  Google Scholar 

  • Kennerknecht N, Sahm H, Yen MR, Patek M, Saier MH Jr, Eggeling L (2002) Export of l-isoleucine from Corynebacterium glutamicum: a two-gene-encoded member of a new translocator family. J Bacteriol 184:3947–3956

    Article  CAS  PubMed  Google Scholar 

  • Kimura E (2003) Metabolic engineering of glutamate production. In: Faurie R, Thommel J (eds) Adv Biochem Eng Biotechnol, vol 79. Microbial production of l-amino acids. Springer, Berlin Heidelberg New York, pp 37–57

  • Kimura E, Yagoshi C, Kawahara Y, Ohsumi T, Nakamatsu T, Tokuda H (1999) Glutamate overproduction in Corynebacterium glutamicum triggered by a decrease in the level of a complex comprising DtsR and a biotin-containing subunit. Biosci Biotechnol Biochem 63:1274–1278

    Google Scholar 

  • Kinoshita S, Nakayama K (1978) Amino acids. In: Rose AH (ed) Primary products of metabolism. Academic press, London, pp 209–261

  • Kinoshita S, Udaka S, Shimono M (1957) Studies on amino acid fermentation. Part I. Production of l-glutamic acid by various microorganisms. J Gen Appl Microbiol 3:193–205

    CAS  Google Scholar 

  • Kolisnychenko V, Plunkett G III, Herring CD, Fehér T, Pósfai J, Blattner FR, Pósfai G (2002) Engineering a reduced Escherichia coli genome. Genome Res 12:640–647

    Article  CAS  PubMed  Google Scholar 

  • Krämer R (1994) Systems and mechanisms of amino acid uptake and excretion in prokaryotes. Arch Microbiol 162:1–13

    PubMed  Google Scholar 

  • Krämer R (1996) Genetic and physiological approaches for the production of amino acids. J Biotechnol 45:1–21

    Article  Google Scholar 

  • Krämer R, Boles E, Eggeling L, Erdmann A, Gutmann M, Kronemeyer W, Palmieri L, Zittrich S (1994) Mechanism and energetics of amino-acid transport in coryneform bacteria. Biochim Biophys Acta 1187:245–249

    Google Scholar 

  • Kumagai H (2000) Microbial production of amino acids in Japan. In: Fiechter A (ed) Adv Biochem Eng Biotechnol, vol 69. History of modern biotechnology I. Springer, Berlin Heidelberg New York, pp 71–85

  • Leuchtenberger W (1996) Amino acids—technical production and use. In: Roehr M (ed) Biotechnology, 2nd edn, vol 6. Products of primary metabolism. VCH, Weinheim, pp 465–502

  • Loos A, Glanemann C, Willis LB, O'Brien XM, Lessard PA, Gerstmeir R, Guillouet S, Sinskey AJ (2001) Development and validation of Corynebacterium DNA microarrays. Appl Environ Microbiol 67:2310–2318

    Article  CAS  PubMed  Google Scholar 

  • Lucchini S, Thompson A, Hinton JCD (2001) Microarrays for microbiologists. Microbiology 147:1403–1414

    CAS  PubMed  Google Scholar 

  • Marx A, Graaf AA de, Wiechert W, Eggeling L, Sahm H (1996) Determination of the fluxes in the central metabolism of Corynebacterium glutamicum by nuclear magnetic resonance spectroscopy combined with metabolic balancing. Biotechnol Bioeng 49:111–129

    Article  Google Scholar 

  • Marx A, Eikmanns BJ, Sahm H, Graaf AA de, Eggeling L, (1999) Response of the central metabolism in Corynebacterium glutamicum to the use of an NADH-dependent glutamate dehydrogenase. Metabol Eng 1:35–48

    Article  CAS  Google Scholar 

  • Matsushita K, Yamamoto T, Toyama H, Adachi O (1998) NADPH oxidase system as a superoxide-generating cyanide-resistant pathway in the respiratory chain of Corynebacterium glutamicum. Biosci Biotechnol Biochem 62:1968–1977

    CAS  Google Scholar 

  • Mitsuhashi S, Ohnishi J, Hayashi M, Ikeda M (2002) Physiological role of carbonic anhydrase in Corynebacterium glutamicum. In: Proc Annu Meeting Agric Chem Soc Jpn, Sendai, Japan, 25–27 March 2002, p 289

  • Miwa K, Matsui K, Terabe M, Ito K, Ishida M, Takagi H, Nakamori S, Sano K (1985) Construction of novel shuttle vector and a cosmid vector for the glutamic acid-producing bacteria Brevibacterium lactofermentum and Corynebacterium glutamicum. Gene 39:281–286

    Article  CAS  PubMed  Google Scholar 

  • Möckel B, Weissenborn A, Pfefferle W, Kalinowski J, Bathe B, Pühler A (1999) Genome sequencing of industrial microorganisms: The Corynebacterium glutamicum ATCC 13032 genome project. Microb Comp Genomics 4:111

    Google Scholar 

  • Muffler A, Bettermann S, Haushalter M, Hörlein A, Neveling U, Schramm M, Sorgenfrei O (2002) Genome-wide transcription profiling of Corynebacterium glutamicum after heat shock and during growth on acetate and glucose. J Biotechnol 98:255–268

    Article  CAS  PubMed  Google Scholar 

  • Mushegian AR, Koonin EV (1996) A minimal gene set for cellular life derived by comparison of complete bacterial genomes. Proc Natl Acad Sci USA 93:10268–10273

    CAS  PubMed  Google Scholar 

  • Nakagawa S (2002) The complete genome sequencing of Corynebacterium glutamicum ATCC 13032. In: Proceedings of the 9th International Symposium on the Genetics of Industrial Microorganisms, Gyeongju, Korea, 1–5 July 2002, p 21

  • Nakagawa S, Mizoguchi H, Ando S, Hayashi M, Ochiai K, Yokoi H, Tateishi N, Senoh A, Ikeda M, Ozaki A (2001) Novel polynucleotides. Eur Patent 1,108,790

  • Nielsen J (2001) Metabolic engineering. Appl Microbiol Biotechnol 55:263–283

    Article  CAS  PubMed  Google Scholar 

  • Nierman WC, Nelson KE (2002) Genomics for applied microbiology. Adv Appl Microbiol 51:201–245

    CAS  PubMed  Google Scholar 

  • Nishio Y, Nakamura Y, Kawarabayashi Y, Usuda Y, Kimura E, Sugimoto S, Matsui K, Yamagishi A, Kikuchi H, Ikeo K, Gojobori T (2002) Comparative genome sequence analysis of the thermostabilization mechanism of Corynebacterium efficiens. In: Proc Annu Meet Mol Biol Soc Japan, Yokohama, Japan, 11–14 December 2002, p 724

  • O'Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021

    PubMed  Google Scholar 

  • Ohnishi J, Mitsuhashi S, Hayashi M, Ando S, Yokoi H, Ochiai K, Ikeda M (2002) A novel methodology employing Corynebacterium glutamicum genome information to generate a new l-lysine-producing mutant. Appl Microbiol Biotechnol 58:217–223

    Google Scholar 

  • Ohnishi J, Hayashi M, Mitsuhashi S, Ikeda M (2003) Efficient 40°C fermentation of l-lysine by a new Corynebacterium glutamicum mutant developed by genome breeding. Appl Microbiol Biotechnol (in press) DOI 10.1007/s00253-003-1254-2

  • Ozaki A, Katsumata R, Oka T, Furuya A (1985) Cloning of the genes concerned in phenylalanine biosynthesis in Corynebacterium glutamicum and its application to breeding of a phenylalanine producing strain. Agric Biol Chem 49:2925–2930

    CAS  Google Scholar 

  • Pandey A, Mann M (2000) Proteomics to study genes and genomes. Nature 405:837–846

    PubMed  Google Scholar 

  • Patnaik R, Louie S, Gavrilovic V, Perry K, Stemmer WPC, Ryan CM, del Cardayré S (2002) Genome shuffling of Lactobacillus for improved acid tolerance. Nat Biotechnol 20:707–712

    Article  CAS  PubMed  Google Scholar 

  • Peters-Wendisch PG, Schiel B, Wendisch VF, Katsoulidis E, Möckel B, Sahm H, Eikmanns BJ (2001) Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum. J Mol Microbiol Biotechnol 3:295–300

    CAS  PubMed  Google Scholar 

  • Peterson SN, Fraser CM (2001) The complexity of simplicity. Genome Biol 2:2002.1–2002.8

    Article  Google Scholar 

  • Pfefferle W, Möckel B, Bathe B, Marx A (2003) Biotechnological manufacture of lysine. In: Faurie R, Thommel J (eds) Adv Biochem Eng Biotechnol, vol. 79. Microbial production of l-amino acids. Springer, Berlin Heidelberg New York, pp 59–112

  • Rest ME van der, Lange C, Molenaar D (1999) A heat shock following electroporation of Corynebacterium glutamicum with xenogenein plasmid DNA. Appl Microbiol Biotechnol 52:541–545

    PubMed  Google Scholar 

  • Riehle MM, Bennett AF, Long AD (2001) Genetic architecture of thermal adaptation in Escherichia coli. Proc Natl Acad Sci USA 98:525–530

    Article  CAS  PubMed  Google Scholar 

  • Sahm H, Eggeling L, Graaf AA de (2000) Pathway analysis and metabolic engineering in Corynebacterium glutamicum. Biol Chem 381:899–910

    PubMed  Google Scholar 

  • Salzberg S, Delcher A, Kasif S, White O (1998) Microbial gene identification using interpolated Markov models. Nucleic Acids Res 26:544–548

    Article  CAS  PubMed  Google Scholar 

  • Santamaria R, Gil JA, Mesas JM, Martin JF (1984) Characterization of an endogenous plasmid and development of cloning vectors and a transformation system in Brevibacterium lactofermentum. J Gen Microbiol 130:2237–2246

    CAS  Google Scholar 

  • Schäfer A, Kalinowski J, Simon R, Seep-Feldhaus A-H, Pühler A (1990) High-frequency conjugal plasmid transfer from gram-negative Escherichia coli to various gram-positive Coryneform bacteria. J Bacteriol 172:1663–1666

    PubMed  Google Scholar 

  • Schäfer A, Tauch A, Droste N, Pühler A, Kalinowski J (1997) The Corynebacterium glutamicum cglIM gene encoding a 5-cytosine methyltransferase enzyme confers a specific DNA methylation pattern in an McrBC-deficient Escherichia coli strain. Gene 203:95–101

    Article  PubMed  Google Scholar 

  • Schaffer S, Weil B, Nguyen VD, Dongmann G, Günther K, Nickolaus M, Hermann T, Bott M (2001) A high-resolution reference map for cytoplasmic and membrane-associated proteins of Corynebacterium glutamicum. Electrophoresis 22:4404–4422

    PubMed  Google Scholar 

  • Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470

    CAS  PubMed  Google Scholar 

  • Schmid R, Uhlemann E-M, Nolden L, Wersch G, Hecker R, Hermann T, Marx A, Burkovski A (2000) Response to nitrogen starvation in Corynebacterium glutamicum. FEMS Microbiol Lett 187:83–88

    Article  CAS  PubMed  Google Scholar 

  • Schwarzer A, Pühler A (1991) Manipulation of Corynebacterium glutamicum by gene disruption and replacement. Biotechnology 9:84–87

    CAS  PubMed  Google Scholar 

  • Sekine H, Shimada T, Hayashi C, Ishiguro A, Tomita F, Yokota A (2001) H+-ATPase defect in Corynebacterium glutamicum abolished glutamic acid production with enhancement of glucose consumption rate. Appl Microbiol Biotechnol 57:534–540

    Article  CAS  PubMed  Google Scholar 

  • Shimizu H (2002) Metabolic engineering Integrating methodologies of molecular breeding and bioprocess systems engineering. J Biosci Bioeng 94:563–573

    Article  CAS  Google Scholar 

  • Simic P, Sahm H, Eggeling L (2001) l-Threonine export: use of peptides to identify a new translocator from Corynebacterium glutamicum. J Bacteriol 183:5317–5324

    CAS  PubMed  Google Scholar 

  • Skovgaard M, Jensen LJ, Brunak S, Ussery D, Krogh A (2001) On the total number of genes and their length distribution in complete microbial genomes. Trends Genet 17:425–428

    Article  CAS  PubMed  Google Scholar 

  • Stephanopoulos G (1999) Metabolic fluxes and metabolic engineering. Metab Eng 1:1–11

    Article  CAS  PubMed  Google Scholar 

  • Stephanopoulos G, Vallino JJ (1991) Network rigidity and metabolic engineering in metabolite overproduction. Science 252:1675–1681

    CAS  PubMed  Google Scholar 

  • Tauch A, Homann I, Mormann S, Rüberg S, Billault A, Bathe B, Brand S, Brockmann-Gretza O, Rückert C, Schischka N, Wrenger C, Hoheisel J, Möckel B, Huthmacher K, Pfefferle W, Pühler A, Kalinowski J (2002) Strategy to sequence the genome of Corynebacterium glutamicum ATCC 13032: use of a cosmid and a bacterial artificial chromosome library. J Biotechnol 95:25–38

    Article  CAS  PubMed  Google Scholar 

  • Udaka S (1960) Screening method for microorganisms accumulating metabolites and its use in the isolation of Micrococcus glutamicus. J Bacteriol 79:754–755

    CAS  Google Scholar 

  • Vallino JJ, Stephanopoulos G (1993) Metabolic flux distributions in Corynebacterium glutamicum during growth and lysine overproduction. Biotechnol Bioeng 41:633–646

    CAS  Google Scholar 

  • Vrljić M, Sahm H, Eggeling L (1996) A new type of transporter with a new type of cellular function: l-lysine export from Corynebacterium glutamicum. Mol Microbiol 22:815–826

    CAS  PubMed  Google Scholar 

  • Vrljić M, Garg J, Bellmann A, Wachi S, Freudl R, Malecki MJ, Sahm H, Kozina VJ, Eggeling L, Saier MH Jr (1999) The LysE superfamily: topology of the lysine exporter LysE of Corynebacterium glutamicum, a paradigm for a novel superfamily of transmembrane solute translocators. J Mol Microbiol Biotechnol 1:327–336

    CAS  PubMed  Google Scholar 

  • Wehmeier L, Schäfer A, Burkovski A, Krämer R, Mechold U, Malke H, Pühler A, Kalinowski J (1998) The role of the Corynebacterium glutamicum rel gene in (p)ppGpp metabolism. Microbiology 144:1853–1862

    CAS  PubMed  Google Scholar 

  • Wehmeier L, Brockmann-Gretza O, Pisabarro A, Tauch A, Pühler A, Martin JF, Kalinowski J (2001) A Corynebacterium glutamicum mutant with a defined deletion within the rplK gene is impaired in (p)ppGpp accumulation upon amino acid starvation. Microbiology 147:691–700

    CAS  PubMed  Google Scholar 

  • Yoshihama M, Higashiro K, Rao EA, Akedo M, Shanabruch WG, Folletie MT, Walker GC, Sinskey AJ (1985) Cloning vector system for Corynebacterium glutamicum. J Bacteriol 162:591–597

    CAS  PubMed  Google Scholar 

  • Yu BJ, Sung BH, Koob MD, Lee CH, Lee JH, Lee WS, Kim MS, Kim SC (2002) Minimization of the Escherichia coli genome using a Tn5-targeted Cre/loxP excision system. Nat Biotechnol 20:1018–1023

    Article  CAS  PubMed  Google Scholar 

  • Yukawa H (2002) In: 2nd Frontier of Microbio-Technology Environmentally Friendly for the Earth and Human, Kyoto, Japan, 16 December 2002, p 20

  • Zhang Y-X, Perry K, Vinci VA, Powell K, Stemmer WPC, del Cardayré SB (2002) Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 415:644–646

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge all our co-workers, especially T. Nakano, S. Mitsuhashi, J. Ohnishi, H. Mizoguchi, M. Hayashi, M. Maeda, H. Sakai, K. Tanaka, N. Shiraishi, T. Ota, S. Ando, K. Ochiai, and H. Yokoi. We also thank Drs. S. Teshiba, A. Ozaki, and H. Anazawa for encouraging support of our research, and Y. Yonetani, S. Hashimoto, M. Yagasaki, and S. Koizumi for useful discussions and cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ikeda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikeda, M., Nakagawa, S. The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol 62, 99–109 (2003). https://doi.org/10.1007/s00253-003-1328-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-003-1328-1

Keywords

Navigation