Skip to main content

Biotechnological Approaches for the Production of Immunomodulating Phytomolecules

  • Chapter
  • First Online:
Plants and Phytomolecules for Immunomodulation

Abstract

Immunomodulating molecules can alter the immune response either by immunostimulation or immunosuppression. Manipulation of the immune system is commonly practiced in the case of destructive diseases mediated by uncontrolled immune responses. The use of chemical drugs as immunomodulators has several limitations, such as a higher risk of opportunistic infection and an adverse effect on the overall immune system. To address this issue, plenty of plant-derived molecules, like alkaloids, flavonoids, saponins, terpenoids, and steroid glycosides, have been utilized to manipulate the human immune system. Many traditional medicinal systems, including Ayurveda in India, have been employing phytomolecules as immunomodulators to control immunological disorders and strengthen the host immune system against many infectious diseases. Recent advances in biotechnological techniques offer tools for the genetic manipulation and metabolic engineering of biosynthetic pathways not only in plants but also in microorganisms. Therefore, it is also overviewed the use of yeasts for enhancing the production of phytomolecules in an easy-to-handle system. This chapter highlights the available information on the development of biotechnological tools to improve the accumulation of the desired natural compounds in controlled conditions. The major issues faced during the development of these biotechniques for the production of valuable phytomolecules are also addressed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahlawat S, Saxena P, Ali A, Khan S, Abdin MZ (2017) Comparative study of withanolide production and the related transcriptional responses of biosynthetic genes in fungi elicited cell suspension culture of Withania somnifera in shake flask and bioreactor. Plant Physiol Biochem 114:19–28

    Article  CAS  PubMed  Google Scholar 

  • Ahmad W, Husain I, Ahmad N, Amir M, Sarafroz M, Ansari MA, Zafar A, Ali A, Zafar R, Ashraf K (2020) Box–Behnken supported development and validation of robust HPTLC method: an application in estimation of punarnavine in leaf, stem, and their callus of Boerhavia diffusa Linn. 3 Biotech 10(4):1–10

    Article  Google Scholar 

  • Alfarra HY, Omar MN (2014) HPLC separation and isolation of Asiaticoside from Centella asiatica and its biotransformation by A. niger. Int J Pharma Med Biol Sci 3(3):1

    CAS  Google Scholar 

  • Ayeka PA, Bian Y, Githaiga PM, Zhao Y (2017) The immunomodulatory activities of licorice polysaccharides (Glycyrrhiza uralensis Fisch.) in CT 26 tumor-bearing mice. BMC Complement Altern Med 17(1):1–9

    Article  CAS  Google Scholar 

  • Baldi A, Dixit VK (2008) Enhanced artemisinin production by cell cultures of Artemisia annua. Curr Trends Biotechnol Pharm 2(2):341–389

    CAS  Google Scholar 

  • Ballow M, Nelson R (1997) Immunopharmacology: immunomodulation and immunotherapy. JAMA 278(22):2008–2017

    Article  CAS  PubMed  Google Scholar 

  • Bansal S, Narnoliya LK, Mishra B, Chandra M, Yadav RK, Sangwan NS (2018) HMG-CoA reductase from camphor Tulsi (Ocimum kilimandscharicum) regulated MVA dependent biosynthesis of diverse terpenoids in homologous and heterologous plant systems. Sci Rep 8:3547. https://doi.org/10.1038/s41598-017-17153-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basile DV, Akhtari N, Durand Y, Nair MSR (1993) Toward the production of artemisinin through tissue culture: determining nutrient-hormone combinations suitable for cell suspension cultures. In Vitro Cell Dev Biol Plant 29(3):143–147

    Article  Google Scholar 

  • Bordbar N, Karimi MH, Amirghofran Z (2012) The effect of glycyrrhizin on maturation and T cell stimulating activity of dendritic cells. Cell Immunol 280(1):44–49

    Article  CAS  PubMed  Google Scholar 

  • Brindha P (2016) Role of phytochemicals as immunomodulatory agents: a review. Int J Green Pharm (IJGP) 10:1

    Google Scholar 

  • Brodelius P, Mosbach K (1982) Immobilized plant cells. In: Advances in applied microbiology. Elsevier, pp 1–26

    Google Scholar 

  • Catanzaro M, Corsini E, Rosini M, Racchi M, Lanni C (2018) Immunomodulators inspired by nature: a review on curcumin and Echinacea. Molecules 23(11):2778

    Article  PubMed Central  CAS  Google Scholar 

  • Chandran H, Meena M, Barupal T, Sharma K (2020) Plant tissue culture as a perpetual source for production of industrially important bioactive compounds. Biotechnol Rep:e00450

    Google Scholar 

  • Chaturvedi P, Mehta S, Chatterjee P, Chowdhary A (2014) Media optimization in immobilized culture to enhance the content of curcumin in Curcuma longa (Zingiberaceae) and protein profile of treated samples in static culture. Nat Prod Chem Res

    Google Scholar 

  • Chaurasiya ND, Sangwan NS, Sabir F, Misra L, Sangwan RS (2012) Withanolide biosynthesis recruits both mevalonate and DOXP pathways of isoprenogenesis in Ashwagandha Withania somnifera L.(Dunal). Plant Cell Rep 31(10):1889–1897

    Article  CAS  PubMed  Google Scholar 

  • Christen P, Veuthey JL (2001) New trends in extraction, identification and quantification of artemisinin and its derivatives. Curr Med Chem 8(15):1827–1839

    Article  CAS  PubMed  Google Scholar 

  • Chu LL, Montecillo JAV, Bae H (2020) Recent advances in the metabolic engineering of yeasts for ginsenoside biosynthesis. Frontiers in Bioengineering and Biotechnology 8

    Google Scholar 

  • Couto MR, Rodrigues JL, Rodrigues LR (2017) Optimization of fermentation conditions for the production of curcumin by engineered Escherichia coli. J R Soc Interface 14(133):20170470

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Das D, Bandyopadhyay M (2020) Novel approaches towards over-production of andrographolide in in vitro seedling cultures of Andrographis paniculata. S Afr J Bot 128:77–86

    Article  CAS  Google Scholar 

  • Davis L, Kuttan G (2000) Immunomodulatory activity of Withania somnifera. J Ethnopharmacol 71(1–2):193–200

    Article  CAS  PubMed  Google Scholar 

  • De Sousa IP, Sousa Teixeira MV, Jacometti Cardoso Furtado NA (2018) An overview of biotransformation and toxicity of diterpenes. Molecules 23(6):1387

    Article  PubMed Central  CAS  Google Scholar 

  • de Souza Ferrari MP, Antoniazzi D, Nascimento AB, Franz LF, Bezerra CS, Magalhães HM (2016) Evaluation of new protocols to Curcuma longa micropropagation: a medicinal and ornamental specie. J Med Plants Res 10(25):367–376

    Article  CAS  Google Scholar 

  • Ebadollahi R, Jafarirad S, Kosari-Nasab M, Mahjouri S (2019) Effect of explant source, perlite nanoparticles and TiO 2/perlite nanocomposites on phytochemical composition of metabolites in callus cultures of Hypericum perforatum. Sci Rep 9(1):1–15

    Article  CAS  Google Scholar 

  • Farag MA, El Sayed AM, El Banna A, Ruehmann S (2015) Metabolomics reveals distinct methylation reaction in MeJA elicited Nigella sativa callus via UPLC–MS and chemometrics. Plant Cell Tissue Organ Culture (PCTOC) 122(2):453–463

    Article  CAS  Google Scholar 

  • Friedman H, Klein TW, Newton C, Daaka Y (1995) Marijuana, receptors and immunomodulation. In: The brain immune axis and substance abuse. Springer, pp 103–113

    Chapter  Google Scholar 

  • Froushani SMA, Gouvarchin Galee HE, Khamisabadi M, Lotfallahzade B (2015) Immunomodulatory effects of hydroalcoholic extract of Hypericum perforatum. Avicenna J Phytomed 5(1):62

    CAS  Google Scholar 

  • Gandi S, Rao K, Chodisetti B, Giri A (2012) Elicitation of andrographolide in the suspension cultures of Andrographis paniculata. Appl Biochem Biotechnol 168(7):1729–1738

    Article  CAS  PubMed  Google Scholar 

  • Gantait S, Mitra M, Chen J-T (2020) Biotechnological interventions for ginsenosides production. Biomol Ther 10(4):538

    CAS  Google Scholar 

  • Giri A, Dhingra V, Giri CC, Singh A, Ward OP, Narasu ML (2001) Biotransformations using plant cells, organ cultures and enzyme systems: current trends and future prospects. Biotechnol Adv 19(3):175–199

    Article  CAS  PubMed  Google Scholar 

  • Golkar P, Bakhshi G, Vahabi MR (2020) Phytochemical, biochemical, and growth changes in response to salinity in callus cultures of Nigella sativa L. In Vitro Cell Dev Biol-Plant 56(2):247–258

    Article  CAS  Google Scholar 

  • Grover A, Samuel G, Bisaria VS, Sundar D (2013) Enhanced withanolide production by overexpression of squalene synthase in Withania somnifera. J Biosci Bioeng 115(6):680–685

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Chaturvedi P (2019) Enhancing secondary metabolite production in medicinal plants using endophytic elicitors: a case study of Centella asiatica (Apiaceae) and asiaticoside. endophytes for a growing. WORLD:310–323

    Google Scholar 

  • Gurav SS, Gurav NS, Patil AT, Duragkar NJ (2020) Effect of explant source, culture media, and growth regulators on callogenesis and expression of secondary metabolites of Curcuma longa. J Herbs Spices Med Plants 26(2):172–190

    Article  CAS  Google Scholar 

  • Gutierrez-Valdes N, Häkkinen ST, Lemasson C, Guillet M, Oksman-Caldentey K-M, Ritala A, Cardon F (2020) Hairy root cultures—a versatile tool with multiple applications. Frontiers in Plant Science 11

    Google Scholar 

  • Halder M, Sarkar S, Jha S (2019) Elicitation: a biotechnological tool for enhanced production of secondary metabolites in hairy root cultures. Eng Life Sci 19(12):880–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han J, Wang H, Lundgren A, Brodelius PE (2014) Effects of overexpression of AaWRKY1 on artemisinin biosynthesis in transgenic Artemisia annua plants. Phytochemistry 102:89–96

    Article  CAS  PubMed  Google Scholar 

  • Hayashi H (2009) Molecular biology of secondary metabolism: case study for Glycyrrhiza plants. In: Recent advances in plant biotechnology. Springer, pp 89–103

    Chapter  Google Scholar 

  • Hayashi H, Fukui H, Tabata M (1988) Examination of triterpenoids produced by callus and cell suspension cultures of Glycyrrhiza glabra. Plant Cell Rep 7(7):508–511

    Article  CAS  PubMed  Google Scholar 

  • Hayashi H, Fukui H, Tabata M (1990) Biotransformation of 18β-glycyrrhetinic acid by cell suspension cultures of Glycyrrhiza glabra. Phytochemistry 29(7):2149–2152

    Article  CAS  PubMed  Google Scholar 

  • Hayashi H, Yamada K, Fukui H, Tabata M (1992) Metabolism of exogenous 18β-glycyrrhetinic acid in cultured cells of Glycyrrhiza glabra. Phytochemistry 31(8):2724–2733

    Article  Google Scholar 

  • Hou W, Shakya P, Franklin G (2016) A perspective on Hypericum perforatum genetic transformation. Front Plant Sci 7:879

    Article  PubMed  PubMed Central  Google Scholar 

  • Hussain MS, Fareed S, Saba Ansari M, Rahman A, Ahmad IZ, Saeed M (2012) Current approaches toward production of secondary plant metabolites. J Pharm Bioallied Sci 4(1):10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jadaun JS, Kushwaha AK, Sangwan NS, Mishra S, Sangwan RS (2020) WRKY1-mediated regulation of tryptophan decarboxylase in tryptamine generation for withanamide production in Withania somnifera (Ashwagandha). Plant Cell Rep 39(11):1443–1465

    Article  CAS  PubMed  Google Scholar 

  • Jantan I, Ahmad W, Bukhari SNA (2015) Plant-derived immunomodulators: an insight on their preclinical evaluation and clinical trials. Front Plant Sci 6:655

    Article  PubMed  PubMed Central  Google Scholar 

  • Joshi N, Bedekar SS (2017) Concept of Rasayana for a better health-a review. J Ayurveda Integr Med Sci. (ISSN 2456-3110) 2(1):209–212

    Google Scholar 

  • Kahila MMH, Najy AM, Rahaie M, Mir-Derikvand M (2018) Effect of nanoparticle treatment on expression of a key gene involved in thymoquinone biosynthetic pathway in Nigella sativa L. Nat Prod Res 32(15):1858–1862

    Article  CAS  PubMed  Google Scholar 

  • Kang S, Min H (2012) Ginseng, the 'immunity boost’: the effects of Panax ginseng on immune system. J Ginseng Res 36(4):354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katsuyama Y, Matsuzawa M, Funa N, Horinouchi S (2008) Production of curcuminoids by Escherichia coli carrying an artificial biosynthesis pathway. Microbiology 154(9):2620–2628

    Article  CAS  PubMed  Google Scholar 

  • Kazmi A, Khan MA, Huma A (2019) Biotechnological approaches for production of bioactive secondary metabolites in Nigella sativa: an up-to-date review. Int J Secondary Metabolite 6(2):172–195

    Article  Google Scholar 

  • Khan SA, Verma P, Parasharami VA (2020) Homo and heterologous expression of the HpPKS2 gene in Hypericum perforatum and Bacopa monnieri. Plant Cell Tissue Organ Culture (PCTOC). https://doi.org/10.1007/s11240-020-01965-5

  • Kim O-T, Bang K-H, Shin Y-S, Lee M-J, Jung S-J, Hyun D-Y, Kim Y-C, Seong N-S, Cha S-W, Hwang B (2007) Enhanced production of asiaticoside from hairy root cultures of Centella asiatica (L.) urban elicited by methyl jasmonate. Plant Cell Rep 26(11):1941–1949

    Article  CAS  PubMed  Google Scholar 

  • Kim OT, Kim MY, Hong MH, Ahn JC, Hwang B (2004) Stimulation of asiaticoside accumulation in the whole plant cultures of Centella asiatica (L.) urban by elicitors. Plant Cell Rep 23(5):339–344

    Article  CAS  PubMed  Google Scholar 

  • Kirakosyan A, Sirvent TM, Gibson DM, Kaufman PB (2004) The production of hypericins and hyperforin by in vitro cultures of St. John’s wort (Hypericum perforatum). Biotechnol Appl Biochem 39(1):71–81

    Article  CAS  PubMed  Google Scholar 

  • Konkimalla VB, Blunder M, Korn B, Soomro SA, Jansen H, Chang W, Posner GH, Bauer R, Efferth T (2008) Effect of artemisinins and other endoperoxides on nitric oxide-related signaling pathway in RAW 264.7 mouse macrophage cells. Nitric Oxide 19(2):184–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar D, Arya V, Kaur R, Bhat ZA, Gupta VK, Kumar V (2012) A review of immunomodulators in the Indian traditional health care system. J Microbiol Immunol Infect 45(3):165–184

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Shaunak I, Verma ML (2020) Biotechnological application of health promising bioactive molecules. In: Biotechnological production of bioactive compounds. Elsevier, pp 165–189

    Chapter  Google Scholar 

  • Lenk F, Sürmann A, Oberthür P, Schneider M, Steingroewer J, Bley T (2014) Modeling hairy root tissue growth in in vitro environments using an agent-based, structured growth model. Bioprocess Biosyst Eng 37(6):1173–1184

    Article  CAS  PubMed  Google Scholar 

  • Luo X, Reiter MA, d’Espaux L, Wong J, Denby CM, Lechner A, Zhang Y, Grzybowski AT, Harth S, Lin W (2019) Complete biosynthesis of cannabinoids and their unnatural analogues in yeast. Nature 567(7746):123–126

    Article  CAS  PubMed  Google Scholar 

  • Majdalawieh AF, Fayyad MW (2015) Immunomodulatory and anti-inflammatory action of Nigella sativa and thymoquinone: a comprehensive review. Int Immunopharmacol 28(1):295–304

    Article  CAS  PubMed  Google Scholar 

  • Mehrotra S, Mishra KP, Maurya R, Srimal RC, Singh VK (2002) Immunomodulation by ethanolic extract of Boerhaavia diffusa roots. Int Immunopharmacol 2(7):987–996

    Article  CAS  PubMed  Google Scholar 

  • Mercy S, Sangeetha N, Ganesh D (2012) In vitro production of adventitious roots containing asiaticoside from leaf tissues of Centella asiatica L. In Vitro Cell Dev Biol-Plant 48(2):200–207

    Article  Google Scholar 

  • Mirjalili MH, Moyano E, Bonfill M, Cusido RM, Palazon J (2011) Overexpression of the Arabidopsis thaliana squalene synthase gene in Withania coagulans hairy root cultures. Biol Plant 55(2):357–360

    Article  CAS  Google Scholar 

  • Mishra S, Bansal S, Mishra B, Sangwan RS, Jadaun JS, Sangwan NS (2016) RNAi and homologous over-expression based functional approaches reveal triterpenoid synthase gene-cycloartenol synthase is involved in downstream withanolide biosynthesis in Withania somnifera. PLoS One 11(2):e0149691

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mishra SK, Sangwan NS, Sangwan RS (2007) Andrographis paniculata, Kalmegh, a review. Pharm Rev 1(2):283–298

    CAS  Google Scholar 

  • Mukherjee PK, Nema NK, Bhadra S, Mukherjee D, Braga FC, Matsabisa MG (2014) Immunomodulatory leads from medicinal plants. Indian J Tradit Knowl 13:235–256

    Google Scholar 

  • Mulcahy G, Quinn PJ (1986) A review of immunomodulators and their application in veterinary medicine. J Vet Pharmacol Ther 9(2):119–139

    Article  CAS  PubMed  Google Scholar 

  • Nagella P, Murthy HN (2010) Establishment of cell suspension cultures of Withania somnifera for the production of withanolide a. Bioresour Technol 101(17):6735–6739

    Article  CAS  PubMed  Google Scholar 

  • Netala VR, Kotakadi VS, Gaddam SA, Ghosh SB, Tartte V (2016) Elicitation of gymnemic acid production in cell suspension cultures of Gymnema sylvestre R. Br through endophytic fungi. 3 Biotech 6(2):232

    Article  PubMed  PubMed Central  Google Scholar 

  • Omar MN, Hasali NHM, Khan NT, Moin SF, Alfarra HY (2015) Biotechnological transformation of artemisinin: toward an effective anti-malaria drug. Biomed Pharmacol J 5(1):19–24

    Article  Google Scholar 

  • Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D, Leavell MD, Tai A, Main A, Eng D (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496(7446):528–532

    Article  CAS  PubMed  Google Scholar 

  • Parker CE, Pearson TW, Anderson NL, Borchers CH (2010) Mass-spectrometry-based clinical proteomics–a review and prospective. Analyst 135(8):1830–1838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parkin J, Cohen B (2001) An overview of the immune system. Lancet 357(9270):1777–1789

    Article  CAS  PubMed  Google Scholar 

  • Patel N, Patel P, Kendurkar SV, Thulasiram HV, Khan BM (2015) Overexpression of squalene synthase in Withania somnifera leads to enhanced withanolide biosynthesis. Plant Cell Tissue Organ Culture (PCTOC) 122(2):409–420

    Article  CAS  Google Scholar 

  • Pistelli L, Bertoli A, Gelli F, Bedini L, Ruffoni B, Pistelli L (2012) Production of curcuminoids in different in vitro organs of Curcuma longa. Nat Prod Commun 7(8):1934578X1200700819

    Google Scholar 

  • Praveen N, Manohar SH, Naik PM, Nayeem A, Jeong JH, Murthy HN (2009) Production of andrographolide from adventitious root cultures of Andrographis paniculata. Curr Sci 10:694–697

    Google Scholar 

  • Punturee K, Wild CP, Kasinrerk W, Vinitketkumnuen U (2005) Immunomodulatory activities of Centella asiatica and Rhinacanthus nasutus extracts. Asian Pac J Cancer Prev 6(3):396

    PubMed  Google Scholar 

  • Rahmat E, Kang Y (2020) Yeast metabolic engineering for the production of pharmaceutically important secondary metabolites. Appl Microbiol Biotechnol 104:4659–4674

    Article  CAS  PubMed  Google Scholar 

  • Rajagopal S, Kumar RA, Deevi DS, Satyanarayana C, Rajagopalan R (2003) Andrographolide, a potential cancer therapeutic agent isolated from Andrographis paniculata. J Exp Ther Oncol 3(3):147–158

    Article  CAS  PubMed  Google Scholar 

  • Ranjan D, Chen C, Johnston TD, Jeon H, Nagabhushan M (2004) Curcumin inhibits mitogen stimulated lymphocyte proliferation, NFκB activation, and IL-2 signaling. J Surg Res 121(2):171–177

    Article  CAS  PubMed  Google Scholar 

  • Ray S, Ghosh B, Sen S, Jha S (1996) Withanolide production by root cultures of Withania somnifera transformed with Agrobacterium rhizogenes. Planta Med 62(6):571–573

    Article  CAS  PubMed  Google Scholar 

  • Rezaei F, Isik S, Kartal M, Erdem SA (2018) Effect of priming on thymoquinone content and in vitro plant regeneration with tissue culture of black cumin (Nigella sativa L.) seeds. J Chem Metrol 12(2):98

    Google Scholar 

  • Ro D-K, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440(7086):940–943

    Article  CAS  PubMed  Google Scholar 

  • Sabir F, Kumar A, Tiwari P, Pathak N, Sangwan RS, Bhakuni RS, Sangwan NS (2010) Bioconversion of artemisinin to its nonperoxidic derivative deoxyartemisinin through suspension cultures of Withania somnifera Dunal. Zeitschrift für Naturforschung C 65(9–10):607–612

    Article  CAS  Google Scholar 

  • Sabir F, Mishra S, Sangwan RS, Jadaun JS, Sangwan NS (2013) Qualitative and quantitative variations in withanolides and expression of some pathway genes during different stages of morphogenesis in Withania somnifera Dunal. Protoplasma 250(2):539–549

    Article  CAS  PubMed  Google Scholar 

  • Sabir F, Sangwan NS, Chaurasiya ND, Misra LN, Sangwan RS (2008) In vitro withanolide production by Withania somnifera L. cultures. Zeitschrift für Naturforschung C 63(5–6):409–412

    Article  CAS  Google Scholar 

  • Sabir F, Sangwan RS, Kumar R, Sangwan NS (2012) Salt stress induced responses in growth and metabolism in callus cultures and differentiating in vitro shoots of Indian ginseng (Withania somnifera Dunal). J Plant Growth Regul 31:537–548

    Article  CAS  Google Scholar 

  • Sabir F, Sangwan RS, Singh J, Misra LN, Pathak N, Sangwan NS (2011) Biotransformation of withanolides by cell suspension cultures of Withania somnifera (Dunal). Plant Biotechnol Rep 5(2):127–134

    Article  Google Scholar 

  • Sangwan NS, Tripathi S, Srivastava Y, Mishra B, Pandey N (2017) Phytochemical genomics of ashwagandha. InScience of Ashwagandha: preventive and therapeutic potentials. Springer, Cham, pp 3–36

    Book  Google Scholar 

  • Sangwan RS, Chaurasiya ND, Lal P, Misra L, Uniyal GC, Tuli R, Sangwan NS (2007) Withanolide a biogeneration in in vitro shoot cultures of ashwagandha (Withania somnifera D UNAL), a main medicinal plant in ayurveda. Chem Pharm Bull 55(9):1371–1375

    Article  CAS  Google Scholar 

  • Santarém ER, Astarita LV (2003) Multiple shoot formation in Hypericum perforatum L. and hypericin production. Braz J Plant Physiol 15(1):43–47

    Article  Google Scholar 

  • Satdive RK, Fulzele DP, Eapen S (2007) Enhanced production of azadirachtin by hairy root cultures of Azadirachta indica A. Juss by elicitation and media optimization. J Biotechnol 128(2):281–289

    Article  CAS  PubMed  Google Scholar 

  • Schachtsiek J, Warzecha H, Kayser O, Stehle F (2018) Current perspectives on biotechnological cannabinoid production in plants. Planta Med 84(04):214–220

    Article  CAS  PubMed  Google Scholar 

  • Scholz M, Lipinski M, Leupold M, Luftmann H, Harig L, Ofir R, Fischer R, Prüfer D, Müller KJ (2009) Methyl jasmonate induced accumulation of kalopanaxsaponin I in Nigella sativa. Phytochemistry 70(4):517–522

    Article  CAS  PubMed  Google Scholar 

  • Scragg A (2002) In: Verpoorte R, Alfermann AW (eds) Metabolic engineering of plant secondary metabolism. Kluwer Academic Publishers. 2000. 286, pp. ISBN 0 7923 6360 4. Plant Cell, Tissue and Organ Culture 68(2):211–212

    Google Scholar 

  • Shabani L, Ehsanpour AA, Asghari G, Emami J (2009) Glycyrrhizin production by in vitro cultured Glycyrrhiza glabra elicited by methyl jasmonate and salicylic acid. Russ J Plant Physiol 56(5):621–626

    Article  CAS  Google Scholar 

  • Shams-Ardakani M, Mohagheghzadeh A, Ghannadi A, Barati A (2007) Formation of glycyrrhizin by in vitro cultures of Glycyrrhiza glabra. Chem Nat Compd 43(3):353–354

    Article  CAS  Google Scholar 

  • Shantilal S, Vaghela JS, Sisodia SS (2018) Review on immunomodulation and immunomodulatory activity of some medicinal plant. Eur J Biomed 5(8):163–174

    Google Scholar 

  • Sharada M, Ahuja A, Suri KA, Vij SP, Khajuria RK, Verma V, Kumar A (2007) Withanolide production by in vitro cultures of Withania somnifera and its association with differentiation. Biol Plant 51(1):161–164

    Article  CAS  Google Scholar 

  • Sharma SN, Jha Z (2012) Production of andrographolide from callus and cell suspension culture of Andrographis paniculata. J Cell Tissue Res 12(3):3423–3429

    CAS  Google Scholar 

  • Sharma SN, Jha Z, Sinha RK, Geda AK (2015) Jasmonate-induced biosynthesis of andrographolide in Andrographis paniculata. Physiol Plant 153(2):221–229

    Article  CAS  PubMed  Google Scholar 

  • Shukla N, Sangwan Neelam S, Misra HO, Sangwan RS (2003) Genetic diversity in Boerhavia diffusa L. of different geographic locations in India using RAPD markers. Genet Resour Crop Evol 50:587–601

    Article  CAS  Google Scholar 

  • Siddiqui MS, Thodey K, Trenchard I, Smolke CD (2012) Advancing secondary metabolite biosynthesis in yeast with synthetic biology tools. FEMS Yeast Res 12(2):144–170

    Article  CAS  PubMed  Google Scholar 

  • Singh M, Chaturvedi R (2013) Sustainable production of azadirachtin from differentiated in vitro cell lines of neem (Azadirachta indica). Aob Plants 5:plt034

    PubMed Central  Google Scholar 

  • Singh J, Sabir F, Sangwan RS, Narnoliya LK, Saxena S, Sangwan NS (2015a) Enhanced secondary metabolite production and pathway gene expression by leaf explants-induced direct root morphotypes are regulated by combination of growth regulators and culture conditions in Centella asiatica (L.) urban. Plant Growth Regul 75:55–66

    Article  CAS  Google Scholar 

  • Singh VK, Dwivedi P, Chaudhary BR, Singh R (2015b) Immunomodulatory effect of Gymnema sylvestre (R. Br.) leaf extract: an in vitro study in rat model. PLoS One 10(10):e0139631

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sivanandhan G, Arun M, Mayavan S, Rajesh M, Mariashibu TS, Manickavasagam M, Selvaraj N, Ganapathi A (2012) Chitosan enhances withanolides production in adventitious root cultures of Withania somnifera (L.) Dunal. Ind Crop Prod 37(1):124–129

    Article  CAS  Google Scholar 

  • Sivanandhan G, Dev GK, Jeyaraj M, Rajesh M, Arjunan A, Muthuselvam M, Manickavasagam M, Selvaraj N, Ganapathi A (2013a) Increased production of withanolide a, withanone, and withaferin a in hairy root cultures of Withania somnifera (L.) Dunal elicited with methyl jasmonate and salicylic acid. Plant Cell Tissue Organ Culture (PCTOC) 114(1):121–129

    Article  CAS  Google Scholar 

  • Sivanandhan G, Dev GK, Jeyaraj M, Rajesh M, Muthuselvam M, Selvaraj N, Manickavasagam M, Ganapathi A (2013b) A promising approach on biomass accumulation and withanolides production in cell suspension culture of Withania somnifera (L.) Dunal. Protoplasma 250(4):885–898

    Article  CAS  PubMed  Google Scholar 

  • Sivanandhan G, Selvaraj N, Ganapathi A, Manickavasagam M (2014) Enhanced biosynthesis of withanolides by elicitation and precursor feeding in cell suspension culture of Withania somnifera (L.) Dunal in shake-flask culture and bioreactor. PLoS One 9(8):e104005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sivanandhan G, Selvaraj N, Ganapathi A, Manickavasagam M (2015) Effect of nitrogen and carbon sources on in vitro shoot multiplication, root induction and withanolides content in Withania somnifera (L.) Dunal. Acta Physiol Plant 37(2):12

    Article  CAS  Google Scholar 

  • Sudhakaran MV (2012) Botanical pharmacognosy of Andrographis paniculata (Burm. F.) Wall. Ex. Nees. Pharm J 4(32):1–10

    Google Scholar 

  • Surh Y-J, Chun K-S, Cha H-H, Han SS, Keum Y-S, Park K-K, Lee SS (2001) Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-κB activation. Mutat Res Fundam Mol Mech Mutagen 480:243–268

    Article  Google Scholar 

  • Thakore D, Srivastava AK (2017) Production of biopesticide azadirachtin using plant cell and hairy root cultures. Eng Life Sci 17(9):997–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiwari P, Mishra BN, Sangwan NS (2014) Phytochemical and pharmacological properties of Gymnema sylvestre: an important medicinal plant. Biomed Res Int 2014:830285

    PubMed  PubMed Central  Google Scholar 

  • Tripathi S, Srivastava Y, Sangwan RS, Sangwan NS (2020) In silico mining and functional analysis of AP2/ERF gene in Withania somnifera. Sci Rep 10:4877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vakil MM, Mendhulkar VD (2013) Enhanced synthesis of andrographolide by Aspergillus niger and Penicillium expansum elicitors in cell suspension culture of Andrographis paniculata (Burm. f.) Nees. Bot Stud 54(1):1–8

    Article  CAS  Google Scholar 

  • Vanisree M, Lee C-Y, Lo S-F, Nalawade SM, Lin CY, Tsay H-S (2004) Studies on the production of some important secondary metabolites from medicinal plants by plant tissue cultures. Bot Bull Acad Sin 45(1):1–22

    CAS  Google Scholar 

  • Varljen J, Lipták A, Wagner H (1989) Structural analysis of a rhamnoarabinogalactan and arabinogalactans with immuno-stimulating activity from Calendula officinalis. Phytochemistry 28(9):2379–2383

    Article  Google Scholar 

  • Vrushali D, Madhavi I (2006) Immunostimulatory activity of Amoora rohituka and Azadirachta indica. Adv Pharmacol Toxicol 7:5–12

    Google Scholar 

  • Wang C, Su X, Sun M, Zhang M, Wu J, Xing J, Wang Y, Xue J, Liu X, Sun W (2019) Efficient production of glycyrrhetinic acid in metabolically engineered Saccharomyces cerevisiae via an integrated strategy. Microb Cell Factories 18(1):95

    Article  CAS  Google Scholar 

  • Wang S, Zhang S, Zhou T, Zeng J, Zhan J (2013) Design and application of an in vivo reporter assay for phenylalanine ammonia-lyase. Appl Microbiol Biotechnol 97(17):7877–7885

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Wang J, Dong S, Liu C, Italiani P, Sun S, Xu J, Boraschi D, Ma S, Qu D (2010) Immunomodulatory activity of andrographolide on macrophage activation and specific antibody response. Acta Pharmacol Sin 31(2):191–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westfall PJ, Pitera DJ, Lenihan JR, Eng D, Woolard FX, Regentin R, Horning T, Tsuruta H, Melis DJ, Owens A (2012) Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proc Natl Acad Sci 109(3):E111–E118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wetzstein HY, Porter JA, Janick J, Ferreira JF, Mutui TM (2018) Selection and clonal propagation of high artemisinin genotypes of Artemisia annua. Front Plant Sci 9:358

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilkes DS (2012) Autoantibody formation in human and rat studies of chronic rejection and primary graft dysfunction. In: Seminars in immunology. Elsevier, pp 131–135

    Google Scholar 

  • Wu K, Zhang X, Sun S, Wang X (2015) Factors affecting the accumulation of curcumin in microrhizomes of Curcuma aromatica Salisb. Biomed Res Int 2015

    Google Scholar 

  • Yadav RK, Sangwan RS, Sabir F, Srivastava AK, Sangwan NS (2014) Effect of prolonged water stress on specialized secondary metabolites, peltate glandular trichomes, and pathway gene expression in Artemisia annua L. Plant Physiol Biochem 74:70–83

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Xie S, Gao H, Long Z (1993) Artemisinin and its derivatives enhance T lymphocyte-mediated immune responses in normal mice and accelerate immunoreconstitution of mice with syngeneic bone marrow transplantation. Clin Immunol Immunopathol 69(2):143–148

    Article  CAS  PubMed  Google Scholar 

  • Yu Z-X, Li J-X, Yang C-Q, Hu W-L, Wang L-J, Chen X-Y (2012) The jasmonate-responsive AP2/ERF transcription factors AaERF1 and AaERF2 positively regulate artemisinin biosynthesis in Artemisia annua L. Mol Plant 5(2):353–365

    Article  CAS  PubMed  Google Scholar 

  • Zaheer M, Giri CC (2015) Multiple shoot induction and jasmonic versus salicylic acid driven elicitation for enhanced andrographolide production in Andrographis paniculata. Plant Cell Tissue Organ Culture (PCTOC) 122(3):553–563

    Article  CAS  Google Scholar 

  • Zaheer M, Giri CC (2017) Enhanced diterpene lactone (andrographolide) production from elicited adventitious root cultures of Andrographis paniculata. Res Chem Intermed 43(4):2433–2444

    Article  CAS  Google Scholar 

  • Zhang Q, Hu S, Wang K, Cui M, Li X, Wang M, Hu X (2018) Engineering a yeast double-molecule carrier for drug screening. Artif Cells Nanomed Biotechnol 46(sup2):386–396

    Article  CAS  PubMed  Google Scholar 

  • Zirpel B, Degenhardt F, Martin C, Kayser O, Stehle F (2017) Engineering yeasts as platform organisms for cannabinoid biosynthesis. J Biotechnol 259:204–212

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzana Sabir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sabir, F. (2022). Biotechnological Approaches for the Production of Immunomodulating Phytomolecules. In: Sangwan, N.S., Farag, M.A., Modolo, L.V. (eds) Plants and Phytomolecules for Immunomodulation. Springer, Singapore. https://doi.org/10.1007/978-981-16-8117-2_17

Download citation

Publish with us

Policies and ethics