Skip to main content
Log in

Modeling hairy root tissue growth in in vitro environments using an agent-based, structured growth model

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

An agent-based model for simulating the in vitro growth of Beta vulgaris hairy root cultures is described. The model fitting is based on experimental results and can be used as a virtual experimentator for root networks. It is implemented in the JAVA language and is designed to be easily modified to describe the growth of diverse biological root networks. The basic principles of the model are outlined, with descriptions of all of the relevant algorithms using the ODD protocol, and a case study is presented in which it is used to simulate the development of hairy root cultures of beetroot (Beta vulgaris) in a Petri dish. The model can predict various properties of the developing network, including the total root length, branching point distribution, segment distribution and secondary metabolite accumulation. It thus provides valuable information that can be used when optimizing cultivation parameters (e.g., medium composition) and the cultivation environment (e.g., the cultivation temperature) as well as how constructional parameters change the morphology of the root network. An image recognition solution was used to acquire experimental data that were used when fitting the model and to evaluate the agreement between the simulated results and practical experiments. Overall, the case study simulation closely reproduced experimental results for the cultures grown under equivalent conditions to those assumed in the simulation. A 3D-visualization solution was created to display the simulated results relating to the state of the root network and its environment (e.g., oxygen and nutrient levels).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AVL:

Adelson-Velski and Landis (tree)

CSV:

Comma separated values

MFA:

Metabolic flux analysis

MS:

Murashige & Skoog

MSL:

Mean segment length

ODE:

Ordinary differential equation

OOM:

Object oriented model

SSL:

Single segment length (mm)

SSM:

Single-way state machine

TBP:

total number of branching points

TNS:

Total number of segments

TRL:

Total root length (mm)

TRV:

Total root volume (mm3)

UML:

Unified modeling language

VERN:

Virtual experimentator for root networks

X:

Biomass (g/L)

References

  1. Steingroewer J, Bley T, Georgiev V et al (2013) Bioprocessing of differentiated plant in vitro systems. Eng Life Sci 13:26–38. doi:10.1002/elsc.201100226

    Article  CAS  Google Scholar 

  2. Weathers PJ, Towler MJ, Xu J (2009) Bench to batch: advances in plant cell culture for producing useful products. Appl Microbiol Biotechnol 85:1339–1351. doi:10.1007/s00253-009-2354-4

    Article  Google Scholar 

  3. Georgiev V, Ilieva M, Bley T, Pavlov A (2008) Betalain production in plant in vitro systems. Acta Physiol Plant 30:581–593. doi:10.1007/s11738-008-0170-6

    Article  CAS  Google Scholar 

  4. Mukundan U, Bhagwat V, Singh G, Curtis W (2012) Integrated recovery of pigments released from Red Beet hairy roots exposed to acidic medium. J Plant Biochem Biotechnol 10:67–69. doi:10.1007/BF03263111

    Article  Google Scholar 

  5. Nussbaumer P, Kapétanidis I, Christen P (1998) Hairy roots of Datura candida D. aurea: effect of culture medium composition on growth and alkaloid biosynthesis. Plant Cell Rep 17:405–409. doi:10.1007/s002990050415

    Article  CAS  Google Scholar 

  6. Boschke E, Bley T (1998) Growth patterns of yeast colonies depending on nutrient supply. Acta Biotechnol 18:17–27. doi:10.1002/abio.370180103

    Article  Google Scholar 

  7. Leduc M, Tikhomiroff C, Cloutier M et al (2006) Development of a kinetic metabolic model: application to Catharanthus roseus hairy root. Bioprocess Biosyst Eng 28:295–313. doi:10.1007/s00449-005-0034-z

    Article  CAS  Google Scholar 

  8. Morgan J (2002) Quantification of metabolic flux in plant secondary metabolism by a biogenetic organizational approach. Metab Eng 4:257–262. doi:10.1006/mben 2002.0224

    Article  Google Scholar 

  9. Ptashnyk M (2010) Derivation of a macroscopic model for nutrient uptake by hairy-roots. Nonlinear Anal Real World Appl 11:4586–4596. doi:10.1016/j.nonrwa.2008.10.063

    Article  CAS  Google Scholar 

  10. Cloutier M, Bouchard-Marchand É, Perrier M, Jolicoeur M (2008) A predictive nutritional model for plant cells and hairy roots. Biotechnol Bioeng 99:189–200. doi:10.1002/bit.21543

    Article  CAS  Google Scholar 

  11. Han B, Linden JC, Gujarathi NP, Wickramasinghe SR (2004) Population balance approach to modeling hairy root growth. Biotechnol Prog 20:872–879. doi:10.1021/bp0342304

    Article  CAS  Google Scholar 

  12. Dupuy L, Gregory PJ, Bengough AG (2010) Root growth models: towards a new generation of continuous approaches. J Exp Bot 61:2131–2143. doi:10.1093/jxb/erp389

    Article  CAS  Google Scholar 

  13. Walther T, Reinsch H, Weber P et al (2011) Applying dimorphic yeasts as model organisms to study mycelial growth: part 1. Experimental investigation of the spatio-temporal development of filamentous yeast colonies. Bioprocess Biosyst Eng 34:13–20. doi:10.1007/s00449-010-0442-6

    Article  CAS  Google Scholar 

  14. Walther T, Reinsch H, Ostermann K et al (2011) Applying dimorphic yeasts as model organisms to study mycelial growth: part 2. Use of mathematical simulations to identify different construction principles in yeast colonies. Bioprocess Biosyst Eng 34:21–31. doi:10.1007/s00449-010-0443-5

    Article  CAS  Google Scholar 

  15. Walther T, Reinsch H, Grosse A et al (2004) Mathematical modeling of regulatory mechanisms in yeast colony development. J Theor Biol 229:327–338. doi:10.1016/j.jtbi.2004.04.004

    Article  CAS  Google Scholar 

  16. Kreft J-U, Picioreanu C, Wimpenny JWT, van Loosdrecht MCM (2001) Individual-based modelling of biofilms. Microbiology 147:2897–2912

    CAS  Google Scholar 

  17. Lardon LA, Merkey BV, Martins S et al (2011) iDynoMiCS: next-generation individual-based modelling of biofilms. Environ Microbiol 13:2416–2434. doi:10.1111/j.1462-2920.2011.02414.x

    Article  CAS  Google Scholar 

  18. Lindenmayer A (1968) Mathematical models for cellular interactions in development I. Filaments with one-sided inputs. J Theor Biol 18:280–299. doi:10.1016/0022-5193(68)90079-9

    Article  CAS  Google Scholar 

  19. Lindenmayer A (1968) Mathematical models for cellular interactions in development II. Simple and branching filaments with two-sided inputs. J Theor Biol 18:300–315. doi:10.1016/0022-5193(68)90080-5

    Article  CAS  Google Scholar 

  20. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  21. Lenk F, Vogel M, Bley T, Steingroewer J (2012) Automatic image recognition to determine morphological development and secondary metabolite accumulation in hairy root networks. Eng Life Sci 12:588–594. doi:10.1002/elsc.201200022

    Article  CAS  Google Scholar 

  22. Grimm V, Berger U, Bastiansen F et al (2006) A standard protocol for describing individual-based and agent-based models. Ecol Model 198:115–126. doi:10.1016/j.ecolmodel.2006.04.023

    Article  Google Scholar 

  23. Leitner D, Klepsch S, Ptashnyk M et al (2010) A dynamic model of nutrient uptake by root hairs. New Phytol 185:792–802. doi:10.1111/j.1469-8137.2009.03128.x

    Article  CAS  Google Scholar 

  24. Bastian P, Chavarría-Krauser A, Engwer C et al (2008) Modelling in vitro growth of dense root networks. J Theor Biol 254:99–109. doi:10.1016/j.jtbi.2008.04.014

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the European Social Fund (ESF) and the Free State of Saxony (project number 080938406).

Conflict of interest

The authors have declared no commercial or financial conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Lenk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lenk, F., Sürmann, A., Oberthür, P. et al. Modeling hairy root tissue growth in in vitro environments using an agent-based, structured growth model. Bioprocess Biosyst Eng 37, 1173–1184 (2014). https://doi.org/10.1007/s00449-013-1088-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-013-1088-y

Keywords

Navigation