Skip to main content
Log in

Salt Stress-induced Responses in Growth and Metabolism in Callus Cultures and Differentiating In Vitro Shoots of Indian Ginseng (Withania somnifera Dunal)

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

In vitro-grown shoots and calli of Withania somnifera, an important medicinal plant, were exposed to various types of salts under in vitro culture conditions. Membrane permeability, lipid peroxidation, and the antioxidant system increased in shoots as well as in unorganized callus tissues under all the three concentrations of KCl, NaCl, KNO3, NaNO3, and CaCl2. The growth responses of shoots and callus cultures under various salt treatments revealed that the tissue could grow better under NaCl and KNO3 compared to other salts and the in vitro shoots appeared healthy at 50 mM concentration of NaCl and KNO3. The activity of antioxidant enzymes such as catalase (CAT), ascorbate peroxidase, guaiacol peroxidase, lipoxygenase, polyphenol oxidase, and glutathione reductase increased under salt treatments, especially at higher concentrations. The greatest activity increase was recorded for peroxidases, whereas CAT was the least responsive. Only two isoforms, Mn-superoxide dismutase (Mn-SOD) and Fe-SOD, could be visualized in callus tissue while Cu/Zn-SOD was absent. Diaphorase 4 was totally missing in callus tissue and was detected only in shoots. Phenolics accumulated at all the concentrations of the salts tested as an induced protective response. The higher concentration of CaCl2 produced maximum increases in antioxidants and enzymatic activities compared to other salts. Thus, for W. somnifera the presence of excess calcium in the growing medium is most deleterious compared to other salts. Results also suggest that the nonenzymatic and enzymatic antioxidant systems of both the tissues played a primary role in combating the imposed salt stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agastian P, Kingsley SJ, Vivekanandan M (2000) Effect of salinity on photosynthesis and biochemical characteristics in mulberry genotypes. Photosynthetica 38:287–290

    Article  CAS  Google Scholar 

  • Alia P, Saradhi PP, Mohanty P (1991) Proline enhances primary photochemical activities in isolated thylakoid membranes of Brassica juncea by arresting photo inhibitory damage. Biochem Biophys Res Commun 181:1238–1244

    Article  PubMed  CAS  Google Scholar 

  • Balasundram N, Sundram K, Samman S (2006) Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chem 99:191–203

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  PubMed  CAS  Google Scholar 

  • Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. Plant Cell 7:1099–1111

    PubMed  CAS  Google Scholar 

  • Chance B, Maehly AC (1955) Assay of catalases and peroxidases. Methods Enzymol 2:764–775

    Article  Google Scholar 

  • Chaves MM, Oliveira MM (2004) Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot 55:2365–2384

    Article  PubMed  CAS  Google Scholar 

  • Cheng AX, Lou YG, Mao YB, Lu S, Wang LJ, Chen XY (2007) Plants terpenoids: biosynthesis and ecological functions. J Integr Plant Biol 49:179–186

    Article  CAS  Google Scholar 

  • De Abreu IN, Mazzafera P (2005) Effect of water and temperature stress on the content of active constituents of Hypericum brasilienne Choisy. Plant Physiol Biochem 43:241–248

    Article  Google Scholar 

  • Dionisio-Sese ML, Tobita S (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135:1–9

    Article  CAS  Google Scholar 

  • Elkahoui S, Hernandez JA, Abdelly C, Ghrir R, Limam F (2005) Effects of salt on lipid peroxidation and antioxidant enzyme activities of Catharanthus roseus suspension cells. Plant Sci 168:607–613

    Article  CAS  Google Scholar 

  • Erturk U, Sivritepe N, Yerlikaya C, Bor M, Ozdemir F, Turkan I (2007) Responses of the cherry rootstock to salinity in vitro. Biol Plant 51:597–600

    Article  CAS  Google Scholar 

  • Hare P, Cress WA, van Staden J (1998) Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ 21:535–553

    Article  CAS  Google Scholar 

  • Kovacik J, Klejdus B, Hedbavny J, Backor M (2009) Salicylic acid alleviates NaCl-induced changes in the metabolism of Matricaria chamomilla plants. Ecotoxicology 18:544–554

    Article  PubMed  CAS  Google Scholar 

  • Ksouri R, Megdiche W, Debez A, Falleh H, Grignon C, Abdelly C (2007) Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritime. Plant Physiol Biochem 45:244–249

    Article  PubMed  CAS  Google Scholar 

  • Kumar KB, Khan PA (1982) Peroxidase and polyphenol oxidase in excised ragi (Eleusine coracana cv. PR 202) leaves during senescence. Ind J Exp Bot 20:412–416

    CAS  Google Scholar 

  • Kwon SY, Jeong YJ, Lee HS, Kim JS, Cho KY, Allen RD, Kwak SS (2002) Enhanced tolerance of transgenic tobacco plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against methyl viologen-mediated oxidative stress. Plant Cell Environ 25:873–882

    Article  Google Scholar 

  • Lattanzio V, Cardinali A, Ruta C, Fortunato IM, Lattanzio VMT, Linsalata V, Cicco N (2009) Relationship of secondary metabolism to growth in oregano (Origanum vulgare L.) shoot cultures under nutritional stress. Environ Exp Bot 65:54–62

    Article  CAS  Google Scholar 

  • Lichtenthaler HK, Wellburn AR (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans 11:591–592

    CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–275

    PubMed  CAS  Google Scholar 

  • Mattioli R, Costantino P, Trovato M (2009) Proline accumulation in plants, not only stress. Plant Signal Behav 4:1016–1018

    Article  PubMed  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  PubMed  CAS  Google Scholar 

  • Molassiotis AN, Sotiropoulos T, Tanou G, Kofidis G, Diamantidis G, Therios Ι (2006) Antioxidant and anatomical responses in shoot culture of the apple rootstock MM 106 treated with NaCl, KCl, mannitol or sorbitol. Biol Plant 50:331–338

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Muthukumarasamy M, Gupta SD, Pannerselvam R (2000) Enhancement of peroxidase, polyphenol oxidase and superoxide dismutase activities by tridimefon in NaCl stressed Raphanus sativus L. Biol Plant 43:317–320

    Article  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Navarro JM, Flores P, Garrido C, Martinez V (2006) Changes in the contents of antioxidant compounds in pepper fruits at ripening stages, as affected by salinity. Food Chem 96:66–73

    Article  CAS  Google Scholar 

  • Nelson N (1944) A photometric adaptation of the Somogyi method for the determination of glucose. J Biol Chem 163:375–380

    Google Scholar 

  • Oueslati S, Bouraoui NK, Attia H, Rabhi M, Ksouri R, Lachaal M (2009) Physiological and antioxidant responses of Mentha pulegium (Pennyroyal) to salt stress. Acta Physiol Plant 32:289–296

    Article  Google Scholar 

  • Panda SK, Upadhyay RK (2003) Salt stress injury induces oxidative alterations and antioxidative defense in the roots of Lemna minor. Biol Plant 48:249–253

    Article  Google Scholar 

  • Sabir F, Sangwan NS, Chaurasiya ND, Misra LN, Sangwan RS (2008) In vitro withanolide production by Withania somnifera L. cultures. Z Naturforsch 63:409–412

    CAS  Google Scholar 

  • Sam O, Ramirez C, Coronado MJ, Testillano PS, Risueno MC (2003) Changes in tomato leaves induced by NaCl stress: leaf organization and cell ultrastructure. Biol Plant 47:361–366

    Article  Google Scholar 

  • Sangwan NS, Farooqi AHA, Sangwan RS (1994) Effect of drought on growth and essential oil metabolism in lemongrass species. New Phytol 128:173–179

    Article  Google Scholar 

  • Sangwan NS, Yadav U, Sangwan RS (2003) Genetic diversity among elite varieties of the aromatic grasses, Cymbopogon martini. Euphytica 130:117–130

    Article  CAS  Google Scholar 

  • Sangwan RS, Chaurasiya ND, Misra LN, Lal P, Uniyal GC, Sharma R, Sangwan NS, Suri KA, Qazi GN, Tuli R (2004) Phytochemical variability in commercial herbal products and preparations of Withania somnifera (ashwagandha). Curr Sci 86:461–465

    CAS  Google Scholar 

  • Shewfelt RL, Purvis AC (1995) Towards a comprehensive model for lipid peroxidation in plant tissue disorders. Hort Sci 30:213–221

    CAS  Google Scholar 

  • Shimoni M (1994) A method for activity staining of peroxidase and β-1,3-glucanase isozymes in polyacrylamide electrophoresis gels. Anal Biochem 220:36–38

    Article  PubMed  CAS  Google Scholar 

  • Smith IK, Vierhelle TL, Thorne CA (1988) Assay of glutathione reductase in crude tissue homogenate using 5,5′-dithiobis(2-nitrobenzoic acid). Anal Biochem 175:408–413

    Article  PubMed  CAS  Google Scholar 

  • Vijayan K, Chakraborti SP, Ghosh PD (2003) In vitro screening of mulberry (Morus spp.) for salinity tolerance. Plant Cell Rep 22:350–357

    Article  PubMed  CAS  Google Scholar 

  • Wang B, Lüttge U, Ratajczak R (2004) Specific regulation of SOD isoforms by NaCl and osmotic stress in leaves of the C3 halophyte Suaeda salsa L. J Plant Physiol 161:285–289

    Article  PubMed  CAS  Google Scholar 

  • Woodward AJ, Bennett IJ (2005) The effect of salt stress and abscisic acid on proline production, chlorophyll content and growth of in vitro propagated shoots of Eucalyptus camaldulensis. Plant Cell Tissue Organ Cult 82:189–200

    Article  CAS  Google Scholar 

  • Xiong L, Zhu JK (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ 25:131–139

    Article  PubMed  CAS  Google Scholar 

  • Zhao X, Tan HJ, Liu YB, Li XR, Chen GX (2009) Effect of salt stress on growth and osmotic regulation in Thellungiella and Arabidopsis callus. Plant Cell Tissue Organ Cult 98:97–103

    Article  CAS  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The financial grant from the NIMITLI Program of the Council of Scientific and Industrial Research, Government of India, New Delhi, is gratefully acknowledged. FS and RK are thankful to CSIR, New Delhi and UGC, New Delhi for the senior research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neelam S. Sangwan.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 58 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabir, F., Sangwan, R.S., Kumar, R. et al. Salt Stress-induced Responses in Growth and Metabolism in Callus Cultures and Differentiating In Vitro Shoots of Indian Ginseng (Withania somnifera Dunal). J Plant Growth Regul 31, 537–548 (2012). https://doi.org/10.1007/s00344-012-9264-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-012-9264-x

Keywords

Navigation