Skip to main content

Application and Mechanisms of Bacillus subtilis in Biological Control of Plant Disease

  • Chapter
  • First Online:
Role of Rhizospheric Microbes in Soil

Abstract

The pathogenic microorganisms affecting plant health are major and chronic threats to sustainable food production and ecosystem stability worldwide. Currently, synthetic chemicals are the most widely used as a control methods. However, the continuous use of pesticides has caused environmental harm. Biological disease control using beneficial antagonists is an environmentally sustainable alternative to using synthetic pesticides. One of the promising microorganisms for sustainable agriculture is Bacillus subtilis, which has been reported as a growth promoter and as antagonistic to a variety of pathogens in vitro and in greenhouse and field studies. The disease suppression by B. subtilis is the net result of multiple mechanisms, including plant growth promotion (PGP), antibiosis, competition for space and nutrients, lysis of pathogen hyphae, and induced systemic resistance (ISR). Most of the B. subtilis isolates exhibit several mechanisms that may affect the “disease triangle” directly, indirectly, or synergistically. This chapter examines associations between B. subtilis and plant disease control, with a focus on mechanisms and knowledge gaps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbasi PA, Weselowski B (2014) Influence of foliar sprays of Bacillus subtilis QST 713 on development of early blight disease and yield of field tomatoes in Ontario. Can J Plant Pathol 36:170–178

    Article  Google Scholar 

  • Abbasi PA, Weselowski B (2015) Efficacy of Bacillus subtilis QST 713 formulations, copper hydroxide, and their tank mixes on bacterial spot of tomato. Crop Prot 74:70–76

    Article  CAS  Google Scholar 

  • Adam M, Heuer H, Hallmann J (2014) Bacterial antagonists of fungal pathogens also control root-knot nematodes by induced systemic resistance of tomato plants. PLoS One 9:e90402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ahmad M, Nadeem SM, Naveed M, Zahir ZA (2016) Potassium-solubilizing bacteria and their application in agriculture. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 293–313. https://doi.org/10.1007/978-81-322-2776-2_21

    Chapter  Google Scholar 

  • Akram W, Anjum T, Ali B (2014) Searching ISR determinants from Bacillus subtilis IAGS174 against Fusarium wilt of tomato. Biocontrol 60:271–280

    Article  CAS  Google Scholar 

  • Arrebola E, Sivakumar D, Korsten L (2010) Effect of volatile compounds produced by Bacillus strains on postharvest decay in citrus. Biol Control 53(1):122–128

    Article  CAS  Google Scholar 

  • Asaka O, Shoda M (1996) Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Appl Environ Microbiol 62:4081–4085

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ashrafuzzaman M, Hossen FA, Ismail MR, Hoque MA, Islam MZ, Shahidullah SM, Meon S (2009) Efficiency of plant growth-promoting rhizobacteria (PGPR) for the enhancement of rice growth. Afr J Biotechnol 8:1247–1252

    CAS  Google Scholar 

  • Awasthi A, Bharti N, Nair P, Singh R, Shukla AK, Gupta MM, Darokar MP, Kalra A (2011) Synergistic effect of Glomus mosseae and nitrogen fixing Bacillus subtilis strain Daz26 on artemisinin content in Artemisia annua L. Appl Soil Ecol 49:125–130

    Article  Google Scholar 

  • Bahadur I, Meena VS, Kumar S (2014) Importance and application of potassic biofertilizer in Indian agriculture. Int Res J Biol Sci 3:80–85

    Google Scholar 

  • Bahadur I, Maurya BR, Kumar A, Meena VS, Raghuwanshi R (2016a) Towards the soil sustainability and potassium-solubilizing microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 225–266. https://doi.org/10.1007/978-81-322-2776-2_18

    Chapter  Google Scholar 

  • Bahadur I, Maurya BR, Meena VS, Saha M, Kumar A, Aeron A (2016b) Mineral release dynamics of tricalcium phosphate and waste muscovite by mineral-solubilizing rhizobacteria isolated from indo-gangetic plain of India. Geomicrobiol J 34:454–466. https://doi.org/10.1080/01490451.2016.1219431

    Article  CAS  Google Scholar 

  • Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32

    Article  PubMed  CAS  Google Scholar 

  • Barbieri G, Albertini AM, Ferrari E, Sonenshein AL, Belitsky BR (2016) Interplay of CodY and ScoC in the regulation of major extracellular protease genes of Bacillus subtilis. J Bacteriol 198:907–920

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bendori SO, Pollak S, Hizi D, Eldar A (2015) The RapP-PhrP quorum-sensing system of Bacillus subtilis strain NCIB3610 affects biofilm formation through multiple targets, due to an atypical signal-insensitive allele of RapP. J Bacteriol 197:592–602

    Article  CAS  Google Scholar 

  • Bernhards CB, Chen Y, Toutkoushian H, Popham DL (2015) HtrC is involved in proteolysis of YpeB during germination of Bacillus anthracis and Bacillus subtilis spores. J Bacteriol 197:326–336

    Article  PubMed  CAS  Google Scholar 

  • Bloemberg GV, Lugtenberg BJJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350

    Article  PubMed  CAS  Google Scholar 

  • Broden NJ, Flury S, King AN, Schroeder BW, Coe GD, Faulkner MJ (2016) Insights into the function of a second, nonclassical Ahp peroxidase, AhpA, in oxidative stress resistance in Bacillus subtilis. J Bacteriol 198:1044–1057

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Calvo RA, Kearns DB (2015) FlgM is secreted by the flagellar export apparatus in Bacillus subtilis. J Bacteriol 197:81–91

    Article  PubMed  CAS  Google Scholar 

  • Cao Y, Zhang ZH, Ling N, Yuan YJ, Zheng XY, Shen BA, Shen QR (2011) Bacillus subtilis SQR 9 can control Fusarium wilt in cucumber by colonizing plant roots. Biol Fert Soils 47:495–506

    Article  CAS  Google Scholar 

  • Cao Y, Xu Z, Ling N, Yuan Y, Yang X, Chen L, Shen B, Shen Q (2012) Isolation and identification of lipopeptides produced by B. subtilis SQR 9 for suppressing Fusarium wilt of cucumber. Sci Hortic 135:32–39

    Article  CAS  Google Scholar 

  • Chen F, Wang M, Zheng Y, Luo JM, Yang XR, Wang XL (2010) Quantitative changes of plant defense enzymes and phytohormone in biocontrol of cucumber Fusarium wilt by Bacillus subtilisB579. World J Microbiol Biotechnol 26:675–684

    Article  CAS  Google Scholar 

  • Chen Y, Gao X, Chen Y, Qin H, Huang L, Han Q (2014) Inhibitory efficacy of endophytic Bacillus subtilis EDR4 against Sclerotinia sclerotiorum on rapeseed. Biol Control 78:67–76

    Article  CAS  Google Scholar 

  • Chowdappa P, Mohan Kumar SP, Jyothi Lakshmi M, Upreti KK (2013) Growth stimulation and induction of systemic resistance in tomato against early and late blight by Bacillus subtilis OTPB1 or Trichoderma harzianum OTPB3. Biol Control 65:109–117

    Article  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  • Das I, Pradhan M (2016) Potassium-solubilizing microorganisms and their role in enhancing soil fertility and health. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 281–291. https://doi.org/10.1007/978-81-322-2776-2_20

    Chapter  Google Scholar 

  • De Curtis F, Lima G, Vitullo D, De Cicco V (2010) Biocontrol of Rhizoctonia solani and Sclerotium rolfsii on tomato by delivering antagonistic bacteria through a drip irrigation system. Crop Prot 29(7):663–670

    Article  Google Scholar 

  • Demoz BT, Korsten L (2006) Bacillus subtilis attachment, colonization, and survival on avocado flowers and its mode of action on stem-end rot pathogens. BioControl 37:68–74

    Google Scholar 

  • Dominguez-Nunez JA, Benito B, Berrocal-Lobo M, Albanesi A (2016) Mycorrhizal fungi: role in the solubilization of potassium. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 77–98. https://doi.org/10.1007/978-81-322-2776-2_6

    Chapter  Google Scholar 

  • Dotaniya ML, Meena VD, Basak BB, Meena RS (2016) Potassium uptake by crops as well as microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 267–280. https://doi.org/10.1007/978-81-322-2776-2_19

    Chapter  Google Scholar 

  • Dunlap CA, Schisler DA, Bowman MJ, Rooney AP (2015) Genomic analysis of Bacillus subtilis OH 131.1 and co-culturing with Cryptococcus flavescens for control of Fusarium head blight. Plant Gene 2:1–9

    Article  Google Scholar 

  • Farace G, Fernandez O, Jacquens L, Coutte F, Krier F, Jacques P, Clement C, Barka EA, Jacquard C, Dorey S (2015) Cyclic lipopeptides from Bacillus subtilis activate distinct patterns of defence responses in grapevine. Mol Plant Pathol 16:177–187

    Article  PubMed  CAS  Google Scholar 

  • Gao TT, Greenwich J, Li Y, Wang Q, Chai YR (2015) The bacterial tyrosine kinase activator TkmA contributes to biofilm formation largely independently of the cognate kinase PtkA in Bacillus subtilis. J Bacteriol 197:3421–3432

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gao SF, Wu HJ, Yu XF, Qian LM, Gao XW (2016) Swarming motility plays the major role in migration during tomato root colonization by Bacillus subtilis SWR01. Biol Control 98:11–17

    Article  CAS  Google Scholar 

  • Garcia-Gutierrez L, Zeriouh H, Romero D (2013) The antagonistic strain Bacillus subtilis UMAF6639 also confers protection to melon plants against cucurbit powdery mildew by activation of jasmonate-and salicylic acid-dependent defence responses. Microbiol Biotechnol 6:264–274

    Article  CAS  Google Scholar 

  • Gardener MS, Fravel DR, Gardener MS, Fravel DR (2002) Biological control of plant pathogens: research, commercialization, and application in the USA. Plant Health Prog. https://doi.org/10.1094/PHP-2002-0510-01-RV

  • Grosch R, Dealtry S, Schreiter S, Berg G, Mendonça-Hagler L, Smalla K (2012) Biocontrol of Rhizoctonia solani: complex interaction of biocontrol strains, pathogen and indigenous microbial community in the rhizosphere of lettuce shown by molecular methods. Plant and Soil 361(1-2):343–357

    Article  CAS  Google Scholar 

  • Gutierrez-Monsalve JA, Mosquera S, González-Jaramillo LM, Mira JJ, Villegas-Escobar V (2015) Effective control of black Sigatoka disease using a microbial fungicide based on Bacillus subtilis EA-CB0015 culture. Biol Control 87:39–46

    Article  Google Scholar 

  • Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    Article  PubMed  CAS  Google Scholar 

  • Hamdache A, Lamarti A, Aleu J, Collado IG (2011) Non-peptide metabolites from the genus Bacillus. J Nat Prod 74(4):893–899

    Article  PubMed  CAS  Google Scholar 

  • Han T, You C, Zhang L, Feng C, Zhang C, Wang J, Kong F (2015) Biocontrol potential of antagonist Bacillus subtilis Tpb55 against tobacco black shank. BioControl 1–11

    Google Scholar 

  • Han T, Zhang L, Gao J, Kong F, Chao F, Jing W, Zhang C (2016) Correlation between root irrigation of Bacillus subtilis Tpb55 and variation of bacterial diversity in tobacco rhizosphere. Acta Microbiol Sin. 2016, 56(5): 835–845 (in Chinese)

    Google Scholar 

  • Hsieh FC, Li MC, Lin TC, Kao SS (2004) Rapid detection and characterization of surfactin-producing Bacillus subtilis and closely related species based on PCR. Curr Microbiol 49:186–191

    Article  PubMed  CAS  Google Scholar 

  • Hua C, Xiang X, Wang J, Wu L, Zheng Z, Yu Z (2008) Antagonistic effects of volatiles generated by Bacillus subtilis on spore germination and hyphal growth of the plant pathogen Botrytis cinerea. Biotechnol Lett 30:919–923

    Article  CAS  Google Scholar 

  • Jaiswal DK, Verma JP, Prakash S, Meena VS, Meena RS (2016) Potassium as an important plant nutrient in sustainable agriculture: a state of the art. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 21–29. https://doi.org/10.1007/978-81-322-2776-2_2

    Chapter  Google Scholar 

  • Jat LK, Singh YV, Meena SK, Meena SK, Parihar M, Jatav HS, Meena RK, Meena VS (2015) Does integrated nutrient management enhance agricultural productivity? J Pure Appl Microbiol 9(2):1211–1221

    CAS  Google Scholar 

  • Jayaraj J, Yi H, Liang GH, Muthukrishnan S, Velazhahan R (2004) Foliar application of Bacillus subtilis AUBS1 reduces sheath blight and triggers defense mechanisms in rice. J Plant Dis Protect 111:115–125

    Article  CAS  Google Scholar 

  • Jha Y, Subramanian RB (2016) Regulation of plant physiology and antioxidant enzymes for alleviating salinity stress by potassium-mobilizing bacteria. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 149–162. https://doi.org/10.1007/978-81-322-2776-2_11

    Chapter  Google Scholar 

  • Joseph B, Dhas B, Hena V, Raj J (2013) Bacteriocin from Bacillus subtilis as a novel drug against diabetic foot ulcer bacterial pathogens. Asian Pac J Trop Med 3(12):942–946

    Article  CAS  Google Scholar 

  • Ju R, Zhao Y, Li J, Jiang H, Liu P, Yang T, Bao Z, Zhou B, Zhou X, Liu X (2014) Identification and evaluation of a potential biocontrol agent, Bacillus subtilis, against Fusarium sp. in apple seedlings. Ann Microbiol 64:377–383

    Article  Google Scholar 

  • Kasahara J, Kiriyama Y, Miyashita M, Kondo T, Yamada T, Yazawa K, Yoshikawa R, Yamamoto H (2016) Teichoic acid polymers affect expression and localization of DL-endopeptidase LytE required for lateral cell wall hydrolysis in Bacillus subtilis. J Bacteriol 198:1585–1594

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kearns DB, Losick R (2003) Swarming motility in undomesticated Bacillus subtilis. Mol Microbiol 49:581–590

    Article  PubMed  CAS  Google Scholar 

  • Magdalena Köb, Wibberg D, Grosch R, Eikmeyer F, Verwaaijen B, Chowdhury SP, Hartmann A, Alfred Püh, Andreas Süt (2014) Effect of the strain Bacillus amyloliquefaciens FZB42 on the microbial community in the rhizosphere of lettuce under field conditions analyzed by whole metagenome sequencing. Front Microbiol:5

    Google Scholar 

  • Kumar N (2012) Lantibiotics a novel antimicrobial agents: a review. Pharmacol Sci Monit 3(4):2990–3009

    CAS  Google Scholar 

  • Kumar KVK, Yellareddygari SK, Reddy MS, Kloepper JW, Lawrence KS, Zhou XG, Sudini H, Groth DE, Raju SK, Miller ME (2012) Efficacy of Bacillus subtilis MBI 600 against sheath blight caused by Rhizoctonia solani and on growth and yield of rice. Rice Sci 19(1):55–63

    Article  Google Scholar 

  • Kumar A, Bahadur I, Maurya BR, Raghuwanshi R, Meena VS, Singh DK, Dixit J (2015) Does a plant growth-promoting rhizobacteria enhance agricultural sustainability? J Pure Appl Microbiol 9:715–724

    Google Scholar 

  • Kumar A, Meena R, Meena VS, Bisht JK, Pattanayak A (2016a) Towards the stress management and environmental sustainability. J Clean Prod 137:821–822

    Article  Google Scholar 

  • Kumar A, Patel JS, Bahadur I, Meena VS (2016b) The molecular mechanisms of KSMs for enhancement of crop production under organic farming. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 61–75. https://doi.org/10.1007/978-81-322-2776-2_5

    Chapter  Google Scholar 

  • Kumar A, Maurya BR, Raghuwanshi R, Meena VS, Islam MT (2017) Co-inoculation with Enterobacter and Rhizobacteria on yield and nutrient uptake by wheat (Triticum aestivum L.) in the alluvial soil under indo-gangetic plain of India. J Plant Growth Regul 36:608–617. https://doi.org/10.1007/s00344-016-9663-5

    Article  CAS  Google Scholar 

  • Kumar KVK, Yellareddygari SK, Reddy MS, Kloepper JW, Lawrence KS, Miller ME, Sudini H, Reddy ECS, Zhou XG, Groth DE (2013) Ultrastructural studies on the interaction between Bacillus subtilis MBI 600 (Integral) and the rice sheath blight pathogen, Rhizoctonia solani. Afr J Microbiol Res 7(19):2078–2086

    Article  CAS  Google Scholar 

  • Lee KJ, Kamala-Kannan S, Han SS, Seong CK, Lee GW (2008) Biological control of Phytophthora blight in red pepper (Capsicum annuum L.) using Bacillus subtilis. World J Microb Biotechnol 24:1139–1145

    Article  CAS  Google Scholar 

  • Lee SW, Lee SH, Balaraju K, Park KS, Nam KW, Park JW, Park K (2014) Growth promotion and induced disease suppression of four vegetable crops by a selected plant growth-promoting rhizobacteria (PGPR) strain Bacillus subtilis 21-1 under two different soil conditions. Acta Physiol Plant 36:1353–1362

    Article  CAS  Google Scholar 

  • Li SM, Hua GG, Liu HX, Guo JH (2008) Analysis of defence enzymes induced by antagonistic bacterium Bacillus subtilis strain AR12 towards Ralstonia solanacearum in tomato. Ann Microbiol 58:573–578

    Article  CAS  Google Scholar 

  • Li S, Zhang N, Zhang Z, Luo J, Shen B, Zhang R, Shen Q (2013) Antagonist Bacillus subtilis HJ5 controls Verticillium wilt of cotton by root colonization and biofilm formation. Biol Fertil Soils 49:295–303

    Article  Google Scholar 

  • Li L, Ma J, Ibekwe M, Wang Q, Yang C (2016) Cucumber rhizosphere microbial community response to biocontrol agent Bacillus subtilis B068150. Agriculture 6(1):2. https://doi.org/10.3390/agriculture6010002

    Article  CAS  Google Scholar 

  • Lian LL, Xie LY, Zheng LP, Lin QY (2011) Induction of systemic resistance in tobacco against Tobacco mosaic virus by Bacillus spp. Biocontrol Sci Technol 21:281–292

    Article  Google Scholar 

  • Liu B, Qiao H, Huang L, Buchenauer H, Han Q, Kang Z, Gong Y (2009) Biological control of take-all in wheat by endophytic Bacillus subtilis E1R-j and potential mode of action. Biol Control 49:277–285

    Article  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  PubMed  CAS  Google Scholar 

  • Luo C, Zhou H, Zou J, Wang X, Zhang R, Xiang Y, Chen Z (2015) Bacillomycin L and surfactin contribute synergistically to the phenotypic features of Bacillus subtilis 916 and the biocontrol of rice sheath blight induced by Rhizoctonia solani. Appl Microbiol Biotechnol 99(4):1897–1910

    Article  PubMed  CAS  Google Scholar 

  • Maget-Dana R, Peypoux F (1994) Iturins, a special class of spore-forming lipopeptides: biological and physicochemical properties. Toxicology 87(1–3):151–174

    Article  PubMed  CAS  Google Scholar 

  • Masood S, Bano A (2016) Mechanism of potassium solubilization in the agricultural soils by the help of soil microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 137–147. https://doi.org/10.1007/978-81-322-2776-2_10

    Chapter  Google Scholar 

  • Matos A, Kerkhof L, Garland JL (2005) Effects of microbial community diversity on the survival of Pseudomonas aeruginosa in the wheat rhizosphere. Microb Ecol 49(2):257–264

    Article  PubMed  CAS  Google Scholar 

  • Maurya BR, Meena VS, Meena OP (2014) Influence of Inceptisol and Alfisol’s potassium solubilizing bacteria (KSB) isolates on release of K from waste mica. Vegetos 27:181–187

    Google Scholar 

  • Meena KR, Kanwar SS (2015) Lipopeptides as the antifungal and antibacterial agents: applications in food safety and therapeutics. Biomed Res Int 2015:473050. https://doi.org/10.1155/2015/473050

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meena OP, Maurya BR, Meena VS (2013a) Influence of K-solubilizing bacteria on release of potassium from waste mica. Agric Sust Dev 1:53–56

    Google Scholar 

  • Meena VS, Maurya BR, Bohra JS, Verma R, Meena MD (2013b) Effect of concentrate manure and nutrient levels on enzymatic activities and microbial population under submerged rice in alluvium soil of Varanasi. Crop Res 45(1,2 & 3):6–12

    Google Scholar 

  • Meena VS, Maurya BR, Verma R, Meena RS, Jatav GK, Meena SK, Meena SK (2013c) Soil microbial population and selected enzyme activities as influenced by concentrate manure and inorganic fertilizer in alluvium soil of Varanasi. Bioscan 8(3):931–935

    CAS  Google Scholar 

  • Meena VS, Maurya BR, Bahadur I (2014a) Potassium solubilization by bacterial strain in waste mica. Bang J Bot 43:235–237

    Google Scholar 

  • Meena VS, Maurya BR, Verma JP (2014b) Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol Res 169:337–347

    Article  PubMed  CAS  Google Scholar 

  • Meena RS, Meena VS, Meena SK, Verma JP (2015a) The needs of healthy soils for a healthy world. J Clean Prod 102:560–561

    Article  Google Scholar 

  • Meena RS, Meena VS, Meena SK, Verma JP (2015b) Towards the plant stress mitigate the agricultural productivity: a book review. J Clean Prod 102:552–553

    Article  Google Scholar 

  • Meena VS, Maurya BR, Meena RS (2015c) Residual impact of wellgrow formulation and NPK on growth and yield of wheat (Triticum aestivum L.) Bangladesh J Bot 44(1):143–146

    Article  Google Scholar 

  • Meena VS, Maurya BR, Verma JP, Aeron A, Kumar A, Kim K, Bajpai VK (2015d) Potassium solubilizing rhizobacteria (KSR): isolation, identification, and K-release dynamics from waste mica. Ecol Eng 81:340–347

    Article  Google Scholar 

  • Meena VS, Meena SK, Verma JP, Meena RS, Ghosh BN (2015e) The needs of nutrient use efficiency for sustainable agriculture. J Clean Prod 102:562–563. https://doi.org/10.1016/j.jclepro.2015.04.044

    Article  Google Scholar 

  • Meena VS, Verma JP, Meena SK (2015f) Towards the current scenario of nutrient use efficiency in crop species. J Clean Prod 102:556–557. https://doi.org/10.1016/j.jclepro.2015.04.030

    Article  Google Scholar 

  • Meena RK, Singh RK, Singh NP, Meena SK, Meena VS (2016a) Isolation of low temperature surviving plant growth-promoting rhizobacteria (PGPR) from pea (Pisum sativum L.) and documentation of their plant growth promoting traits. Biocatalysis Agric Biotechnol 4:806–811

    Google Scholar 

  • Meena RS, Bohra JS, Singh SP, Meena VS, Verma JP, Verma SK, Sihag SK (2016b) Towards the prime response of manure to enhance nutrient use efficiency and soil sustainability a current need: a book review. J Clean Prod 112(1):1258–1260

    Article  Google Scholar 

  • Meena SK, Rakshit A, Meena VS (2016c) Effect of seed bio-priming and N doses under varied soil type on nitrogen use efficiency (NUE) of wheat (Triticum aestivum L.) under greenhouse conditions. Biocatal Agric Biotechnol 6:68–75

    Google Scholar 

  • Meena VS, Bahadur I, Maurya BR, Kumar A, Meena RK, Meena SK, Verma JP (2016d) Potassium-solubilizing microorganism in evergreen agriculture: an overview. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 1–20. https://doi.org/10.1007/978-81-322-2776-2_1

    Chapter  Google Scholar 

  • Meena VS, Meena SK, Bisht JK, Pattanayak A (2016e) Conservation agricultural practices in sustainable food production. J Clean Prod 137:690–691

    Article  Google Scholar 

  • Meena VS, Maurya BR, Meena SK, Meena RK, Kumar A, Verma JP, Singh NP (2017) Can Bacillus species enhance nutrient availability in agricultural soils? In: Islam MT, Rahman M, Pandey P, Jha CK, Aeron A (eds) Bacilli and agrobiotechnology. Springer International Publishing, Cham, pp 367–395. https://doi.org/10.1007/978-3-319-44409-3_16

    Chapter  Google Scholar 

  • Mercado-Flores Y, Cardenas-Alvarez IO, Rojas-Olvera AV, Perez-Camarillo JP, Leyva-Mir SG, Anducho-Reyes MA (2014) Application of Bacillus subtilis in the biological control of the phytopathogenic fungus Sporisorium reilianum. Biol Control 76:36–40

    Article  Google Scholar 

  • Mnif I, Ghribi D (2015) Review lipopeptides biosurfactants: mean classes and new insights for industrial, biomedical, and environmental applications. J Pept Sci 104(3):129–147

    Article  CAS  Google Scholar 

  • Mnif I, Hammami I, Triki MA, Azabou MC, Ellouze-Chaabouni S, Ghribi D (2015) Antifungal efficiency of a lipopeptide biosurfactant derived from Bacillus subtilis SPB1 versus the phytopathogenic fungus, Fusarium solani. Environ Sci Pollut R 22:18137–18147

    Article  CAS  Google Scholar 

  • Mora I, Cabrefiga J, Montesinos E (2011) Antimicrobial peptide genes in Bacillus strains from plant environments. Int Microbiol 14:213–223

    PubMed  CAS  Google Scholar 

  • Muller S, Strack SN, Hoefler BC, Straight PD, Kearns DB, Kirby JR (2014) Bacillaene and sporulation protect Bacillus subtilis from predation by Myxococcus xanthus. Appl Environ Microb 80:5603–5610

    Article  CAS  Google Scholar 

  • Novikova II, Shenin YD (2011) Isolation, identification, and antifungal activity of a gamair complex formed by Bacillus subtilis M-22, a producer of a biopreparation for plant protection from mycoses and bacterioses. Appl Biochem Microbiol 47:817–826

    Article  CAS  Google Scholar 

  • Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16(3):115–125

    Article  PubMed  CAS  Google Scholar 

  • Parashar V, Konkol MA, Kearns DB, Neiditch MB (2013) A plasmid-encoded phosphatase regulates Bacillus subtilis biofilm architecture, sporulation, and genetic competence. J Bacteriol 195:2437–2448

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parewa HP, Yadav J, Rakshit A, Meena VS, Karthikeyan N (2014) Plant growth promoting rhizobacteria enhance growth and nutrient uptake of crops. Agric Sustain Dev 2(2):101–116

    Google Scholar 

  • Prakash S, Verma JP (2016) Global perspective of potash for fertilizer production. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 327–331. https://doi.org/10.1007/978-81-322-2776-2_23

    Chapter  Google Scholar 

  • Priyadharsini P, Muthukumar T (2016) Interactions between arbuscular mycorrhizal fungi and potassium-solubilizing microorganisms on agricultural productivity. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 111–125. https://doi.org/10.1007/978-81-322-2776-2_8

    Chapter  Google Scholar 

  • Raghavendra MP, Nayaka NC, Nuthan BR (2016) Role of rhizosphere microflora in potassium solubilization. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 43–59. https://doi.org/10.1007/978-81-322-2776-2_4

    Chapter  Google Scholar 

  • Ramarathnam R, Bo S, Chen Y, Fernando WGD, Gao XW, de Kievit T (2007) Molecular and biochemical detection of fengycin- and bacillomycin D-producing Bacillus spp., antagonistic to fungal pathogens of canola and wheat. Can J Microbiol 53:901–911

    Article  PubMed  CAS  Google Scholar 

  • Rawat J, Sanwal P, Saxena J (2016) Potassium and its role in sustainable agriculture. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 235–253. https://doi.org/10.1007/978-81-322-2776-2_17

    Chapter  Google Scholar 

  • Reddy PP (2014) Plant growth promoting Rhizobacteria for horticultural crop protection. Springer India

    Google Scholar 

  • Roesti D, Ineichen K, Braissant O, Redecker D, Wiemken A, Aragno M (2005) Bacteria associated with spores of arbuscular mycorrhizal fungi Glomus geosporum and Glomus constrictum. Appl Environ Microbiol 71:6673–6679

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rudrappa T, Biedrzycki ML, Bais HP (2008) Causes and consequences of plant-associated biofilms. Fems Micro Ecol 64(2):153–166

    Article  CAS  Google Scholar 

  • Ryu CM, Murphy JF, Reddy MS, Kloepper JW (2007) A two-strain mixture of rhizobacteria elicits induction of systemic resistance against Pseudomonas syringae and cucumber mosaic virus coupled to promotion of plant growth on Arabidopsis thaliana. J Microbiol Biotechnol 17:280–286

    PubMed  CAS  Google Scholar 

  • Saha M, Maurya BR, Bahadur I, Kumar A, Meena VS (2016a) Can potassium-solubilising bacteria mitigate the potassium problems in India? In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 127–136. https://doi.org/10.1007/978-81-322-2776-2_9

    Chapter  Google Scholar 

  • Saha M, Maurya BR, Meena VS, Bahadur I, Kumar A (2016b) Identification and characterization of potassium solubilizing bacteria (KSB) from indo-gangetic plains of India. Biocatal Agric Biotechnol 7:202–209

    Google Scholar 

  • Sanchez-Vizuete P, Le Coq D, Bridier A, Herry JM, Aymerich S, Briandet R (2015) Identification of ypqP as a new Bacillus subtilis biofilm determinant that mediates the protection of Staphylococcus aureus against antimicrobial agents in mixed-species communities. Appl Environ Microb 81:109–118

    Article  CAS  Google Scholar 

  • Sang MK, Kim KD (2012) Plant growth-promoting rhizobacteria suppressive to Phytophthora blight affect microbial activities and communities in the rhizo-sphere of pepper (Capsicum annuum L.) in the field. Appl Soil Ecol 62:88–97

    Article  Google Scholar 

  • Senol M, Nadaroglu H, Dikbas N, Kotan R (2014) Purification of Chitinase enzymes from Bacillus subtilis bacteria TV-125, investigation of kinetic properties and antifungal activity against Fusarium culmorum. Ann Clin Microbiol Antimicrob 13:1–7

    Article  CAS  Google Scholar 

  • Sharma A, Shankhdhar D, Shankhdhar SC (2016) Potassium-solubilizing microorganisms: mechanism and their role in potassium solubilization and uptake. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 203–219. https://doi.org/10.1007/978-81-322-2776-2_15

    Chapter  Google Scholar 

  • Shrivastava M, Srivastava PC, D’Souza SF (2016) KSM soil diversity and mineral solubilization, in relation to crop production and molecular mechanism. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 221–234. https://doi.org/10.1007/978-81-322-2776-2_16

    Chapter  Google Scholar 

  • Sindhu SS, Parmar P, Phour M, Sehrawat A (2016) Potassium-solubilizing microorganisms (KSMs) and its effect on plant growth improvement. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 171–185. https://doi.org/10.1007/978-81-322-2776-2_13

    Chapter  Google Scholar 

  • Singh N, Pandey P, Dubey RC, Maheshwari DK (2008) Biological control of root rot fungus Macrophomina phaseolina and growth enhancement of Pinus roxburghii (Sarg.) by rhizosphere competent Bacillus subtilis BN1. World J Microb Biotechnol 24:1669–1679

    Article  Google Scholar 

  • Singh NP, Singh RK, Meena VS, Meena RK (2015) Can we use maize (Zea mays) rhizobacteria as plant growth promoter? Vegetos 28(1):86–99. https://doi.org/10.5958/2229-4473.2015.00012.9

    Article  Google Scholar 

  • Singh M, Dotaniya ML, Mishra A, Dotaniya CK, Regar KL, Lata M (2016) Role of biofertilizers in conservation agriculture. In: Bisht JK, Meena VS, Mishra PK, Pattanayak A (eds) Conservation agriculture: an approach to combat climate change in Indian Himalaya. Springer Singapore, Singapore, pp 113–134. https://doi.org/10.1007/978-981-10-2558-7_4

    Chapter  Google Scholar 

  • Tan S, Jiang Y, Song S, Huang J, Ling N, Xu Y, Shen Q (2013) Two Bacillus amyloliquefaciens strains isolated using the competitive tomato root enrichment method and their effects on suppressing Ralstonia solanacearum and promoting tomato plant growth. Crop Prot 43:134–140

    Article  Google Scholar 

  • Tang Q, Bie X, Lu Z, Lv F, Yang T, Qu X (2014) Effects of Fengycin from Bacillus subtilis fmbJ on apoptosis and necrosis in Rhizopus stolonifer. J Microbiol 52:675–680

    Article  PubMed  CAS  Google Scholar 

  • Teotia P, Kumar V, Kumar M, Shrivastava N, Varma A (2016) Rhizosphere microbes: potassium solubilization and crop productivity-present and future aspects. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 315–325. https://doi.org/10.1007/978-81-322-2776-2_22

    Chapter  Google Scholar 

  • Trabelsi D, Mhamdi R (2013) Microbial inoculants and their impact on soil microbial communities: a review. Biomed Res Int 2013:863240

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsuge K, Inoue S, Ano T, Itaya M, Shoda M (2005) Horizontal transfer of iturin A operon, itu, to Bacillus subtilis 168 and conversion into an iturin A producer. Antimicrob Agents Chemother 49:4641–4648

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Dijl JM, Hecker M (2013) Bacillus subtilis: from soil bacterium to super-secreting cell factory. Microb Cell Factories 12:3

    Article  CAS  Google Scholar 

  • Van Gestel J, Vlamakis H, Kolter R (2015) New tools for comparing microscopy images: quantitative analysis of cell types in Bacillus subtilis. J Bacteriol 197:699–709

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Velazquez E, Silva LR, Ramírez-Bahena MH, Peix A (2016) Diversity of potassium-solubilizing microorganisms and their interactions with plants. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 99–110. https://doi.org/10.1007/978-81-322-2776-2_7

    Chapter  Google Scholar 

  • Verma R, Maurya BR, Meena VS (2014) Integrated effect of bio-organics with chemical fertilizer on growth, yield and quality of cabbage (Brassica oleracea var capitata). Indian J Agric Sci 84(8):914–919

    CAS  Google Scholar 

  • Verma JP, Jaiswa DK, Meena VS, Meena RS (2015a) Current need of organic farming for enhancing sustainable agriculture. J Clean Prod 102:545–547

    Article  Google Scholar 

  • Verma JP, Jaiswal DK, Meena VS, Kumar A, Meena RS (2015b) Issues and challenges about sustainable agriculture production for management of natural resources to sustain soil fertility and health. J Clean Prod 107:793–794

    Article  Google Scholar 

  • Vijay KKK, Kr YS, M SR JWK, K SL MEM, Sudini H, Surendranatha REC, Zhou XG, Groth DE (2013) Ultrastructural studies on the interaction between Bacillus subtilis MBI 600 (Integral) and the rice sheath blight pathogen, Rhizoctonia solani. Afr J Microbiol Res 7:2078–2086

    Article  CAS  Google Scholar 

  • Vlamakis H, Chai Y, Beauregard P, Losick R, Kolter R (2013) Sticking together: building a biofilm the Bacillus subtilis way. Nature Reviews. Microbiology 11(3):157–168

    PubMed  CAS  Google Scholar 

  • Wang S, Wu H, Zhan J, Xia Y, Gao S, Wang W, Xue P, Gao X (2011) The role of synergistic action and molecular mechanism in the effect of genetically engineered strain Bacillus subtilis OKBHF in enhancing tomato growth and Cucumber mosaic virus resistance. BioControl 56(1):113–121

    Article  CAS  Google Scholar 

  • Wang T, Liang Y, Wu MB, Chen ZJ, Yang LR (2015) Natural products from Bacillus subtilis with antimicrobial properties. Chin J Chem Eng 23(4):744–754

    Article  CAS  Google Scholar 

  • Weller DM, Raaijmakers JM, Gardener BBM, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309

    Article  PubMed  CAS  Google Scholar 

  • Williams-Wagner RN, Grundy FJ, Raina M, Ibba M, Henkin TM (2015) The Bacillus subtilis tyrZ gene encodes a highly selective Tyrosyl-tRNA synthetase and is regulated by a MarR regulator and T box riboswitch. J Bacteriol 197:1624–1631

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wulff BB, Horvath DM, Ward ER (2011) Improving immunity in crops: new tactics in an old game. Curr Opin Plant Biol 14(4):468–476

    Article  PubMed  CAS  Google Scholar 

  • Yadav BK, Sidhu AS (2016) Dynamics of potassium and their bioavailability for plant nutrition. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 187–201. https://doi.org/10.1007/978-81-322-2776-2_14

    Chapter  Google Scholar 

  • Yánez-Mendizábal V, Zeriouh H, Viñas I, Torres R, Usall J, Vicente AD, Pérez-García A, Teixidó N (2012) Biological control of peach brown rot (Monilinia spp.) by Bacillus subtilis CPA-8 is based on production of fengycin-like lipopeptides. Eur J Plant Patholol 132:609–619

    Article  CAS  Google Scholar 

  • Yang CY, Ho YC, Pang JC, Huang SS, Tschen JSM (2009) Cloning and expression of an antifungal chitinase gene of a novel Bacillus subtilis isolate from Taiwan potato field. Bioresour Technol 100:1454–1458

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Quan X, Xue B, Goodwin PH, Lu S, Wang J, Du W, Wu C (2015) Isolation and identification of Bacillus subtilis strain YB-05 and its antifungal substances showing antagonism against Gaeumannomyces graminis var. tritici. Biol Control 85:52–58

    Article  CAS  Google Scholar 

  • Yasin M, Munir I, Faisal M (2016) Can Bacillus spp. enhance K+ uptake in crop species. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 163–170. https://doi.org/10.1007/978-81-322-2776-2_12

    Chapter  Google Scholar 

  • Ye YF, Li QQ, Fu G, Yuan GQ, Miao JH, Lin W (2012) Identification of antifungal substance (Iturin A_2) produced by Bacillus subtilis B47 and its effect on southern corn leaf blight. J Integr Agric 11:90–99

    Article  CAS  Google Scholar 

  • You C, Zhang C, Kong F, Feng C, Wang J (2016) Comparison of the effects of biocontrol agent Bacillus subtilis and fungicide metalaxyl–mancozeb on bacterial communities in tobacco rhizospheric soil. Ecol Eng 91:119–125

    Article  Google Scholar 

  • Yu X, Ai C, Xin L, Zhou G (2011) The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. Eur J Soil Biol 47(2):138–145

    Article  Google Scholar 

  • Zahedi H (2016) Growth-promoting effect of potassium-solubilizing microorganisms on some crop species. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 31–42. https://doi.org/10.1007/978-81-322-2776-2_3

    Chapter  Google Scholar 

  • Zeriouh H, de Vicente A, Pérez-García A, Romero D (2014) Surfactin triggers biofilm formation of Bacillus subtilis in melon phylloplane and contributes to the biocontrol activity. Environ Microbiol 16:2196–2211

    Article  PubMed  CAS  Google Scholar 

  • Zhang N, Wu K, He X, Li S, Zhang Z, Shen B, Yang X, Zhang R, Huang Q, Shen Q (2011) A new bioorganic fertilizer can effectively control banana wilt by strong colonization with Bacillus subtilis N11. Plant Soil 344:87–97

    Article  CAS  Google Scholar 

  • Zhang N, He X, Zhang J, Raza W, Yang X, Ruan Y, Shen Q, Huang Q (2014) Suppression of Fusarium wilt of banana with application of bio-organic fertilizers. Pedosphere 24(5):613–624

    Article  CAS  Google Scholar 

  • Zhao Q, Ran W, Wang H, Li X, Shen Q, Shen S, Xu Y (2013) Biocontrol of Fusarium wilt disease in muskmelon with Bacillus subtilis Y-IVI. BioControl 58:283–292

    Article  Google Scholar 

  • Zhao Q, Shen Q, Ran W, Xiao T, Xu D, Xu Y (2011) Inoculation of soil by Bacillus subtilis Y-IVI improves plant growth and colonization of the rhizosphere and interior tissues of muskmelon (Cucumis melo L.) Biol Fertil Soils 47(5):507–514

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Shi-En Lu for the critical review on this manuscript. This study was conducted at Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. S. Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, X.Q., Zhao, D.L., Shen, L.L., Jing, C.L., Zhang, C.S. (2018). Application and Mechanisms of Bacillus subtilis in Biological Control of Plant Disease. In: Meena, V. (eds) Role of Rhizospheric Microbes in Soil. Springer, Singapore. https://doi.org/10.1007/978-981-10-8402-7_9

Download citation

Publish with us

Policies and ethics