Skip to main content

Molecular Mapping of Quantitative Trait Loci in Tomato

  • Chapter
  • First Online:
The Tomato Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

A major objective in modern biology is deciphering the genetic and molecular bases of natural phenotypic variation. Over the past three decades, the tomato clade (Solanum sect. Lycopersicon) has been a model system not only for the identification and positional cloning of quantitative trait loci (QTL), but also for the development of new molecular breeding strategies aimed at a more efficient exploration and exploitation of the rich biodiversity stored in wild germplasm for hundreds of biologically and agronomically relevant quantitative traits. The numerous QTL mapping studies conducted so far have resulted in the detection of several thousands of QTL. Despite this wealth of genetic information, the molecular bases have been revealed for only a handful of major QTL. The release of the tomato genome sequences, along with the rapid development of cost-effective next-generation sequencing (NGS) technologies, new mapping resources, and the evergrowing ‘‘omic’’ platforms, are holding the promise to reverse this trend. This deluge of genomic resources are undoubtedly reshaping QTL analyses also in this crop, allowing a reexamination of the variation and inheritance of complex traits at the intraspecific level, increasing the spectrum of potentially valuable alleles available for breeding. In this framework, precision phenotyping, advanced bioinformatics tools, as well as public phenotype “warehousing” databases are foreseen as the necessary tools to boost our understanding of the genetic and molecular architecture of quantitative traits, and to guarantee sustainable crop improvements in the face of an evergrowing human population and changing climates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AB:

Advanced backcross

AM:

Association mapping

BC:

Backcross

BIL:

Backcross inbred line

cM:

CentiMorgans

COSII:

Conserverd ortholog set II

GWAS:

Genome-wide Association Studies

IL:

Introgression line

ILH:

Introgression line hybrid

LD:

Linkage disequilibrium

MAF:

Minor frequency slleles

MAS:

Marker-assisted selection

MLMM:

Multilocus mixed model

NGS:

Next-generation sequencing

NIL:

Near isogenic line

PCR:

Polymerase chain reaction

QTL:

Quantitative trait loci

QTN:

Quantitative trait nucleotide

RFLP:

Restriction fragment length polymorphism

RIL:

Recombinant inbred line

RNAi:

RNA interference

RS:

Reproductive stage

SG:

Seed germination

SGe:

Selective genotyping

SGN:

SOL genomics network

SNP:

Single nucleotide polymorphism

References

  • Aflitos S, Schijlen E, Jong H et al (2014) Exploring genetic variation in the tomato (Solanum section Lycopersicon) clade by whole-genome sequencing. Plant J 80(1):136–148

    Article  PubMed  Google Scholar 

  • Agrama HA, Scott JW (2006) Quantitative trait loci for Tomato yellow leaf curl virus and Tomato mottle virus resistance in tomato. J Am Soc Hort Sci 131(2):637–645

    Google Scholar 

  • Almeida J, Quadrana L, Asís R et al (2011) Genetic dissection of vitamin E biosynthesis in tomato. J Exp Bot 62(11):3781–3798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alpert K, Tanksley S (1996) High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2: a major fruit weight quantitative trait locus in tomato. Proc Natl Acad Sci USA 93:15503–15507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alpert K, Grandillo S, Tanksley SD (1995) fw2.2: a major QTL controlling fruit weight is common to both red- and green-fruited tomato species. Theor Appl Genet 91:994–1000

    CAS  PubMed  Google Scholar 

  • Alseekh S, Ofner I, Pleban T et al (2013) Resolution by recombination: breaking up Solanum pennellii introgressions. Trends Plant Sci 18(10):536–538

    Article  CAS  PubMed  Google Scholar 

  • Anbinder I, Reuveni M, Azari R et al (2009) Molecular dissection of Tomato leaf curl virus resistance in tomato line TY172 derived from Solanum peruvianum. Theor Appl Genet 119(3):519–530

    Article  PubMed  Google Scholar 

  • Arikita FN, Azevedo MS, Scotton DC et al (2013) Novel natural genetic variation controlling the competence to form adventitious roots and shoots from the tomato wild relative Solanum pennellii. Plant Sci 199–200:121–130

    Article  PubMed  CAS  Google Scholar 

  • Ashrafi H, Kinkade MP, Merk H et al (2012) Identification of novel quantitative trait loci for increased lycopene content and other fruit quality traits in a tomato recombinant inbred line population. Mol Breed 30(1):549–567

    Article  CAS  Google Scholar 

  • Asins MJ, Bolarín MC, Pérez-Alfocea F et al (2010) Genetic analysis of physiological components of salt tolerance conferred by Solanum rootstocks. What is the rootstock doing for the scion? Theor Appl Genet 121(1):105–115

    Article  CAS  PubMed  Google Scholar 

  • Asins MJ, Villalta I, Aly MM et al (2013) Two closely linked tomato HKT coding genes are positional candidates for the major tomato QTL involved in Na+/K+ homeostasis. Plant, Cell Environ 36(6):1171–1191

    Article  CAS  PubMed  Google Scholar 

  • Aurand R, Faurobert M, Page D et al (2012) Anatomical and biochemical trait network underlying genetic variations in tomato fruit texture. Euphytica 187(1):99–116

    Article  CAS  Google Scholar 

  • Azanza F, Young TE, Kim D et al (1994) Characterization of the effect of introgressed segments of chromosome 7 and 10 from Lycopersicon chmielewskii on tomato soluble solids, pH, and yield. Theor Appl Genet 87:965–972

    Article  CAS  PubMed  Google Scholar 

  • Bai YL, Lindhout P (2007) Domestication and breeding of tomatoes: what have we gained and what can we gain in the future? Ann Bot 100:1085–1094

    Article  PubMed  PubMed Central  Google Scholar 

  • Bai Y, Huang CC, van der Hulst R et al (2003) QTLs for tomato powdery mildew resistance (Oidium lycopersici) in Lycopersicon parviflorum G1.1601 co-localize with two qualitative powdery mildew resistance genes. Mol Plant Microbe Interact 16:169–176

    Article  CAS  PubMed  Google Scholar 

  • Barrantes W, Fernández-del-Carmen A, López-Casado G et al (2014) Highly efficient genomics-assisted development of a library of introgression lines of Solanum pimpinellifolium. Mol Breed 34:1817–1831

    Google Scholar 

  • Barrero LS, Tanksley SD (2004) Evaluating the genetic basis of multiple-locule fruit in a broad cross section of tomato cultivars. Theor Appl Genet 109:669–679

    Article  CAS  PubMed  Google Scholar 

  • Barrero LS, Cong B, Wu F et al (2006) Developmental characterization of the fasciated locus and mapping of Arabidopsis candidate genes involved in the control of floral meristem size and carpel number in tomato. Genome 49(8):991–1006

    Article  CAS  PubMed  Google Scholar 

  • Baxter CJ, Sabar M, Quick WP et al (2005) Comparison of changes in fruit gene expression in tomato introgression lines provides evidence of genome-wide transcriptional changes and reveals links to mapped QTLs and described traits. J Exp Bot 56:1591–1604

    Article  CAS  PubMed  Google Scholar 

  • Bedinger PA, Chetelat RT, McClure B et al (2011) Interspecific reproductive barriers in the tomato clade: opportunities to decipher mechanisms of reproductive isolation. Sex Plant Reprod 24(3):171–187

    Article  PubMed  Google Scholar 

  • Bernacchi D, Tanksley SD (1997) An interspecific backcross of Lycopersicon esculentum × L. hirsutum: linkage analysis and a QTL study of sexual compatibility factors and floral traits. Genetics 147:861–877

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bernacchi D, Beck-Bunn T, Eshed Y et al (1998a) Advanced backcross QTL analysis in tomato. I. Identification of QTLs for traits of agronomic importance from Lycopersicon hirsutum. Theor Appl Genet 97:381–397

    Article  CAS  Google Scholar 

  • Bernacchi D, Beck-Bunn T, Emmatty D et al (1998b) Advanced backcross QTL analysis of tomato. II. Evaluation of near-isogenic lines carrying single-donor introgressions for desirable wild QTL-alleles derived from Lycopersicon hirsutum and L. pimpinellifolium. Theor Appl Genet 97:170–180 and 1191–1196

    Google Scholar 

  • Bernatzky R, Tanksley S (1986) Toward a saturated linkage map in tomato based on isozymes and random cDNA sequences. Genetics 112:887–898

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bertin N, Borel C, Brunel B et al (2003) Do genetic make-up and growth manipulation affect tomato fruit size by cell number, or cell size and DNA endoreduplication? Ann Bot 92(3):415–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertin N, Causse M, Brunel B et al (2009) Identification of growth processes involved in QTLs for tomato fruit size and composition. J Exp Bot 60(1):237–248

    Article  CAS  PubMed  Google Scholar 

  • Blanca J, Cañizares J, Cordero L et al (2012) Variation revealed by SNP genotyping and morphology provides insight into the origin of the tomato. PLoS ONE 7:e48198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blauth SL, Churchill GA, Mutschler MA (1998) Identification of quantitative trait loci associated with acylsugar accumulation using intraspecific populations of the wild tomato, Lycopersicon pennellii. Theor Appl Genet 96:458–467

    Article  CAS  PubMed  Google Scholar 

  • Blauth SL, Steffens JC, Churchill GA et al (1999) Identification of QTLs controlling acylsugar fatty acid composition in an intraspecific population of Lycopersicon pennellii (Corr.) D’Arcy. Theor Appl Genet 99:373–381

    Article  Google Scholar 

  • Bolger A, Scossa F, Bolger ME et al (2014) The genome of the stress-tolerant wild tomato species Solanum pennellii. Nat Genet 46(9):1034–1039

    Google Scholar 

  • Botstein D, White RL, Skolnick M et al (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphism. Am J Hum Genet 32:314–331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bretó MP, Asins MJ, Carbonell EA (1994) Salt tolerance in Lycopersicon species. III. Detection of quantitative trait loci by means of molecular markers. Theor Appl Genet 88:395–401

    Article  PubMed  Google Scholar 

  • Brewer MT, Lang L, Fujimura K et al (2006) Development of a controlled vocabulary and software application to analyze fruit shape variation in tomato and other plant species. Plant Physiol 141:15–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brewer MT, Moyseenko JB, Monforte AJ et al (2007) Morphological variation in tomato fruit: a comprehensive analysis and identification of loci controlling fruit shape and development. J Exp Bot 58:1339–1349

    Article  CAS  PubMed  Google Scholar 

  • Brouwer DJ, St. Clair DA (2004) Fine mapping of three quantitative trait loci for late blight resistance in tomato using near isogenic lines (NILs) and sub-NILs. Theor Appl Genet 108:628–638

    Article  CAS  PubMed  Google Scholar 

  • Brouwer DJ, Jones ES, St. Clair DA (2004) QTL analysis of quantitative resistance to Phytophthora infestans (late blight) in tomato and comparison with potato. Genome 47:475–492

    Article  CAS  PubMed  Google Scholar 

  • Canady MA, Meglic V, Chetelat RT (2005) A library of Solanum lycopersicoides introgression lines in cultivated tomato. Genome 48:685–697

    Article  CAS  PubMed  Google Scholar 

  • Carmeille A, Caranta EC, Dintinger EJ et al (2006) Identification of QTLs for Ralstonia solanacearum race 3-phylotype II resistance in tomato. Theor Appl Genet 114:110–121

    Article  CAS  Google Scholar 

  • Causse M, Saliba-Colombani V, Lesschaeve I et al (2001) Genetic analysis of organoleptic quality in fresh market tomato. 2. Mapping QTLs for sensory attributes. Theor Appl Genet 102:273–283

    Article  CAS  Google Scholar 

  • Causse M, Saliba-Colombani V, Lecomte L et al (2002) QTL analysis of fruit quality in fresh market tomato: a few chromosome regions control the variation of sensory and instrumental traits. J Exp Bot 53:2089–2098

    Article  CAS  PubMed  Google Scholar 

  • Causse M, Duffe P, Gomez MC et al (2004) A genetic map of candidate genes and QTLs involved in tomato fruit size and composition. J Exp Bot 55:1671–1685

    Article  CAS  PubMed  Google Scholar 

  • Causse M, Chaïb J, Lecomte L et al (2007) Both additivity and epistasis control the genetic variation for fruit quality traits in tomato. Theor Appl Genet 115(3):429–442

    Article  CAS  PubMed  Google Scholar 

  • Causse M, Desplat N, Pascual L et al (2013) Whole genome resequencing in tomato reveals variation associated with introgression and breeding events. BMC Genom 14:791. doi:10.1186/1471-2164-14-791

    Article  CAS  Google Scholar 

  • Cavanagh C, Morell M, Mackay I et al (2008) From mutations to MAGIC: resources for gene discovery, validation and delivery in crop plants. Curr Opin Plant Biol 11:215–221

    Article  PubMed  CAS  Google Scholar 

  • Chaerani R, Smulders MJ, van der Linden CG et al (2007) QTL identification for early blight resistance (Alternaria solani) in a Solanum lycopersicum x S. arcanum cross. Theor Appl Genet 114(3):439–450

    Article  CAS  PubMed  Google Scholar 

  • Chagué V, Mercier JC, Guénard M et al (1997) Identification of RAPD markers linked to a locus involved in quantitative resistance to TYLCV in tomato by bulked segregant analysis. Theor Appl Genet 95:671–677

    Article  Google Scholar 

  • Chaïb J, Lecomte L, Buret M et al (2006) Stability over genetic backgrounds, generations and years of quantitative trait locus (QTLs) for organoleptic quality in tomato. Theor Appl Genet 112:934–944

    Article  PubMed  Google Scholar 

  • Chaïb J, Devaux MF, Grotte MG et al (2007) Physiological relationships among physical, sensory, and morphological attributes of texture in tomato fruits. J Exp Bot 58(8):1915–1925

    Article  PubMed  CAS  Google Scholar 

  • Chakrabarti M, Zhang N, Sauvage C et al (2013) A cytochrome P450 regulates a domestication trait in cultivated tomato. Proc Natl Acad Sci USA 10(42):17125–17130

    Article  CAS  Google Scholar 

  • Chapman NH, Bonnet J, Grivet L et al (2012) High-resolution mapping of a fruit firmness-related quantitative trait locus in tomato reveals epistatic interactions associated with a complex combinatorial locus. Plant Physiol 159(4):1644–1657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen AL, Liu CY, Chen CH et al (2014) Reassessment of QTLs for late blight resistance in the tomato accession L3708 using a restriction site associated DNA (RAD) linkage map and highly aggressive isolates of Phytophthora infestans. PLoS ONE. doi:10.1371/journal.pone.0096417

    Google Scholar 

  • Chen FQ, Foolad MR, Hyman J et al (1999) Mapping of QTLs for lycopene and other fruit traits in a Lycopersicon esculentum × L. pimpinellifolium cross and comparison of QTLs across tomato species. Mol Breed 5:283–299

    Article  CAS  Google Scholar 

  • Chen KY, Tanksley SD (2004) High-resolution mapping and functional analysis of se2.1: a major stigma exsertion quantitative trait locus associated with the evolution from allogamy to autogamy in the genus Lycopersicon. Genetics 168:1563–1573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen KY, Cong B, Wing R et al (2007) Changes in regulation of a transcription factor lead to autogamy in cultivated tomatoes. Science 318:643–645

    Article  CAS  PubMed  Google Scholar 

  • Chetelat RT, Meglic V (2000) Molecular mapping of chromosome segments introgressed from Solanum lycopersicoides into cultivated tomato (Lycopersicon esculentum). Theor Appl Genet 100:232–241

    Article  CAS  Google Scholar 

  • Chibon PY, Schoof H, Visser RG et al (2012) Marker2sequence, mine your QTL regions for candidate genes. Bioinformatics 2028(14):1921–1922

    Article  CAS  Google Scholar 

  • Chitwood DH, Sinha NR (2013) A census of cells in time: quantitative genetics meets developmental biology. Curr Opin Plant Biol 16(1):92–99

    Article  PubMed  Google Scholar 

  • Chitwood DH, Kumar R, Headland LR (2013) A quantitative genetic basis for leaf morphology in a set of precisely defined tomato introgression lines. Plant Cell 25(7):2465–2481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coaker GL, Francis DM (2004) Mapping, genetic effects, and epistatic interaction of two bacterial canker resistance QTLs from Lycopersicon hirsutum. Theor Appl Genet 108:1047–1055

    Article  CAS  PubMed  Google Scholar 

  • Coaker GL, Meulia T, Kabelka EA et al (2002) A QTL controlling stem morphology and vascular development in Lycopersicon esculentum × Lycopersicon hirsutum (Solanaceae) crosses is located on chromosome 2. Am J Bot 89:1859–1866

    Article  CAS  PubMed  Google Scholar 

  • Cobb JN, Declerck G, Greenberg A et al (2013) Next-generation phenotyping: requirements and strategies for enhancing our understanding of genotype-phenotype relationships and its relevance to crop improvement. Theor Appl Genet 126(4):867–887

    Article  PubMed  PubMed Central  Google Scholar 

  • Cong B, Tanksley SD (2006) Fw2.2 and cell cycle control in developing tomato fruit: a possible example of gene co-option in the evolution of a novel organ. Plant Mol Biol 62:867–880

    Article  CAS  PubMed  Google Scholar 

  • Cong B, Liu J, Tanksley SD (2002) Natural alleles at a tomato fruit size quantitative trait locus differ by heterochronic regulatory mutations. Proc Natl Acad Sci USA 99:13606–13611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cong B, Barrero LS, Tanksley SD (2008) Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication. Nat Genet 40:800–804

    Article  CAS  PubMed  Google Scholar 

  • Corder EH, Saunders AM, Risch NJ et al (1994) Protective effect of apolipoprotein-E type-2 allele for late-onset Alzheimer disease. Nat Genet 7:180–184

    Article  CAS  PubMed  Google Scholar 

  • Dal Cin V, Kevany B, Fei Z et al (2009) Identification of Solanum habrochaites loci that quantitatively influence tomato fruit ripening-associated ethylene emissions. Theor Appl Genet 119(7):1183–1192

    Article  CAS  PubMed  Google Scholar 

  • Danesh D, Aarons S, McGill GE et al (1994) Genetic dissection of oligogenic resistance to bacterial wilt in tomato. Mol Plant-Microbe Interact 7:464–471

    Article  CAS  PubMed  Google Scholar 

  • Davis J, Yu D, Evans W et al (2009) Mapping of loci from Solanum lycopersicoides conferring resistance or susceptibility to Botrytis cinerea in tomato. Theor Appl Genet 119:305–314

    Article  PubMed  PubMed Central  Google Scholar 

  • de Vicente MC, Tanksley SD (1993) QTL analysis of transgressive segregation in an interspecific tomato cross. Genetics 134:585–596

    Google Scholar 

  • Di Matteo A, Sacco A, Anacleria M et al (2010) The ascorbic acid content of tomato fruits is associated with the expression of genes involved in pectin degradation. BMC Plant Biol 10:163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Di Matteo A, Ruggieri V, Sacco A et al (2013) Identification of candidate genes for phenolics accumulation in tomato fruit. Plant Sci 205–206:87–96

    Article  PubMed  CAS  Google Scholar 

  • Do PT, Prudent M, Sulpice R et al (2010) The influence of fruit load on the tomato pericarp metabolome in a Solanum chmielewskii introgression line population. Plant Physiol 154(3):1128–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doganlar S, Tanksley SD, Mutschler MA (2000a) Identification and molecular mapping of loci controlling fruit ripening time in tomato. Theor Appl Genet 100(2):249–255

    Article  CAS  Google Scholar 

  • Doganlar S, Frary A, Tanksley SD (2000b) The genetic basis of seed-weight variation: tomato as a model system. Theor Appl Genet 100:1267–1273

    Article  CAS  Google Scholar 

  • Doganlar S, Frary A, Ku H-M et al (2002) Mapping quantitative trait loci in inbred backcross lines of Lycopersicon pimpinellifolium (LA1589). Genome 45:1189–1202

    Article  CAS  PubMed  Google Scholar 

  • Edwards MD, Stuber CW, Wendel JF (1987) Molecular-marker facilitated investigations of quantitative-trait loci in maize. I. Numbers, genomic distribution and types of gene action. Genetics 116:113–125

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eshed Y, Zamir D (1994) Introgressions from Lycopersicon pennellii can improve the soluble solids yield of tomato hybrids. Theor Appl Genet 88:891–897

    Article  CAS  PubMed  Google Scholar 

  • Eshed Y, Zamir D (1995) An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 141:1147–1162

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eshed Y, Zamir D (1996) Less-than-additive epistatic interactions of quantitative trait loci in tomato. Genetics 143:1807–1817

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eshed Y, Gera G, Zamir D (1996) A genome-wide search for wild-species alleles that increase horticultural yield of processing tomatoes. Theor Appl Genet 93:877–886

    Article  CAS  PubMed  Google Scholar 

  • Estañ MT, Villalta I, Bolarín MC et al (2009) Identification of fruit yield loci controlling the salt tolerance conferred by Solanum rootstocks. Theor Appl Genet 118:305–312

    Article  PubMed  Google Scholar 

  • Faino L, Azizinia S, Hassanzadeh BH et al (2012) Fine mapping of two major QTLs conferring resistance to powdery mildew in tomato. Euphytica 184(2):223–234

    Article  Google Scholar 

  • Falconer DS (1989) Introduction to quantitative genetics, 3rd edn. Longman Scientific & Technical, Essex

    Google Scholar 

  • Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374

    Google Scholar 

  • Finkers R, van den Berg P, van Berloo R et al (2007a) Three QTLs for Botrytis cinerea resistance in tomato. Theor Appl Genet 114(4):585–593

    Article  PubMed  Google Scholar 

  • Finkers R, van Heusden AW, Meijer-Dekens F et al (2007b) The construction of a Solanum habrochaites LYC4 introgression line population and the identification of QTLs for resistance to Botrytis cinerea. Theor Appl Genet 114:1071–1080

    Article  PubMed  PubMed Central  Google Scholar 

  • Firdaus S, van Heusden AW, Hidayati N et al (2013) Identification and QTL mapping of whitefly resistance components in Solanum galapagense. Theor Appl Genet 126(6):1487–1501

    Article  CAS  PubMed  Google Scholar 

  • Foolad MR (1999a) Comparison of salt tolerance during seed germination and vegetative growth in tomato by QTL mapping. Genome 42:727–734

    Article  CAS  Google Scholar 

  • Foolad MR (1999b) Genetics of salt tolerance and cold tolerance in tomato: quantitative analysis and QTL mapping. Plant Biotechnol 16:55–64

    Article  CAS  Google Scholar 

  • Foolad MR (2007) Genome mapping and molecular breeding of tomato. Int J Plant Genomics. doi:10.1155/2007/64358

    PubMed Central  Google Scholar 

  • Foolad MR, Chen FQ (1998) RAPD markers associated with salt tolerance in an interspecific cross of tomato (Lycopersicon esculentum × L. pennellii). Plant Cell Rep 17:306–312

    Article  CAS  Google Scholar 

  • Foolad MR, Chen FQ (1999) RFLP mapping of QTLs conferring salt tolerance during vegetative stage in tomato. Theor Appl Genet 99:235–243

    Article  CAS  Google Scholar 

  • Foolad MR, Jones RA (1993) Mapping salt-tolerance genes in tomato (Lycopersicon esculentum) using trait-based marker analysis. Theor Appl Genet 87:184–192

    Article  CAS  PubMed  Google Scholar 

  • Foolad MR, Stoltz T, Dervinis C et al (1997) Mapping QTLs conferring salt tolerance during germination in tomato by selective genotyping. Mol Breed 3:269–277

    Article  CAS  Google Scholar 

  • Foolad MR, Chen FQ, Lin GY (1998a) RFLP mapping of QTLs conferring salt tolerance during germination in an interspecific cross of tomato. Theor Appl Genet 97:1133–1144

    Article  CAS  Google Scholar 

  • Foolad MR, Chen FQ, Lin GY (1998b) RFLP mapping of QTLs conferring cold tolerance during seed germination in an interspecific cross of tomato. Mol Breed 4:519–529

    Article  CAS  Google Scholar 

  • Foolad MR, Lin GY, Chen FQ (1999) Comparison of QTLs for seed germination under non-stress, cold stress and salt stress in tomato. Plant Breed 118:167–173

    Article  Google Scholar 

  • Foolad MR, Zhang LP, Lin GY (2001) Identification and validation of QTLs for salt tolerance during vegetative growth in tomato by selective genotyping. Genome 44:444–454

    Article  CAS  PubMed  Google Scholar 

  • Foolad MR, Zhang LP, Khan AA et al (2002) Identification of QTLs for early blight (Alternaria solani) resistance in tomato using backcross populations of a Lycopersicon esculentum × L. hirsutum cross. Theor Appl Genet 104:945–958

    Article  CAS  PubMed  Google Scholar 

  • Foolad MR, Zhang LP, Subbiah P (2003) Genetics of drought tolerance during seed germination in tomato: inheritance and QTL mapping. Genome 46:536–545

    Article  CAS  PubMed  Google Scholar 

  • Foolad MR, Subbiah P, Zhang LP (2007) Common QTL affect the rate of tomato seed germination under different stress and nonstress conditions. Int J Plant Genom. doi:10.1155/2007/97386

    Google Scholar 

  • Frary A, Nesbitt TC, Frary A et al (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88

    Article  CAS  PubMed  Google Scholar 

  • Frary A, Doganlar S, Frampton A et al (2003) Fine mapping of quantitative trait loci for improved fruit characteristics from Lycopersicon chmielewskii chromosome 1. Genome 46:235–243

    Article  CAS  PubMed  Google Scholar 

  • Frary A, Fulton TM, Zamir D et al (2004a) Advanced backcross QTL analysis of a Lycopersicon esculentum × L. pennellii cross and identification of possible orthologs in the Solanaceae. Theor Appl Genet 108:485–496

    Article  CAS  PubMed  Google Scholar 

  • Frary A, Fritz LA, Tanksley SD (2004b) A comparative study of the genetic bases of natural variation in tomato leaf, sepal, and petal morphology. Theor Appl Genet 109:523–533

    Article  PubMed  Google Scholar 

  • Frary A, Göl D, Keleş D et al (2010) Salt tolerance in Solanum pennellii: antioxidant response and related QTL. BMC Plant Biol 10:58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Frary A, Keles D, Pinar H et al (2011) NaCl tolerance in Lycopersicon pennellii introgression lines: QTL related to physiological responses. Biol Plant 55(3):461–468

    Article  CAS  Google Scholar 

  • Fridman E, Pleban T, Zamir D (2000) A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proc Natl Acad Sci USA 97:4718–4723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fridman E, Liu YS, Carmel-Goren L et al (2002) Two tightly linked QTLs modify tomato sugar content via different physiological pathways. Mol Genet Genom 266:821–826

    Article  CAS  Google Scholar 

  • Fridman E, Carrari F, Liu YS et al (2004) Zooming in on a quantitative trait for tomato yield using interspecific introgressions. Science 305:1786–1789

    Article  CAS  PubMed  Google Scholar 

  • Fulton TM, Beck-Bunn T, Emmatty D et al (1997) QTL analysis of an advanced backcross of Lycopersicon peruvianum to the cultivated tomato and comparisons with QTLs found in other wild species. Theor Appl Genet 95:881–894

    Article  CAS  Google Scholar 

  • Fulton TM, Grandillo S, Beck-Bunn T et al (2000) Advanced backcross QTL analysis of a Lycopersicon esculentum × L. parviflorum cross. Theor Appl Genet 100:1025–1042

    Article  CAS  Google Scholar 

  • Fulton TM, Bucheli P, Voirol E (2002) Quantitative trait loci (QTL) affecting sugars, organic acids and other biochemical properties possibly contributing to flavor, identified in four advanced backcross populations of tomato. Euphytica 127:163–177

    Article  CAS  Google Scholar 

  • Geldermann H (1975) Investigation on inheritance of quantitative characters in animals by gene markers. I. Methods. Theor Appl Genet 46:319–330

    Article  CAS  PubMed  Google Scholar 

  • Georgelis N, Scott JW, Baldwin EA (2004) Relationship of tomato fruit sugar concentration with physical and chemical traits and linkage of RAPD markers. J Am Soc Hort Sci 129:839–845

    CAS  Google Scholar 

  • Georgiady MS, Whitkus RW, Lord EM (2002) Genetic analysis of traits distinguishing outcrossing and self-pollinating forms of currant tomato, Lycopersicon pimpinellifolium (Jusl.) Mill. Genetics 161:333–344

    CAS  PubMed  PubMed Central  Google Scholar 

  • Godfray HC, Beddington JR, Crute IR et al (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818

    Article  CAS  PubMed  Google Scholar 

  • Goldman IL, Paran I, Zamir D (1995) Quantitative trait locus analysis of a recombinant inbred line population derived from a Lycopersicon esculentum × L. cheesmanii cross. Theor Appl Genet 90:925–932

    Article  CAS  PubMed  Google Scholar 

  • Gong P, Zhang J, Li H et al (2010) Transcriptional profiles of drought-responsive genes in modulating transcription signal transduction, and biochemical pathways in tomato. J Exp Bot 61(13):3563–3575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalo MJ, van der Knaap E (2008) A comparative analysis into the genetic bases of morphology in tomato varieties exhibiting elongated fruit shape. Theor Appl Genet 116:647–656

    Article  PubMed  Google Scholar 

  • Goodstal FJ, Kohler GR, Randall LB et al (2005) A major QTL introgressed from wild Lycopersicon hirsutum confers chilling tolerance to cultivated tomato (Lycopersicon esculentum). Theor Appl Genet 111:898–905

    Article  CAS  Google Scholar 

  • Gorguet B, Eggink PM, Ocaña J et al (2008) Mapping and characterization of novel parthenocarpy QTLs in tomato. Theor Appl Genet 116:755–767

    Article  PubMed  PubMed Central  Google Scholar 

  • Grandillo S (2013) Introgression libraries with wild relatives of crops. In: Tuberosa R, Graner A, Frison E (eds) Genomics of plant genetics resources (chapt 4). Springer, Dordrecht, pp 87–122

    Google Scholar 

  • Grandillo S, Tanksley SD (1996a) QTL analysis of horticultural traits differentiating the cultivated tomato from the closely related species Lycopersicon pimpinellifolium. Theor Appl Genet 92:935–951

    Article  CAS  PubMed  Google Scholar 

  • Grandillo S, Tanksley SD (1996b) Genetic analysis of RFLPs, GATA microsatellites and RAPDs in a cross between L. esculentum and L. pimpinellifolium. Theor Appl Genet 92:957–965

    Article  CAS  PubMed  Google Scholar 

  • Grandillo S, Ku HM, Tanksley SD (1996) Characterization of fs8.1, a major QTL influencing fruit shape in tomato. Mol Breed 2:251–260

    Article  CAS  Google Scholar 

  • Grandillo S, Ku HM, Tanksley SD (1999) Identifying the loci responsible for natural variation in fruit size and shape in tomato. Theor Appl Genet 99:978–987

    Article  CAS  Google Scholar 

  • Grandillo S, Tanksley SD, Zamir D (2008) Exploitation of natural biodiversity through genomics. In: Varshney RK, Tuberosa R (eds) Genomics assisted crop improvement, vol I: genomics approaches and platforms. Springer, Dordrecht, pp 121–150

    Google Scholar 

  • Grandillo S, Chetelat R, Knapp S et al (2011) Solanum sect. Lycopersicon. In: Kole C (ed) Wild crop relatives: genomic and breeding resources, vol 5: vegetables. Springer, Dordrecht, pp 129–215

    Google Scholar 

  • Grandillo S, Termolino P, van der Knaap E (2013) Molecular mapping of complex traits in tomato. In: Kole C (ed) Genetics, genomics and breeding of crop plants. Volume: Liedl BE, Labate JA, Slade AJ, Stommel JR, Kole C (vol eds) Genetics, genomics and breeding of tomato. Science Publishers, Enfield, pp 150–227

    Google Scholar 

  • Grandillo S, Cammareri M, Palombieri S, Fei Z, Xu Y, McQuinn R, Giovannoni J (2014) RNA-seq analysis in a set of Solanum habrochaites LA1777 introgression lines. In: 58th Italian society of agricultural genetics annual congress, 15–18 September, Alghero, Italy, ISBN 978-88-904570-4-3

    Google Scholar 

  • Griffiths PD, Scott JW (2001) Inheritance and linkage of Tomato mottle virus resistance genes derived from Lycopersicon chilense accession LA 1932. J Am Soc Hort Sci 126:462–467

    CAS  Google Scholar 

  • Guo M, Simmons CR (2011) Cell number counts—the fw2.2 and CNR genes and implications for controlling plant fruit and organ size. Plant Sci 181:1–7

    Article  CAS  PubMed  Google Scholar 

  • Guo M, Rupe MA, Dieter JA et al (2010) Cell number regulator1 affects plant and organ size in maize: implications for crop yield enhancement and heterosis. Plant Cell 22:1057–1073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta PK, Rustgi S, Kulwal PL (2005) Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant Mol Biol 57(4):461–485

    Article  CAS  PubMed  Google Scholar 

  • Gur A, Zamir D (2004) Unused natural variation can lift yield barriers in plant breeding. PLoS Biol 2(10):e245

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gur A, Osorio S, Fridman E et al (2010) hi2-1, a QTL which improves harvest index, earliness and alters metabolite accumulation of processing tomatoes. Theor Appl Genet 121(8):1587–1599

    Article  PubMed  PubMed Central  Google Scholar 

  • Gur A, Semel Y, Osorio S et al (2011) Yield quantitative trait loci from wild tomato are predominately expressed by the shoot. Theor Appl Genet 122(2):405–420

    Article  PubMed  Google Scholar 

  • Haggard JE, Johnson EB, St Clair DA (2013) Linkage relationships among multiple QTL for horticultural traits and late blight (P. infestans) resistance on chromosome 5 introgressed from wild tomato Solanum habrochaites. G3 (Bethesda) 3(12):2131–2146. doi:10.1534/g3.113.007195

    Google Scholar 

  • Hanson P, Schafleitner R, Huang SM et al (2014) Characterization and mapping of a QTL derived from Solanum habrochaites associated with elevated rutin content (quercetin-3-rutinoside) in tomato. Euphytica 200:441–454

    Article  CAS  Google Scholar 

  • Holtan HE, Hake S (2003) Quantitative trait locus analysis of leaf dissection in tomato using Lycopersicon pennellii segmental introgression lines. Genetics 165:1541–1550

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Z, van der Knaap E (2011) Tomato fruit weight 11.3 maps close to fasciated on the bottom of chromosome 11. Theor Appl Genet 123:465–474

    Article  PubMed  Google Scholar 

  • Huang Z, Van Houten J, Gonzalez G et al (2013) Genome-wide identification, phylogeny and expression analysis of SUN, OFP and YABBY gene family in tomato. Mol Genet Genomics 288(3–4):111–129

    Article  CAS  PubMed  Google Scholar 

  • Hutton SF, Scott JW, Yang W et al (2010) Identification of QTL associated with resistance to bacterial spot race T4 in tomato. Theor Appl Genet 121(7):1275–1287

    Article  CAS  PubMed  Google Scholar 

  • Hutton SF, Scott JW, Vallad GE (2014) Association of the Fusarium Wilt Race 3 Resistance Gene, I-3, on Chromosome 7 with Increased Susceptibility to Bacterial Spot Race T4 in Tomato. J Am Soc Hortic Sci 139(3):282–289

    CAS  Google Scholar 

  • Ikeda H, Hiraga M, Shirasawa K et al (2013) Analysis of a tomato introgression line, IL8-3, with increased Brix content. Sci Hort 153:103–108

    Article  CAS  Google Scholar 

  • Jiang N, Gao D, Xiao H et al (2009) Genome organization of the tomato sun locus and characterization of the unusual retrotransposon Rider. Plant J 60(1):181–193

    Article  CAS  PubMed  Google Scholar 

  • Jiménez-Gómez JM, Alonso-Blanco C, Borja A et al (2007) Quantitative genetic analysis of flowering time in tomato. Genome 50:303–315

    Article  PubMed  CAS  Google Scholar 

  • Johnson EB, Haggard JE, St Clair DA (2012) Fractionation, stability, and isolate-specificity of QTL for resistance to Phytophthora infestans in cultivated tomato (Solanum lycopersicum). G3 (Bethesda) 2(10):1145–1159

    Google Scholar 

  • Kabelka E, Franchino B, Francis DM (2002) Two loci from Lycopersicon hirsutum LA407 confer resistance to strains of Clavibacter michiganensis subsp. michiganensis. Phytopathology 92:504–510

    Article  CAS  PubMed  Google Scholar 

  • Kabelka E, Yang WC, Francis DM (2004) Improved tomato fruit color within an inbred backcross line derived from Lycopersicon esculentum and L. hirsutum involves the interaction of loci. J Am Soc Hort Sci 129:250–257

    CAS  Google Scholar 

  • Kadirvel P, de la Pena R, Schafleitner R et al (2013) Mapping of QTLs in tomato line FLA456 associated with resistance to a virus causing tomato yellow leaf curl disease. Euphytica 190(2):297–308

    Article  CAS  Google Scholar 

  • Kamenetzky L, Asís R, Bassi S et al (2010) Genomic analysis of wild tomato introgressions determining metabolism- and yield-associated traits. Plant Physiol 152:1772–1786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kazmi RH, Khan N, Willems LAJ et al (2012) Complex genetics controls natural variation among seed quality phenotypes in a recombinant inbred population of an interspecific cross between Solanum lycopersicum × Solanum pimpinellifolium. Plant, Cell Environ 35(5):929–951

    Article  CAS  Google Scholar 

  • Kerem BS, Rommens JM, Buchanan JA et al (1989) Identification of the cystic fibrosis gene: genetic analysis. Science 245:1073–1080

    Article  CAS  PubMed  Google Scholar 

  • Khan N, Kazmi RH, Willems LAJ et al (2012) Exploring the natural variation for seedling traits and their link with seed dimensions in tomato. PLoS ONE. doi:10.1371/journal.pone.0043991

    Google Scholar 

  • Kinkade MP, Foolad MR (2013) Validation and fine mapping of lyc12.1, a QTL for increased tomato fruit lycopene content. Theor Appl Genet 126(8):2163–2175

    Article  CAS  PubMed  Google Scholar 

  • Kochevenko A, Fernie AR (2011) The genetic architecture of branched-chain amino acid accumulation in tomato fruits. J Exp Bot 62(11):3895–3906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korte A, Farlow A (2013) The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9:29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kromdijk J, Bertin N, Heuvelink E et al (2014) Crop management impacts the efficiency of quantitative trait loci (QTL) detection and use: case study of fruit load QTL interactions. J Exp Bot 65(1):11–22

    Article  CAS  PubMed  Google Scholar 

  • Ku HM, Doganlar S, Chen KY et al (1999) The genetic basis of pear-shaped tomato fruit. Theor Appl Genet 99:844–850

    Article  CAS  Google Scholar 

  • Ku HM, Grandillo S, Tanksley SD (2000) fs8.1, a major QTL, sets the pattern of tomato carpel shape well before anthesis. Theor Appl Genet 101:873–878

    Article  CAS  Google Scholar 

  • Labate JA, Grandillo S, Fulton T et al (2007) Tomato. In: Kole C (ed) Genome mapping and molecular breeding in plants, vol 5: vegetables. Springer, Berlin, pp 1–96

    Google Scholar 

  • Lahaye M, Quemener B, Causse M et al (2012) Hemicellulose fine structure is affected differently during ripening of tomato lines with contrasted texture. Int J Biol Macromol 1(4):462–470

    Article  CAS  Google Scholar 

  • Lahaye M, Devaux MF, Poole M et al (2013) Pericarp tissue microstructure and cell wall polysaccharide chemistry are differently affected in lines of tomato with contrasted firmness. Postharvest Biol Technol 76:83–90

    Article  CAS  Google Scholar 

  • Larsson SJ, Lipka AE, Buckler ES (2013) Lessons from Dwarf8 on the strengths and weaknesses of structured association mapping. PLoS Genet 9(2):e1003246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawson DM, Lunde CF, Mutschler MA (1997) Marker-assisted transfer of acylsugar-mediated pest resistance from the wild tomato, Lycopersicon pennellii, to the cultivated tomato, Lycopersicon esculentum. Mol Breed 3:307–317

    Article  CAS  Google Scholar 

  • Leckie BM, De Jong DM, Mutschler MA (2012) Quantitative trait loci increasing acylsugars in tomato breeding lines and their impacts on silverleaf whiteflies. Mol Breed 30(4):1621–1634

    Article  CAS  Google Scholar 

  • Leckie BM, De Jong DM, Mutschler MA (2013) Quantitative trait loci regulating sugar moiety of acylsugars in tomato. Mol Breed 31(4):957–970

    Article  CAS  Google Scholar 

  • Lecomte L, Duffé P, Buret M et al (2004a) Marker-assisted introgression of five QTLs controlling fruit quality traits into three tomato lines revealed interactions between QTLs and genetic backgrounds. Theor Appl Genet 109:658–668

    Article  CAS  PubMed  Google Scholar 

  • Lecomte L, Saliba-Colombani V, Gautier A et al (2004b) Fine mapping of QTLs of chromosome 2 affecting the fruit architecture and composition of tomato. Mol Breed 13:1–14

    Article  CAS  Google Scholar 

  • Lee JM, Joung JG, McQuinn R et al (2012) Combined transcriptome, genetic diversity and metabolite profiling in tomato fruit reveals that the ethylene response factor SlERF6 plays an important role in ripening and carotenoid accumulation. Plant J 70:191–204

    Article  CAS  PubMed  Google Scholar 

  • Li J, Liu L, Bai Y et al (2011a) Seedling salt tolerance in tomato. Euphytica 178(3):403–414

    Article  Google Scholar 

  • Li J, Liu L, Bai Y et al (2011b) Identification and mapping of quantitative resistance to late blight (Phytophthora infestans) in Solanum habrochaites LA1777. Euphytica 179(3):427–438

    Article  Google Scholar 

  • Libault M, Zhang XC, Govindarajulu M (2010) A member of the highly conserved FWL (tomato FW2.2-like) gene family is essential for soybean nodule organogenesis. Plant J. 62:852–864

    Article  CAS  PubMed  Google Scholar 

  • Lin KH, Yeh WL, Chen HM et al (2010) Quantitative trait loci influencing fruit-related characteristics of tomato grown in high-temperature conditions. Euphytica 174(1):119–135

    Article  CAS  Google Scholar 

  • Lindhout P, Heusden S, Pet G et al (1994) Perspectives of molecular marker assisted breeding for earliness in tomato. Euphytica 79:279–286

    Article  CAS  Google Scholar 

  • Lippman Z, Tanksley SD (2001) Dissecting the genetic pathway to extreme fruit size in tomato using a cross between the small-fruited wild species Lycopersicon pimpinellifolium and L. esculentum var. Giant Heirloom. Genetics 158:413–422

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lippman ZB, Semel Y, Zamir D (2007) An integrated view of quantitative trait variation using tomato interspecific introgression lines. Curr Opin Genet Dev 17:545–552

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Ouyang B, Zhang J et al (2012) Differential modulation of photosynthesis, signaling, and transcriptional regulation between tolerant and sensitive tomato genotypes under cold stress. PLoS ONE 7(11):e50785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Van Eck J, Cong B et al (2002) A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proc Natl Acad Sci USA 99:13302–13306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Cong B, Tanksley SD (2003a) Generation and analysis of an artificial gene dosage series in tomato to study the mechanisms by which the cloned quantitative trait locus fw2.2 controls fruit size. Plant Physiol 132:292–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Gur A, Ronen G et al (2003b) There is more to tomato fruit colour than candidate carotenoid genes. Plant Biotech J 1:195–207

    Article  CAS  Google Scholar 

  • Mackay TFC, Stone EA, Ayroles JF (2009) The genetics of quantitative traits: challenges and prospects. Nat Rev Genet 10:565–577

    Article  CAS  PubMed  Google Scholar 

  • Mageroy MH, Tieman DM, Floystad A et al (2012) A Solanum lycopersicum catechol-O-methyltransferase involved in synthesis of the flavor molecule guaiacol. Plant J 69(6):1043–1051

    Article  CAS  PubMed  Google Scholar 

  • Maliepaard C, Bas N, van Heusden S et al (1995) Mapping of QTLs for glandular trichome densities and Trialeurodes vaporariorum (greenhouse whitefly) resistance in an F2 from Lycopersicon esculentum × Lycopersicon hirsutum f. glabratum. Heredity 75:425–433

    Article  Google Scholar 

  • Mangin B, Thoquet P, Olivier J et al (1999) Temporal and multiple quantitative trait loci analyses of resistance to bacterial wilt in tomato permit the resolution of linked loci. Genetics 151:1165–1172

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martin B, Nienhuis J, King G et al (1989) Restriction fragment length polymorphisms associated with water use efficiency in tomato. Science 243:1725–1728

    Article  CAS  PubMed  Google Scholar 

  • Mather K (1941) Variation and selection of polygenic characters. J Genet 41:159–193

    Article  Google Scholar 

  • Mather K (1949) Biometrical genetics, the study of continuous variation. Methuen & Co/Dover Publications, London

    Google Scholar 

  • Mathieu S, Dal Cin V, Fei Z et al (2009) Flavour compounds in tomato fruits: identification of loci and potential pathways affecting volatile composition. J Exp Bot 60:325–337

    Article  CAS  PubMed  Google Scholar 

  • Mazzucato A, Papa R, Bitocchi E et al (2008) Genetic diversity, structure and marker-trait associations in a collection of Italian tomato (Solanum lycopersicum L.) landraces. Theor Appl Genet 116:657–669

    Article  PubMed  Google Scholar 

  • Miller JC, Tanksley SD (1990) RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon. Theor Appl Genet 80:437–448

    CAS  PubMed  Google Scholar 

  • Minutolo M, Amalfitano C, Evidente A et al (2013) Polyphenol distribution in plant organs of tomato introgression lines. Nat Prod Res 27(9):787–795

    Article  CAS  PubMed  Google Scholar 

  • Mitchell-Olds T (2010) Complex-trait analysis in plants. Genome Biol 11(4):113

    Article  PubMed  PubMed Central  Google Scholar 

  • Momotaz AS, Scott JV, Schuster DJ (2010) Identification of quantitative trait loci conferring resistance to Bemisia tabaci in an F2 population of Solanum lycopersicum × Solanum habrochaites accession LA1777. J Am Soc Hortic Sci 135(2):134–142

    Google Scholar 

  • Monforte AJ, Tanksley SD (2000a) Development of a set of near isogenic and backcross recombinant inbred lines containing most of the Lycopersicon hirsutum genome in a L. esculentum genetic background: a tool for gene mapping and gene discovery. Genome 43:803–813

    Article  CAS  PubMed  Google Scholar 

  • Monforte AJ, Tanksley SD (2000b) Fine mapping of a quantitative trait locus (QTL) from Lycopersicon hirsutum chromosome 1 affecting fruit characteristics and agronomic traits: breaking linkage among QTLs affecting different traits and dissection of heterosis for yield. Theor Appl Genet 100:471–479

    Article  CAS  Google Scholar 

  • Monforte AJ, Asìns MJ, Carbonell EA (1996) Salt tolerance in Lycopersicon species. IV. High efficiency of marker-assisted selection to obtain salt-tolerant breeding lines. Theor Appl Genet 93:765–772

    Article  CAS  PubMed  Google Scholar 

  • Monforte AJ, Asìns MJ, Carbonell EA (1997a) Salt tolerance in Lycopersicon species. V. Does genetic variability at quantitative trait loci affect their analysis? Theor Appl Genet 95:284–293

    Article  CAS  Google Scholar 

  • Monforte AJ, Asìns MJ, Carbonell EA (1997b) Salt tolerance in Lycopersicon species. VI. Genotype by salinity interaction in quantitative trait loci detection: constitutive and response QTLs. Theor Appl Genet 95:706–713

    Article  Google Scholar 

  • Monforte AJ, Asìns MJ, Carbonell EA (1999) Salt tolerance in Lycopersicon spp. VII. Pleiotropic action of genes controlling earliness on fruit yield. Theor Appl Genet 98:593–601

    Article  Google Scholar 

  • Monforte AJ, Friedman E, Zamir D et al (2001) Comparison of a set of allelic QTL-NILs for chromosome 4 of tomato: deductions about natural variation and implications for germplasm utilization. Theor Appl Genet 102:572–590

    Article  CAS  Google Scholar 

  • Monforte AJ, Diaz AI, Caño-Delgado A et al (2014) The genetic basis of fruit morphology in horticultural crops: lessons from tomato and melon. J Exp Bot 65(16):4625–4637

    Article  CAS  PubMed  Google Scholar 

  • Morgan MJ, Osorio S, Gehl B et al (2013) Metabolic engineering of tomato fruit organic acid content guided by biochemical analysis of an introgression line. Plant Physiol 161(1):397–407

    Article  CAS  PubMed  Google Scholar 

  • Moyle LC, Graham EB (2005) Genetics of hybrid incompatibility between Lycopersicon esculentum and L. hirsutum. Genetics 169:355–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moyle LC, Nakazato T (2008) Comparative genetics of hybrid incompatibility: sterility in two Solanum species crosses. Genetics 179:1437–1453

    Article  PubMed  PubMed Central  Google Scholar 

  • Muños S, Ranc N, Botton E et al (2011) Increase in tomato locule number is controlled by two single-nucleotide polymorphisms located near WUSCHEL. Plant Physiol 156(4):2244–2254

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mutschler MA, Doerge RW, Liu SC et al (1996) QTL analysis of pest resistance in the wild tomato Lycopersicon pennellii: QTLs controlling acylsugar level and composition. Theor Appl Genet 92:709–718

    Article  CAS  PubMed  Google Scholar 

  • Myles S, Peiffer J, Patrick J (2009) Brown Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell 21:2194–2202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nesbitt TC, Tanksley SD (2002) Comparative sequencing in the genus Lycopersicon: implications for the evolution of fruit size in the domestication of cultivated tomatoes. Genetics 162:365–379

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nienhuis J, Helentjaris T, Slocum M et al (1987) Restriction fragment length polymorphism analysis of loci associated with insect resistance in tomato. Crop Sci 27:797–803

    Article  Google Scholar 

  • Orsi CH, Tanksley SD (2009) Natural variation in an ABC transporter gene associated with seed size evolution in tomato species. PLoS Genet 5:e1000347

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Osborn TC, Alexander DC, Fobes JF (1987) Identification of restriction fragment length polymorhisms linked to genes controlling soluble solids content in tomato. Theor Appl Genet 73:350–356

    Article  CAS  PubMed  Google Scholar 

  • Overy SA, Walker HJ, Malone S et al (2005) Application of metabolite profiling to the identification of traits in a population of tomato introgression lines. J Expt Bot 56:287–296

    Article  CAS  Google Scholar 

  • Pan Q, Liu YS, Budai-Hadrian O et al (2000) Comparative genetics of nucleotide binding site-leucine rich repeat resistance gene homologues in the genomes of two dicotyledons: tomato and Arabidopsis. Genetics 155:309–322

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paran I, Zamir D (2003) Quantitative traits in plants: beyond the QTL. Trends Genet 19(6):303–306

    Article  CAS  PubMed  Google Scholar 

  • Paran I, Goldman I, Tanksley SD et al (1995) Recombinant inbred lines for genetic mapping in tomato. Theor Appl Genet 90:542–548

    Article  CAS  PubMed  Google Scholar 

  • Paran I, Goldman I, Zamir D (1997) QTL analysis of morphological traits in a tomato recombinant inbred line population. Genome 40:242–248

    Article  CAS  PubMed  Google Scholar 

  • Pascual L, Xu J, Biais B et al (2013) Deciphering genetic diversity and inheritance of tomato fruit weight and composition through a systems biology approach. J Exp Bot 64:5737–5752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pascual L, Desplat N, Huang BE et al (2015) Potential of a tomato MAGIC population to decipher the genetic control of quantitative traits and detect causal variants in the resequencing era. Plant Biotechnol J 13(4):565–577

    Google Scholar 

  • Paterson AH, Lander ES, Hewitt JD et al (1988) Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335:721–726

    Article  CAS  PubMed  Google Scholar 

  • Paterson AH, DeVerna JW, Lanini B et al (1990) Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato. Genetics 124:735–742

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paterson AH, Damon S, Hewitt JD et al (1991) Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics 127:181–197

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peralta IE, Spooner DM, Knapp S (2008) Taxonomy of wild tomatoes and their relatives (Solanum sections Lycopersicoides, Juglandifolia, Lycopersicon; Solanaceae). Syst Bot Monogr 84:1–186

    Google Scholar 

  • Pereira da Costa JH, Rodríguez GR, Pratta GR et al (2013) QTL detection for fruit shelf life and quality traits across segregating populations of tomato. Sci Hort 156:47–53

    Article  Google Scholar 

  • Perez-Fons L, Wells T, Corol DI et al (2014) A genome-wide metabolomic resource for tomato fruit from Solanum pennellii. Sci Rep. doi:10.1038/srep03859

    PubMed  PubMed Central  Google Scholar 

  • Pratta GR, Rodriguez GR, Zorzoli R et al (2011) Phenotypic and molecular characterization of selected tomato recombinant inbred lines derived from the cross Solanum lycopersicum × S. pimpinellifolium. J Genet 90(2):229–237

    Article  PubMed  Google Scholar 

  • Prudent M, Causse M, Génard M et al (2009) Genetic and physiological analysis of tomato fruit weight and composition: influence of carbon availability on QTL detection. J Exp Bot 60:923–937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prudent M, Bertin N, Génard M et al (2010) Genotype-dependent response to carbon availability in growing tomato fruit. Plant, Cell Environ 33(7):1186–1204

    CAS  Google Scholar 

  • Prudent M, Lecomte A, Bouchet JP et al (2011) Combining ecophysiological modelling and quantitative trait locus analysis to identify key elementary processes underlying tomato fruit sugar concentration. J Exp Bot 3:907–919

    Article  CAS  Google Scholar 

  • Quadrana L, Almeida J, Asis R et al (2014) Natural occurring epialleles determine vitamin E accumulation in tomato fruits. Nat Commun 5:3027

    Article  CAS  PubMed  Google Scholar 

  • Rafalski JA (2010) Association genetics in crop improvement. Curr Opin Plant Biol 13:174–180

    Article  CAS  PubMed  Google Scholar 

  • Ranc N, Munos S, Xu J et al (2012) Genome-wide association mapping in tomato (Solanum lycopersicum) is possible using genome admixture of Solanum lycopersicum var. cerasiforme. G3 (Bethesda) 2(8):853–864

    Google Scholar 

  • Rick CM (1982) The potential of exotic germplasm for tomato improvement. Vasil I K, Scowcroft WR, Frey KJ (eds) Plant improvement and somatic cell genetics. Academic Press, New York, pp 1–28

    Google Scholar 

  • Robert VJM, West MAL, Inai S et al (2001) Marker-assisted introgression of blackmold resistance QTL alleles from wild Lycopersicon cheesmanii to cultivated tomato (L. esculentum) and evaluation of QTL phenotypic effects. Mol Breed 8:217–233

    Article  CAS  Google Scholar 

  • Robbins MD, Sim SC, Yang W et al (2011) Mapping and linkage disequilibrium analysis with a genome-wide collection of SNPs that detect polymorphism in cultivated tomato. J Exp Bot 62(6):1831–1845

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez GR, Moyseenko JB, Robbins MD et al (2010) Tomato analyzer: a useful software application to collect accurate and detailed morphological and colorimetric data from two-dimensional objects. J Vis Exp 37:e1856

    Google Scholar 

  • Rodriguez GR, Muños S, Anderson C et al (2011) Distribution of SUN, OVATE, LC, and FAS in the tomato germplasm and the relationship to fruit shape diversity. Plant Physiol 156:275–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez GR, Kim HJ, van der Knaap E (2013) Mapping of two suppressors of OVATE (sov) loci in tomato. Heredity 111(3):256–264

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ron M, Dorrity MW, de Lucas M et al (2013) Identification of novel loci regulating inter-specific variation in root morphology and cellular development in tomato. Plant Physiol 162(2):755–768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rousseaux MC, Jones CM, Adams D et al (2005) QTL analysis of fruit antioxidants in tomato using Lycopersicon pennellii introgression lines. Theor Appl Genet 111:1396–1408

    Article  CAS  PubMed  Google Scholar 

  • Sacco A, Di Matteo A, Lombardi N et al (2013) Quantitative trait loci pyramiding for fruit quality traits in tomato. Mol Breed 31(1):217–222

    Article  CAS  PubMed  Google Scholar 

  • Saito K, Matsuda F (2010) Metabolomics for functional genomics, systems biology, and biotechnology. Annu Rev Plant Biol 61:463–489

    Article  CAS  PubMed  Google Scholar 

  • Saliba-Colombani V, Causse M, Langlois D et al (2001) Genetic analysis of organoleptic quality in fresh market tomato. 1. Mapping QTLs for physical and chemical traits. Theor Appl Genet 102:259–272

    Article  CAS  Google Scholar 

  • Salinas M, Capel C, Alba JM et al (2013) Genetic mapping of two QTL from the wild tomato Solanum pimpinellifolium L. controlling resistance against two-spotted spider mite (Tetranychus urticae Koch). Theor Appl Genet 26(1):83–92

    Article  CAS  Google Scholar 

  • Salvi S, Tuberosa R (2005) To clone or not to clone plant QTLs: present and future challenges. Trends Plant Sci 10(6):297–304

    Article  CAS  PubMed  Google Scholar 

  • Sandbrink JM, van Ooijen J, Purimahua CC et al (1995) Localization of genes for bacterial canker resistance in Lycopersicon peruvianum using RFLPs. Theor Appl Genet 90:444–450

    Article  CAS  PubMed  Google Scholar 

  • Sauvage C, Segura V, Bauchet G et al (2014) Genome-wide association in tomato reveals 44 candidate loci for fruit metabolic traits. Plant Physiol 165(3):1120–1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sax K (1923) Association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris. Genetics 8:552–560

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schauer N, Semel Y, Roessner U et al (2006) Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nat Biotechnol 24:447–454

    Article  CAS  PubMed  Google Scholar 

  • Schauer N, Semel Y, Balbo I et al (2008) Mode of inheritance of primary metabolic traits in tomato. Plant Cell 20:509–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schilmiller A, Shi F, Kim J et al (2010) Mass spectrometry screening reveals widespread diversity in trichome specialized metabolites of tomato chromosomal substitution lines. Plant J 62(3):391–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schilmiller AL, Charbonneau AL, Last RL (2012) Identification of a BAHD acetyltransferase that produces protective acyl sugars in tomato trichomes. Proc Natl Acad Sci USA 109(40):16377–16382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segura V, Vilhjálmsson BJ, Platt A et al (2012) An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations. Nat Genet 44:825–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semel Y, Nissenbaum J, Menda N et al (2006) Overdominant quantitative trait loci for yield and fitness in tomato. Proc Natl Acad Sci USA 103:12981–12986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Severin AJ, Peiffer GA, Xu WW et al (2010) An integrative approach to genomic introgression mapping. Plant Physiol 154:3–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shirasawa K, Fukuoka H, Matsunaga H et al (2013) DNA marker applications to molecular genetics and genomics in tomato. Breed Sci 63(1):21–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shivaprasad PV, Dunn RM, Santos BA et al (2012) Extraordinary transgressive phenotypes of hybrid tomato are influenced by epigenetics and small silencing RNAs. EMBO J 31(2):257–266

    Article  CAS  PubMed  Google Scholar 

  • Schmalenbach I, March TJ, Bringezu T et al (2011) High-resolution genotyping of wild barley introgression lines and fine-mapping of the threshability locus thresh-1 using the Illumina GoldenGate assay. G3 (Bethesda) 1:187–196

    Google Scholar 

  • Sim SC, Van Deynze A, Stoffel K et al (2012) High-density SNP genotyping of tomato (Solanum lycopersicum L.) reveals patterns of genetic variation due to breeding. PLoS ONE 7(9):e45520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smart CD, Tanksley SD, Mayton H, Fry WE (2007) Resistance to Phytophthora infestans in Lycopersicon pennellii. Plant Dis 91(8):1045–1049

    Article  Google Scholar 

  • Steinhauser MC, Steinhauser D, Gibon Y et al (2011) Identification of enzyme activity quantitative trait loci in a Solanum lycopersicum x Solanum pennellii introgression line population. Plant Physiol 157(3):998–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevens R, Buret M, Duffé P et al (2007) Candidate genes and quantitative trait loci affecting fruit ascorbic acid content in three tomato populations. Plant Physiol 143:1943–1953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevens R, Page D, Gouble B et al (2008) Tomato fruit ascorbic acid content is linked with monodehydroascorbate reductase activity and tolerance to chilling stress. Plant, Cell Environ 31:1086–1096

    Article  CAS  Google Scholar 

  • Stommel JR, Zhang Y (2001) Inheritance and QTL analysis of anthracnose resistance in the cultivated tomato (Lycopersicon esculentum). Acta Hort 542:303–310

    Article  Google Scholar 

  • Sumugat MR, Sugiyama N (2010) Quantitative trait loci analysis of flowering time and vegetative traits in tomato plants grown using different seedling raising methods. Hortic Environ Biotechnol 51(4):326–334

    Google Scholar 

  • Sumugat MR, Lee ON, Nemoto K et al (2010) Quantitative trait loci analysis of flowering-time-related traits in tomato. Sci Hort 123(3):343–349

    Article  CAS  Google Scholar 

  • Sumugat MR, Lee ON, Mine Y et al (2011) Quantitative trait analysis of transplanting time and other root-growth-related traits in tomato. Sci Hort 129(4):622–628

    Article  Google Scholar 

  • Sun YD, Liang Y, Wu JM et al (2012) Dynamic QTL analysis for fruit lycopene content and total soluble solid content in a Solanum lycopersicum & #x00D7. S. pimpinellifolium cross. Genet Mol Res 11(4):3696–3710

    Article  CAS  PubMed  Google Scholar 

  • Tadmor Y, Fridman E, Gur A et al (2002) Identification of malodorous, a wild species allele affecting tomato aroma that was selected against during domestication. J Agri Food Chem 50:2005–2009

    Article  CAS  Google Scholar 

  • Takagi H, Abe A, Yoshida K et al (2013) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74(1):174–183

    Article  CAS  PubMed  Google Scholar 

  • Tanksley SD (1993) Mapping polygenes. Annu Rev Genet 27:205–233

    Article  CAS  PubMed  Google Scholar 

  • Tanksley SD (2004) The genetic, developmental, and molecular bases of fruit size and shape variation in tomato. Plant Cell 16:S181–S189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066

    Article  CAS  PubMed  Google Scholar 

  • Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203

    Article  CAS  PubMed  Google Scholar 

  • Tanksley SD, Medina-Filho H, Rick CM (1982) Use of naturally-occuring enzyme variation to detect and map genes controlling quantitative traits in an interspecific cross of tomato. Heredity 49:11–25

    Article  Google Scholar 

  • Tanksley SD, Ganal MW, Prince JP et al (1992) High density molecular linkage maps of the tomato and potato genomes. Genetics 132:1141–1160

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanksley SD, Grandillo S, Fulton TM et al (1996) Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinellifolium. Theor Appl Genet 92:213–224

    Article  CAS  PubMed  Google Scholar 

  • Tecle IY, Menda N, Buels RM et al (2010) solQTL: a tool for QTL analysis, visualization and linking to genomes at SGN database. BMC Bioinformatics 11:525

    Article  PubMed  PubMed Central  Google Scholar 

  • Termolino P, Fulton T, Perez O et al (2010) Advanced backcross QTL analysis of a Solanum lycopersicum × Solanum chilense cross. In: Proceedings of the SOL2010 7th solanaceae conference, Dundee (Scotland), 5–9 September, p 56

    Google Scholar 

  • Thoday JM (1961) Location of polygenes. Nature 191:368–370

    Article  Google Scholar 

  • Thoquet P, Olivier J, Sperisen C et al (1996a) Quantitative trait loci determining resistance to bacterial wilt in tomato cultivar Hawaii 7996. Mol Plant Microbe Interact 9:826–836

    Article  CAS  Google Scholar 

  • Thoquet P, Olivier J, Sperisen C et al (1996b) Polygenic resistance of tomato plants to bacterial wilt in the French West Indies. Mol Plant Microbe Interact 9:837–842

    Article  CAS  Google Scholar 

  • Tieman DM, Zeigler M, Schmelz EA et al (2006) Identification of loci affecting flavour volatile emissions in tomato fruits. J Exp Bot 57:887–896

    Article  CAS  PubMed  Google Scholar 

  • Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485(7400):635–641

    Article  CAS  Google Scholar 

  • Toubiana D, Semel Y, Tohge T et al (2012) Metabolic profiling of a mapping population exposes new insights in the regulation of seed metabolism and seed, fruit, and plant relations. PLoS Genet. doi:10.1371/journal.pgen.1002612

    PubMed  PubMed Central  Google Scholar 

  • Tripodi P, Di Dato F, Maurer S et al (2010) A genetic platform of tomato multi-species introgression lines: new tools for QTL analysis, gene cloning and molecular breeding. 54° Convegno della Società di Genetica Agraria. Matera, 27–30 Settembre, ISBN 978-88-904570-0-5

    Google Scholar 

  • Truco MJ, Randall LB, Bloom AJ et al (2000) Detection of QTLs associated with shoot wilting and root ammonium uptake under chilling temperatures in an interspecific backcross population from Lycopersicon esculentum × L. hirsutum. Theor Appl Genet 101:1082–1092

    Article  CAS  Google Scholar 

  • Trujillo-Moya C, Gisbert C, Vilanova S et al (2011) Localization of QTLs for in vitro plant regeneration in tomato. BMC Plant Biol 11:140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uozumi A, Ikeda H, Hiraga M et al (2012) Tolerance to salt stress and blossom-end rot in an introgression line, IL8-3, of tomato. Sci Hort 138:1–6

    Article  CAS  Google Scholar 

  • Vallejos CE, Tanksley SD (1983) Segregation of isozyme markers and cold tolerance in an interspecific backcross of tomato. Theor Appl Genet 66:241–247

    CAS  PubMed  Google Scholar 

  • Van Schalkwyk A, Wenzl P, Smit S et al (2012) Bin mapping of tomato diversity array (DArT) markers to genomic regions of Solanum lycopersicum x Solanum pennellii introgression lines. Theor Appl Genet 124(5):947–956

    Article  CAS  PubMed  Google Scholar 

  • Van der Hoeven RS, Monforte AJ, Breeden D et al (2000) Genetic control and evolution of sesquiterpene biosynthesis in Lycopersicon esculentum and L. hirsutum. Plant Cell 12:2283–2294

    Article  PubMed Central  Google Scholar 

  • van der Knaap E, Tanksley SD (2001) Identification and characterization of a novel locus controlling early fruit development in tomato. Theor Appl Genet 103:353–358

    Article  Google Scholar 

  • van der Knaap E, Tanksley SD (2003) The making of a bell pepper-shaped tomato fruit: identification of loci controlling fruit morphology in Yellow Stuffer tomato. Theor Appl Genet 107:139–147

    Article  PubMed  CAS  Google Scholar 

  • van der Knaap E, Lippman ZB, Tanksley SD (2002) Extremely elongated tomato fruit controlled by four quantitative trait loci with epistatic interactions. Theor Appl Genet 104:241–247

    Article  Google Scholar 

  • van der Knaap E, Sanyal A, Jackson SA et al (2004) High-resolution fine mapping and fluorescence in situ hybridization analysis of sun, a locus controlling tomato fruit shape, reveals a region of the tomato genome prone to DNA rearrangements. Genetics 168:2127–2140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van der Knaap E, Chakrabarti M, Chu YH et al (2014) What lies beyond the eye: the molecular mechanisms regulating tomato fruit weight and shape. Front Plant Sci 5(227):1–13

    Google Scholar 

  • van Heusden AW, Koornneef M, Voorrips RE et al (1999) Three QTLs from Lycopersicon peruvianum confer a high level of resistance to Clavibacter michiganensis ssp. michiganensis. Theor Appl Genet 99:1068–1074

    Article  Google Scholar 

  • Villalta I, Bernet GP, Carbonell EA et al (2007) Comparative QTL analysis of salinity tolerance in terms of fruit yield using two Solanum populations of F7 lines. Theor Appl Genet 114:1001–1017

    Article  CAS  PubMed  Google Scholar 

  • Villalta I, Reina-Sánchez A, Bolarín MC et al (2008) Genetic analysis of Na(+) and K(+) concentrations in leaf and stem as physiological components of salt tolerance in tomato. Theor Appl Genet 116:869–880

    Article  CAS  PubMed  Google Scholar 

  • Víquez-Zamora M, Vosman B, van de Geest H et al (2013) Tomato breeding in the genomics era: insights from a SNP array. BMC Genom. doi:10.1186/1471-2164-14-354

    Google Scholar 

  • Visscher PM, Brown MA, McCarthy MI et al (2012) Five years of GWAS discovery. Am J Hum Genet 90:7–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang JF, Olivier J, Thoquet P et al (2000) Resistance of tomato line Hawaii7996 to Ralstonia solanacearum Pss4 in Taiwan is controlled mainly by a major strain-specific locus. Mol Plant Microbe Interact 13:6–13

    Article  CAS  PubMed  Google Scholar 

  • Wang JF, Ho FI, Hai THT et al (2013) Identification of major QTLs associated with stable resistance of tomato cultivar ‘Hawaii 7996’ to Ralstonia solanacearum. Euphytica 190(2):241–252

    Article  CAS  Google Scholar 

  • Wayne ML, McIntyre LM (2002) Combining mapping and arraying: an approach to candidate gene identification. Proc Natl Acad Sci USA 99(23):14903–14906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weller JI, Soller M, Brody T (1988) Linkage analysis of quantitative traits in an interspecific cross of tomato (Lycopersicon esculentum × Lycopersicon pimpinellifolium) by means of genetic markers. Genetics 118:329–339

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu F, Mueller LA, Crouzillat D et al (2006) Combining bioinformatics and phylogenetics to identify large sets of single-copy orthologous genes (COSII) for comparative, evolutionary and systematic studies: a test case in the euasterid plant clade. Genetics 174:1407–1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu S, Xiao H, Cabrera A et al (2011) SUN regulates vegetative and reproductive organ shape by changing cell division patterns. Plant Physiol 157(3):1175–1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao H, Jiang N, Schaffner EK et al (2008) A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science 319:1527–1530

    Article  CAS  PubMed  Google Scholar 

  • Xiao H, Radovich C, Welty N et al (2009) Integration of tomato reproductive developmental landmarks and expression profiles, and the effect of SUN on fruit shape. BMC Plant Biol 9:49

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu J, Zhao Q, Du P et al (2010) Developing high throughput genotyped chromosome segment substitution lines based on population whole-genome re-sequencing in rice (Oryza sativa L.). BMC Genom 11:656

    Article  CAS  Google Scholar 

  • Xu J, Ranc N, Muños S et al (2013) Phenotypic diversity and association mapping for fruit quality traits in cultivated tomato and related species. Theor Appl Genet 126(3):567–581

    Article  PubMed  Google Scholar 

  • Xu X, Martin B, Comstock JP et al (2008) Fine mapping a QTL for carbon isotope composition in tomato. Theor Appl Genet 117:221–233

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Sacks EJ, Lewis Ivey ML et al (2005) Resistance in Lycopersicon esculentum intraspecific crosses to race T1 strains of Xanthomonas campestris pv. vesicatoria causing bacterial spot of tomato. Phytopathology 95:519–527

    Article  CAS  PubMed  Google Scholar 

  • Yates HE, Frary A, Doganlar S et al (2004) Comparative fine mapping of fruit quality QTLs on chromosome 4 introgressions derived from two wild species. Euphytica 135:283–296

    Article  CAS  Google Scholar 

  • Yogendra KN, Ramanjini Gowda PH (2013) Phenotypic and molecular characterization of a tomato (Solanum lycopersicum L.) F2 population segregation for improving shelf life. Genet Mol Res 12(1):506–518

    Google Scholar 

  • Zamir D (2001) Improving plant breeding with exotic genetic libraries. Nat Rev Genet 2:983–989

    Article  CAS  PubMed  Google Scholar 

  • Zamir D (2013) Where have all the crop phenotypes gone? PLoS Biol 11(6):e1001595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zamir D, Tal M (1987) Genetic analysis of sodium, potassium and chloride ion content in Lycopersicon. Euphytica 36:187–191

    Article  CAS  Google Scholar 

  • Zamir D, Selia Ben-David T, Rudich J et al (1984) Frequency distributions and linkage relationships of 2-tridecanone in interspecific segregating generation of tomato. Euphytica 33:481–488

    Article  CAS  Google Scholar 

  • Zanor MI, Rambla JL, Chaïb J et al (2009) Metabolic characterization of loci affecting sensory attributes in tomato allows an assessment of the influence of the levels of primary metabolites and volatile organic contents. J Exp Bot 60(7):2139–2154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Lin GY, Nino-Liu D et al (2003a) Mapping QTLs conferring early blight (Alternaria solani) resistance in a Lycopersicon esculentum × L. hirsutum cross by selective genotyping. Mol Breed 12:3–19

    Article  CAS  Google Scholar 

  • Zhang LP, Lin GY, Foolad MR (2003b) QTL comparison of salt tolerance during seed germination and vegetative growth in a Lycopersicon esculentum × L. pimpinellifolium RIL population. Acta Hort 618:59–67

    Article  CAS  Google Scholar 

  • Zhang N, Brewer MT, van der Knaap E (2012) Fine mapping of fw3.2 controlling fruit weight in tomato. Theor Appl Genet 125(2):273–284

    Article  CAS  PubMed  Google Scholar 

  • Zhu C, Gore M, Buckler ES et al (2008) Status and prospects of association mapping in plants. Plant Genome 1(1):1–19

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank all the colleagues who provided unpublished information and apologize to those authors whose work we could not highlight because of space limitations. Research in the laboratory of S. Grandillo and M. Cammareri was supported in part by the EUSOL project PL 016214-2, the Italian Ministry of University and Research (MIUR) project GenoPOM-PRO, a dedicated grant from the Italian Ministry of Economy and Finance to the National Research Council for the project “Innovazione e Sviluppo del Mezzogiorno—Conoscenze Integrate per Sostenibilità ed Innovazione del Made in Italy Agroalimentare—Legge n. 191/2009,” and the PON R&C 2007–2013 grant financed by the Italian MIUR in cooperation with the European Funds for the Regional Development (FESR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvana Grandillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grandillo, S., Cammareri, M. (2016). Molecular Mapping of Quantitative Trait Loci in Tomato. In: Causse, M., Giovannoni, J., Bouzayen, M., Zouine, M. (eds) The Tomato Genome. Compendium of Plant Genomes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53389-5_4

Download citation

Publish with us

Policies and ethics