Skip to main content
Log in

Tomato fruit weight 11.3 maps close to fasciated on the bottom of chromosome 11

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Fruit weight is an important character in many crops. In tomato (Solanum lycopersicum), fruit weight is controlled by many loci, some of which have a major effect on the trait. Fruit weight 11.3 (fw11.3) and fasciated (fas) have been mapped to the same region on chromosome 11. We sought to determine whether these loci represent alleles of the same or separate genes. We show that fas and fw11.3 are not allelic and instead represent separate genes. The fw11.3 locus was fine-mapped to a 149-kb region comprised of 22 predicted genes. Unlike most fruit weight loci, gene action at fw11.3 indicates that the mutant allele is partially dominant over the wild allele. We also investigate the nature of the genome rearrangement at the fas locus and demonstrate that the mutation is due to a 294-kb inversion disrupting the YABBY gene known to underlie the fas locus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alpert KB, Grandillo S, Tanksley SD (1995) fw 2.2: a major QTL controlling fruit weight is common to both red- and green-fruited tomato species. Theor Appl Genet 91:994–1000

    Article  Google Scholar 

  • Bai Y, Lindhout P (2007) Domestication and breeding of tomatoes: what have we gained and what can we gain in the future? Ann Bot 100:1085–1094

    Article  PubMed  Google Scholar 

  • Barrero LS, Tanksley SD (2004) Evaluating the genetic basis of multiple-locule fruit in a broad cross section of tomato cultivars. Theor Appl Genet 109:669–679

    Article  PubMed  CAS  Google Scholar 

  • Barrero LS, Cong B, Wu F, Tanksley SD (2006) Developmental characterization of the fasciated locus and mapping of Arabidopsis candidate genes involved in the control of floral meristem size and carpel number in tomato. Genome 49:991–1006

    Article  PubMed  CAS  Google Scholar 

  • Berckmans B, De Veylder L (2009) Transcriptional control of the cell cycle. Curr Opin Plant Biol 12:599–605

    Article  PubMed  CAS  Google Scholar 

  • Bowman JL (2000) The YABBY gene family and abaxial cell fate. Curr Opin Plant Biol 3:17–22

    Article  PubMed  CAS  Google Scholar 

  • Brewer MT, Moyseenko JB, Monforte AJ, van der Knaap E (2007) Morphological variation in tomato: a comprehensive study of quantitative trait loci controlling fruit shape and development. J Exp Bot 58:1339–1349

    Article  PubMed  CAS  Google Scholar 

  • Causse M, Chaib J, Lecomte L, Buret M, Hospital F (2007) Both additivity and epistasis control the genetic variation for fruit quality traits in tomato. Theor Appl Genet 115:429–442

    Article  PubMed  CAS  Google Scholar 

  • Chen JG (2010) Heterotrimeric G-proteins and cell division in plants. In: Yalovsky S, Baluška F, Jones A (eds) Integrated G proteins signaling in plants. Signaling and communication in plants. Springer, Berlin, pp 155–176

    Chapter  Google Scholar 

  • Cheniclet C, Rong WY, Causse M, Frangne N, Bolling L, Carde JP, Renaudin JP (2005) Cell expansion and endoreduplication show a large genetic variability in pericarp and contribute strongly to tomato fruit growth. Plant Physiol 139:1984–1994

    Article  PubMed  CAS  Google Scholar 

  • Clark SE, Williams RW, Meyerowitz EM (1997) The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell 89:575–585

    Article  PubMed  CAS  Google Scholar 

  • Cong B, Tanksley SD (2006) FW2.2 and cell cycle control in developing tomato fruit: a possible example of gene co-option in the evolution of a novel organ. Plant Mol Biol 62:867–880

    Article  PubMed  CAS  Google Scholar 

  • Cong B, Liu J, Tanksley SD (2002) Natural alleles at a tomato fruit size quantitative trait locus differ by heterochronic regulatory mutations. Proc Natl Acad Sci USA 99:13606–13611

    Article  PubMed  CAS  Google Scholar 

  • Cong B, Barrero LS, Tanksley SD (2008) Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication. Nat Genet 40:800–804

    Article  PubMed  CAS  Google Scholar 

  • Dahan Y, Rosenfeld R, Zadiranov V, Irihimovitch V (2010) A proposed conserved role for an avocado FW2.2-like gene as a negative regulator of fruit cell division. Planta 232:663–676

    Article  PubMed  CAS  Google Scholar 

  • Dey S, Banerjee P, Saha P (2009) Cell cycle specific expression and nucleolar localization of human J-domain containing co-chaperone Mrj. Mol Cell Biochem 322:137–142

    Article  PubMed  CAS  Google Scholar 

  • Disch S, Anastasiou E, Sharma VK, Laux T, Fletcher JC, Lenhard M (2006) The E3 ubiquitin ligase BIG BROTHER controls arabidopsis organ size in a dosage-dependent manner. Curr Biol 16:272–279

    Article  PubMed  CAS  Google Scholar 

  • Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15:573–581

    Article  PubMed  CAS  Google Scholar 

  • Farkas I, Dombradi V, Miskei M, Szabados L, Koncz C (2007) Arabidopsis PPP family of serine/threonine phosphatases. Trends Plant Sci 12:169–176

    Article  PubMed  CAS  Google Scholar 

  • Frary A, Nesbitt TC, Grandillo S, van der Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert KB, Tanksley SD (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88

    Article  PubMed  CAS  Google Scholar 

  • Fu Y, Xu T, Zhu L, Wen M, Yang Z (2009) A ROP GTPase signaling pathway controls cortical microtubule ordering and cell expansion in Arabidopsis. Curr Biol 19:1827–1832

    Article  PubMed  CAS  Google Scholar 

  • Giovannoni J (2001) Molecular biology of fruit maturation and ripening. Annu Rev Plant Physiol Plant Mol Biol 52:725–749

    Article  PubMed  CAS  Google Scholar 

  • Golz JF, Hudson A (1999) Plant development: YABBYs claw to the fore. Curr Biol 9:R861–R863

    Article  PubMed  CAS  Google Scholar 

  • Gonzalo MJ, van der Knaap E (2008) A comparative analysis into the genetic bases of morphology in tomato varieties exhibiting elongated fruit shape. Theor Appl Genet 116:647–656

    Article  PubMed  Google Scholar 

  • Gonzalo MJ, Brewer MT, Anderson C, Sullivan D, Gray S, van der Knaap E (2009) Tomato fruit shape analysis using morphometric and morphology attributes implemented in tomato analyzer software program. J Amer Soc Hort Sci 134:77–87

    Google Scholar 

  • Grandillo S, Ku HM, Tanksley SD (1999) Identifying the loci responsible for natural variation in fruit size and shape in tomato. Theor Appl Genet 99:978–987

    Article  CAS  Google Scholar 

  • Guo M, Rupe MA, Dieter JA, Zou J, Spielbauer D, Duncan KE, Howard RJ, Hou Z, Simmons CR (2010) Cell number regulator 1 affects plant and organ size in maize: implications for crop yield enhancement and heterosis. Plant Cell 22:1057–1073

    Article  PubMed  CAS  Google Scholar 

  • Ham BK, Park JM, Lee SB, Kim MJ, Lee IJ, Kim KJ, Kwon CS, Paek KH (2006) Tobacco Tsip1, a DnaJ-type Zn finger protein, is recruited to and potentiates Tsi1-mediated transcriptional activation. Plant Cell 18:2005–2020

    Article  PubMed  CAS  Google Scholar 

  • Inze D, De Veylder L (2006) Cell cycle regulation in plant development. Annu Rev Genet 40:77–105

    Article  PubMed  CAS  Google Scholar 

  • Kampinga HH, Craig EA (2010) The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat Rev Mol Cell Biol 11:579–592

    Article  PubMed  CAS  Google Scholar 

  • Krizek BA (2009) Making bigger plants: key regulators of final organ size. Curr Opin Plant Biol 12:17–22

    Article  PubMed  CAS  Google Scholar 

  • Kurepa J, Wang S, Li Y, Zaitlin D, Pierce AJ, Smalle JA (2009) Loss of 26S proteasome function leads to increased cell size and decreased cell number in Arabidopsis shoot organs. Plant Physiol 150:178–189

    Article  PubMed  CAS  Google Scholar 

  • Levin DA (2002) The role of chromosomal change in plant evolution. Oxford series in ecology and evolution. Oxford University Press, New York

    Google Scholar 

  • Li Q, Wan JM (2005) SSRHunter: development of a local searching software for SSR sites. Hereditas 27:808–810

    PubMed  Google Scholar 

  • Li Y, Zheng L, Corke F, Smith C, Bevan MW (2008) Control of final seed and organ size by the DA1 gene family in Arabidopsis thaliana. Genes Dev 22:1331–1336

    Article  PubMed  CAS  Google Scholar 

  • Libault M, Zhang XC, Govindarajulu M, Qiu J, Ong YT, Brechenmacher L, Berg RH, Hurley-Sommer A, Taylor CG, Stacey G (2010) A member of the highly conserved FWL (tomato FW2.2-like) gene family is essential for soybean nodule organogenesis. Plant J 62:852–864

    Article  PubMed  CAS  Google Scholar 

  • Lippman Z, Tanksley SD (2001) Dissecting the genetic pathway to extreme fruit size in tomato using a cross between the small-fruited wild species Lycopersicon pimpinellifolium and L. esculentum var. Giant Heirloom. Genetics 158:413–422

    PubMed  CAS  Google Scholar 

  • Lu S, Van Eck J, Zhou X, Lopez AB, O’Halloran DM, Cosman KM, Conlin BJ, Paolillo DJ, Garvin DF, Vrebalov J, Kochian LV, Kupper H, Earle ED, Cao J, Li L (2006) The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high levels of beta-carotene accumulation. Plant Cell 18:3594–3605

    Article  PubMed  CAS  Google Scholar 

  • Luan S (2003) Protein phosphatases in plants. Annu Rev Plant Biol 54:63–92

    Article  PubMed  CAS  Google Scholar 

  • Neff MM, Turk E, Kalishman M (2002) Web-based primer design for single nucleotide polymorphism analysis. Trends Genet 18:613–615

    Article  PubMed  CAS  Google Scholar 

  • Nesbitt TC, Tanksley SD (2002) Comparative sequencing in the genus Lycopersicon. Implications for the evolution of fruit size in the domestication of cultivated tomatoes. Genetics 162:365–379

    PubMed  CAS  Google Scholar 

  • Nibau C, Wu HM, Cheung AY (2006) RAC/ROP GTPases: ‘hubs’ for signal integration and diversification in plants. Trends Plant Sci 11:309–315

    Article  PubMed  CAS  Google Scholar 

  • O’Regan L, Blot J, Fry AM (2007) Mitotic regulation by NIMA-related kinases. Cell Div 2:25

    Article  PubMed  Google Scholar 

  • Paran I, van der Knaap E (2007) Genetic and molecular regulation of fruit and plant domestication traits in tomato and pepper. J Exp Bot 58:3841–3852

    Article  PubMed  CAS  Google Scholar 

  • Pierce BA (2002) Genetics: a conceptual approach, 1st edn. W. H. Freeman, New York

    Google Scholar 

  • Qiu XB, Shao YM, Miao S, Wang L (2006) The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones. Cell Mol Life Sci 63:2560–2570

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez GR, Munos S, Anderson C, Sim SC, Michel A, Causse M, McSpadden Gardener B, Francis D, van der Knaap E (2011) Distribution of SUN, OVATE, LC and FAS in the tomato germplasm and the relationship to fruit shape diversity. Plant Physiol doi:10.1104/pp.110.167577

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Smalle J, Vierstra RD (2004) The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol 55:555–590

    Article  PubMed  CAS  Google Scholar 

  • Song XJ, Huang W, Shi M, Zhu MZ, Lin HX (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39:623–630

    Article  PubMed  CAS  Google Scholar 

  • Sonoda Y, Sako K, Maki Y, Yamazaki N, Yamamoto H, Ikeda A, Yamaguchi J (2009) Regulation of leaf organ size by the Arabidopsis RPT2a 19S proteasome subunit. Plant J 60:68–78

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Takahashi H, Kunieda T, Fuji K, Shimada T, Hara-Nishimura I (2007) Arabidopsis KAM2/GRV2 is required for proper endosome formation and functions in vacuolar sorting and determination of the embryo growth axis. Plant Cell 19:320–332

    Article  PubMed  CAS  Google Scholar 

  • Tanksley SD (1993) Mapping polygenes. Annu Rev Genet 27:205–233

    Article  PubMed  CAS  Google Scholar 

  • Tanksley SD (2004) The genetic, developmental, and molecular bases of fruit size and shape variation in tomato. Plant Cell 16(Suppl):S181–S189

    Article  PubMed  CAS  Google Scholar 

  • Van der Knaap E, Tanksley SD (2003) The making of a bell pepper-shaped tomato fruit: identification of loci controlling fruit morphology in Yellow Stuffer tomato. Theor Appl Genet 107:139–147

    PubMed  Google Scholar 

  • Vrebalov J, Ruezinsky D, Padmanabhan V, White R, Medrano D, Drake R, Schuch W, Giovannoni J (2002) A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus. Science 296:343–346

    Article  PubMed  CAS  Google Scholar 

  • Xiao H, Jiang N, Schaffner E, Stockinger EJ, van der Knaap E (2008) A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science 319:1527–1530

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Qin Y, Xie C, Zhao F, Zhao J, Liu D, Chen S, Fuglsang AT, Palmgren MG, Schumaker KS, Deng XW, Guo Y (2010) The Arabidopsis chaperone J3 regulates the plasma membrane H+-ATPase through interaction with the PKS5 kinase. Plant Cell 22:1313–1332

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Claire Anderson for her help with the analysis of the rearrangement at the fas locus. We thank all members of the Van der Knaap laboratory, in particular Jenny Moyseenko for their help with greenhouse and field experiments. The work was supported by National Science Foundation grant IOS 0922661 to EvdK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esther van der Knaap.

Additional information

Communicated by I. Paran.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 80 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Z., van der Knaap, E. Tomato fruit weight 11.3 maps close to fasciated on the bottom of chromosome 11. Theor Appl Genet 123, 465–474 (2011). https://doi.org/10.1007/s00122-011-1599-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-011-1599-3

Keywords

Navigation