Skip to main content
Log in

Quantitative trait loci increasing acylsugars in tomato breeding lines and their impacts on silverleaf whiteflies

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Solanum pennellii LA716, a wild relative of tomato, produces acylsugars, an insect resistance compound with activity against many tomato insect pests. Breeding of cultivated tomato using S. pennellii LA716 as a donor parent has led to the development of the elite acylsugar-producing tomato breeding line CU071026. CU071026 contains five introgressed S. pennellii genomic regions, and produces acylsugars at moderate levels that are effective against insect pests. A BC1F1 population was created by crossing the F1 CU071026 × S. pennellii LA716 with CU071026 as the recurrent parent; this BC1F1 population was used to identify additional regions of the S. pennellii genome important for further improvement of acylsugar production. This population was genotyped with 94 markers in the segregating regions and phenotyped for level of acylsugar production. Using QTLNetwork 2.1 for the detection of quantitative trait loci (QTL) and epistatic interactions, this study identified five QTL for total acylsugar level. Additionally, two epistatic interactions between QTL were found to control significant levels of total acylsugar production. Two of the QTL identified were further evaluated in silverleaf whitefly (Bemisia tabaci) field cage trials using acylsugar breeding lines that differ for the presence/absence of these QTL. While high levels of silverleaf whitefly resistance were observed in all acylsugar breeding lines, lines containing the additional QTL on either chromosomes 6 or 10 had increased levels of total acylsugar production and reduced incidence of whitefly. Acylsugar lines containing the chromosome 6 QTL also had increased density of the type IV glandular trichomes which produce and exude acylsugars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson PK (2005) Introduction. In: Anderson PK, Morales FJ (eds.) Whitefly and whitefly-borne viruses in the tropics: building a knowledge base for global action. CIAT Publication no. 341, Cali, Colombia. pp 1–11

  • Blauth SL, Churchill GA, Mutschler MA (1998) Identification of QTL associated with acylsugar accumulation using intraspecific populations of the wild tomato Lycopersicon pennellii. Theor Appl Genet 96:458–467

    Article  CAS  Google Scholar 

  • Blauth SL, Steffens JC, Churchill GA, Mutschler MA (1999) QTL analysis of acylsugar fatty acid constitutents using intraspecific populations of the wild tomato Lycopersicon pennellii. Theor Appl Genet 99:373–381

    Article  Google Scholar 

  • Burke B, Goldsby G, Mudd JB (1987) Polar epicuticular lipids of Lycopersicon pennellii. Phytochemistry 26:2567–2571

    Article  CAS  Google Scholar 

  • Buta GJ, Lusby WR, Neal JW Jr, Waters RM, Pittarelli GW (1993) Sucrose esters from Nicotiana gossei active against the greenhouse whitefly Trialeuroides vaporarium. Phytochemistry 32:859–864

    Article  CAS  Google Scholar 

  • Churchhill GA, Doerge RW (1994) Empirical threshold for quantitative trait mapping. Genetics 138:963–971

    Google Scholar 

  • Cutler HG, Severson RF, Cole PD, Jackson DM, Johnson AW (1986) Secondary metabolites from higher plants. Their possible role as biological control agents. In: Green MB, Hedin PA (eds) Natural resistance of plants to pests. American Chemical Society, Washington, DC, pp 178–196

    Chapter  Google Scholar 

  • Doebley J, Stec A, Gustus C (1995) Teosinte branched1 and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics 141:333–346

    PubMed  CAS  Google Scholar 

  • Doyle JJ, Dickson EE (1987) Preservation of plant samples for DNA restriction endonuclease analysis. Taxon 36:715–722

    Article  Google Scholar 

  • Eshed Y, Zamir D (1996) Less-than-additive epistatic interactions of quantitative trait loci in tomato. Genetics 143:1807–1817

    PubMed  CAS  Google Scholar 

  • Fobes JF, Mudd J, Marsden M (1985) Epicuticular lipid on the leaves of L. pennellii and L. esculentum. Plant Physiol 77:567–570

    Article  PubMed  CAS  Google Scholar 

  • Fulton T, van der Hoeven R, Eannetta N, Tanksley S (2002) Identification, analysis and utilization of a conserved ortholog set (COS) markers for comparative genomics in higher plants. Plant Cell 14:1457–1467

    Article  PubMed  CAS  Google Scholar 

  • Gibson RW (1976) Trapping of the spider mite Tetranychus urticae by glandular hairs on the wild potato Solanum berthaultii. Potato Res 19:179–182

    Article  Google Scholar 

  • Gibson RJ, Valencia L (1978) A survey of potato species for resistance to the mite Polyphagotarsonemus latus, with particular reference to the protection of Solanum berthaultii and S. tarijense by glandular hairs. Potato Res 21:217–223

    Article  Google Scholar 

  • Goffreda JC, Mutschler MA (1989) Inheritance of potato aphid resistance in hybrids between Lycopersicon esculentum and L. pennellii. Theor Appl Genet 78:210–216

    Article  Google Scholar 

  • Goffreda JC, Mutschler MA, Tingey WM (1988) Feeding behavior of potato aphid affected by glandular trichomes on wild tomato. Entomol Exp Appl 48:101–107

    Article  Google Scholar 

  • Goffreda JC, Mutschler MA, Steffens JC (1990) Association of epicuticular sugars with aphid resistance in hybrids with wild tomato. J Am Soc Hortic Sci 117:161–164

    Google Scholar 

  • Hare JD (2005) Bioactivity of acylglucose esters from Datura wrightii glandular trichomes against three native insect herbivores. J Chem Ecol 31:1475–1491

    Article  PubMed  CAS  Google Scholar 

  • Hawthorne DM, Shapiro JA, Tingey WM, Mutschler MA (1992) Trichome-borne and artificially applied acylsugars of wild tomato deter feeding and oviposition of the leafminer, Liriomyza trifolii. Entomol Exp Appl 65:65–73

    Article  CAS  Google Scholar 

  • Holley JD, King RR, Singh RP (1987) Glandular trichomes and the resistance of Solanum berthaultii (PI 473340) to infection from Phytophthora infestans. Can J Plant Pathol 9:291–294

    Article  Google Scholar 

  • Imtiaz M, Ogbonnaya FC, Oman J, van Ginkel M (2008) Characterization of quantitative trait loci controlling genetic variation for preharvest sprouting in synthetic backcross-derived wheat lines. Genetics 178:1725–1736

    Article  PubMed  CAS  Google Scholar 

  • Juvik J, Shapiro JA, Young TE, Mutschler MA (1994) Acylglucoses of the wild tomato Lycopersicon pennellii alter behavior and reduce growth and survival of Helicoverpa zea and Spodoptera exigua. J Econ Entomol 87:482–492

    CAS  Google Scholar 

  • Kennedy BS, Nielsen MT, Severson RF, Sisson VA, Stephenson MK, Jackson DM (1992) Leaf surface chemicals from Nicotiana affecting germination of Peronospora tabacina sporangia. J Chem Ecol 18:1467–1479

    Article  CAS  Google Scholar 

  • King RR, Calhoun LA (1988) 2, 3-di-O-and 1, 2, 3-tri-O-acylated glucose esters from the glandular trichomes of Datura metel. Phytochemistry 27:3761–3765

    Article  CAS  Google Scholar 

  • King RR, Pelletier Y, Singh RP, Calhoun LA (1986) 3,4-Di-O-isobutyryl-6-O-caprylsucrose: the major component of a novel sucrose ester complex from the type B glandular trichomes of Solanum berthaultii Hawkes (PI473340). J Chem Soc Chem Commun 14:1078–1079

    Article  Google Scholar 

  • King RR, Singh RP, Boucher A (1987) Variation in sucrose esters from the type B glandular trichomes of certain wild potato species. Am Potato J 64:529–534

    Article  Google Scholar 

  • King RR, Calhoun LA, Singh RP (1988) 3, 4-di-O-and 2, 3, 4-tri-O-acylated glucose esters from the glandular trichomes of non-tuberous Solanum species. Phytochemistry 27:3765–3768

    Article  CAS  Google Scholar 

  • King RR, Calhoun LA, Singh RP, Boucher A (1990) Sucrose esters associated with glandular trichomes of wild Lycopersicon species. Phytochemistry 29:2115–2118

    Article  CAS  Google Scholar 

  • Kliebenstein DJ (2009) A quantitative genetics and ecological model system: understanding the aliphatic glucosinolate biosynthetic network via QTLs. Phytochem Rev 8:243–254

    Article  CAS  Google Scholar 

  • Kliebenstein DJ, Kroymann J, Mitchell-olds T (2005) The glucosinolate-myrosinase system in an ecological and evolutionary context. Curr Opin Plant Biol 8:264–271

    Article  PubMed  CAS  Google Scholar 

  • Lark KG, Chase K, Adler F, Mansur LM, Orf JH (1995) Interactions between quantitative trait loci in soybean in which trait variation at one locus is conditional upon specific allele at another. Proc Natl Acad Sci USA 92:4656–4660

    Article  PubMed  CAS  Google Scholar 

  • Li AX, Steffens JC (2000) An acyltransferase catalyzing the formation of diacylglucose is a serine carboxypeptidase-like protein. Proc Natl Acad Sci USA 97:6902–6907

    Article  PubMed  CAS  Google Scholar 

  • Liedl BE, Lawson DM, White KK, Shapiro JA, Cohen DE, Carson WG, Trumble JT, Mutschler MA (1995) Acylglucoses of the wild tomato Lycopersicon pennellii alters settling and reduces oviposition of Bemisia argentifolii. J Econ Entomol 88:742–748

    CAS  Google Scholar 

  • Lukens LN, Doebley J (1999) Epistatic and environmental interactions for quantitative trait loci involved in maize evolution. Genet Res 74:291–302

    Article  CAS  Google Scholar 

  • Manly KF, Cudmore RH Jr, Meer JM (2001) Map Manager QTX, cross-platform software for genetic mapping. Mamm Genome 12:930–932

    Article  PubMed  CAS  Google Scholar 

  • McMullen MD, Byrne PF, Snook ME, Wiseman BR, Lee EA, Widstrom NW, Coe EH (1998) Quantatative trait loci and metabolic pathways. Proc Natl Acad Sci USA 95:1996–2000

    Article  PubMed  CAS  Google Scholar 

  • McNally KL, Mutschler MA (1997) Use of introgression lines and zonal mapping to identify RAPD markers linked to QTL. Mol Breed 3:203–212

    Article  CAS  Google Scholar 

  • Mueller LA, Solow TH, Taylor N et al (2005) The SOL genomics network. A comparative resource for Solanaceae biology and beyond. Plant Physiol 138:1310–1317

    Article  PubMed  CAS  Google Scholar 

  • Mutschler MA, Doerge RW, Liu J, Kuai JP, Liedl B, Shapiro Y (1996) QTL analysis of pest resistance in the wild tomato, Lycopersicon pennellii: QTL controlling acylsugar level and composition. Theor Appl Genet 92:709–718

    Article  CAS  Google Scholar 

  • Neal JJ, Tingey WM, Steffens JC (1989) Glandular trichomes of Solanum berthaultii and resistance to the Colorado potato beetle. Entomol Exp Appl 51:133–140

    Article  Google Scholar 

  • Neal JJ, Tingey WM, Steffens JC (1990) Sucrose esters of carboxylic acids in glandular trichomes of Solanum berthaultii deter settling and probing by green peach aphid. J Chem Ecol 16:487–497

    Article  CAS  Google Scholar 

  • Palumbo JC, Horowitz AR, Prabhaker N (2001) Insecticidal control and resistance management for Bemisia tabaci. Crop Prot 20:739–765

    Article  CAS  Google Scholar 

  • Pappu HR, Jones RAC, Jain RJ (2008) Global status of tospovirus epidemics in diverse cropping systems: successes achieved and challenges ahead. Virus Res 141:219–236

    Article  Google Scholar 

  • Polston JE, Anderson PK (1997) The emergence of whitefly-transmitted geminiviruses in tomato in the western hemisphere. Plant Dis 81:1358–1369

    Article  Google Scholar 

  • Rodriguez AE, Tingey WM, Mutschler MA (1993) Acylsugars produced by type IV trichomes of Lycopersicon pennellii (Corr.)D’Arcy deter settling of the green peach aphid, Myzus persicae (Sulzer) (Homoptera: Aphididae). J Econ Entomol 86:34–39

    CAS  Google Scholar 

  • Rowe HC, Hansen BG, Halkier BA, Kliebenstein DJ (2008) Biochemical networks and epistasis shape the Arabidopsis thaliana metabolome. Plant Cell 20:1199–1216

    Article  PubMed  CAS  Google Scholar 

  • Saikia AK, Muniyappa V (1989) Epidemiology and control of tomato leaf curl virus in southern India. Trop Agric (Trinidad) 66:350–354

    Google Scholar 

  • SAS Institute Inc (2008) JMP 8 User Guide. SAS Institute Inc., Cary

    Google Scholar 

  • Schilmiller A, Shi F, Kim J, Charbonneau A, Holmes D, Jones AD, Last RL (2010) Mass spectrometry screening reveals widespread diversity in trichome specialized metabolites of tomato chromosomal substitution lines. Plant J 62:391–403

    Article  PubMed  CAS  Google Scholar 

  • Schumacher JN (1970) The isolation of 6-O-acetyl-2,3,4-tri-O-((+)-3-methylvaleryl)-D-glucopyranose from tobacco. Carbohydrate Res 13:1–8

    Article  CAS  Google Scholar 

  • Schuster DJ (2001) Relationship of silverleaf whitefly population density to severity of irregular ripening of tomato. HortScience 36:1089–1090

    Google Scholar 

  • Schuster DJ, Stansly PA, Polston JE (1996) Expressions of plant damage by Bemisia. In: Gerling D, Mayer RT (eds.), Bemisia 1995: Taxonomy, biology, damage control and management, Intercept. Ltd., Andover, Hants, UK, pp 153–165

  • Schuster DJ, Mann RS, Toapanta M et al (2010) Monitoring neonicotinoid resistance in biotype B of Bemisia tabaci in Florida. Pest Manag Sci 66:186–195

    PubMed  CAS  Google Scholar 

  • Segre D, DeLuna A, Church GM, Kishony R (2005) Modular epistasis in yeast metabolism. Nat Genet 37:77–83

    PubMed  CAS  Google Scholar 

  • Setter TL, Flannigan BA, Melkonian J (2001) Loss of kernel set due to water deficit and shade in maize: Carbohydrate supplies, abscisic acid, and cytokinins. Crop Sci 41:1530–1540

    Article  CAS  Google Scholar 

  • Severson RF, Johnson AW, Jackson DM (1985) Cuticular constituents of tobacco: factors affecting their production and their role in insect and disease resistance and smoke quality. Rec Adv Tobacco Sci 11:105–174

    CAS  Google Scholar 

  • Shapiro J, Steffens J, Mutschler MA (1994) Acylsugars of the wild tomato Lycopersicon pennellii in relation to its geographic distribution. Biochem Syst Ecol 22:545–561

    Article  CAS  Google Scholar 

  • von Korff M, Leon J, Pillen K (2010) Detection of epistatic interactions between exotic alleles intrgressed from wild barley. Theor Appl Genet 121:1455–1464

    Article  Google Scholar 

  • Yang J, Hu C, Hu H, Yu R, Xia Z, Ye X, Zhu J (2008) QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics 24:721–723

    Article  PubMed  Google Scholar 

  • Yu SB, Li JX, Xu CG, Tan YF, Gao YJ, Li XH, Zhang QF, Maroof MAS (1997) Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA 94:9226–9231

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank for George Kennedy for advice prior to the insect cage experiment and critical reading of the manuscript. We thank Larry Robertson for loan of the cages used for the insect study. We would also like to thank Jean-Luc Jannink for the valuable discussions on epistasis. This study was funded by the Hatch Project NYC-149440) and the Cornell University Vegetable Breeding Institute.

Conflict of interest

The authors have declared no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martha A. Mutschler.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leckie, B.M., De Jong, D.M. & Mutschler, M.A. Quantitative trait loci increasing acylsugars in tomato breeding lines and their impacts on silverleaf whiteflies. Mol Breeding 30, 1621–1634 (2012). https://doi.org/10.1007/s11032-012-9746-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-012-9746-3

Keywords

Navigation