Skip to main content
Log in

Interspecific reproductive barriers in the tomato clade: opportunities to decipher mechanisms of reproductive isolation

  • Review
  • Published:
Sexual Plant Reproduction Aims and scope Submit manuscript

Abstract

The tomato clade within the genus Solanum has numerous advantages for mechanistic studies of reproductive isolation. Its thirteen closely related species, along with four closely allied Solanum species, provide a defined group with diverse mating systems that display complex interspecific reproductive barriers. Several kinds of pre- and postzygotic barriers have already been identified within this clade. Well-developed genetic maps, introgression lines, interspecific bridging lines, and the newly available draft genome sequence of the domesticated tomato (Solanum lycopersicum) are valuable tools for the genetic analysis of interspecific reproductive barriers. The excellent chromosome morphology of these diploid species allows detailed cytological analysis of interspecific hybrids. Transgenic methodologies, well developed in the Solanaceae, allow the functional testing of candidate reproductive barrier genes as well as live imaging of pollen rejection events through the use of fluorescently tagged proteins. Proteomic and transcriptomics approaches are also providing new insights into the molecular nature of interspecific barriers. Recent progress toward understanding reproductive isolation mechanisms using these molecular and genetic tools is assessed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

SC:

Self-compatible

SI:

Self-incompatible

UI:

Unilateral incongruity

cv:

Cultivar

References

  • Aguilar R, Bernardello G, Galetto L (2002) Pollen–pistil relationships and pollen size-number trade-off in species of the tribe Lycieae (Solanaceae). J Plant Res 115:335–340

    Article  PubMed  Google Scholar 

  • Albini SM (1988) Synaptonemal complex spreading in Allium cepa and Allium fistulosum. II. Pachytene observations: the SC karyotype and the correspondence of late recombination nodules and chiasmata. Genome 30:399–410

    Article  Google Scholar 

  • Albini SM, Jones GH (1984) Synaptonemal complex-associated centromeres and recombination nodules in plant meiocytes prepared by an improved surface-spreading technique. Exp Cell Res 155:589–592

    Article  Google Scholar 

  • Albini SM, Jones GH, Wallace BMN (1984) A method for preparing two-dimensional surface-spreads of synaptonemal complexes from plant meiocytes for light and electron microscopy. Exp Cell Res 152:280–285

    Article  PubMed  CAS  Google Scholar 

  • Anderson LK, Covey PA, Larsen LR, Bedinger PA, Stack SM (2010) Structural differences in chromosomes distinguish species in the tomato clade. J Cytogen Genome Res (in press)

  • Barton DW (1950) Pachytene morphology of the tomato chromosome complement. Am J Bot 37:639–643

    Article  Google Scholar 

  • Beecher B, McClure BA (2001) Expressing self-incompatibility RNases (S-RNases) in transgenic plants. In: Schein CH (ed) Nuclease methods and protocols. Humana Press, Totowa, pp 65–85

    Chapter  Google Scholar 

  • Beecher B, Murfett J, McClure BA (1998) RNaseI from Escherichia coli cannot substitute for S-RNase in rejection of Nicotiana plumbaginifolia pollen. Plant Mol Biol 36:553–563

    Article  PubMed  CAS  Google Scholar 

  • Bernacchi D, Tanksley SD (1997) An interspecific backcross of Lycopersicon esculentum × L. hirsutum: linkage analysis and a QTL study of sexual compatibility factors and floral traits. Genetics 147:861–877

    PubMed  CAS  Google Scholar 

  • Borg M, Brownfield L, Twell D (2009) Male gametophyte development: a molecular perspective. J Exp Bot 60:1465–1478

    Google Scholar 

  • Brown SW (1949) The structure and meiotic behavior of the differentiated chromosomes of tomato. Genetics 34:437–461

    Google Scholar 

  • Canady MA, Meglic V, Chetelat RT (2005) A library of Solanum lycopersicoides introgression lines in cultivated tomato. Genome 48:685–697

    Article  PubMed  CAS  Google Scholar 

  • Chandler JM, Jan C-C, Beard BH (1986) Chromosomal differentiation among annual Helianthus species. Syst Botany 11:354–371

    Article  Google Scholar 

  • Chang S-B, Anderson LK, Sherman JD, Royer SM, Stack SM (2007) Predicting and testing physical locations of genetically mapped loci on tomato pachytene chromosome 1. Genetics 176:2131–2138

    Article  PubMed  CAS  Google Scholar 

  • Chen K-Y, Cong B, Wing R, Vrebalov J, Tanksley SD (2007) Changes in regulation of a transcription factor lead to autogamy in cultivated tomatoes. Science 318:643–645

    Article  PubMed  CAS  Google Scholar 

  • Chetelat RT, De Verna JW (1991) Expression of unilateral incompatibility in pollen of Lycopersicon pennellii is determined by major loci on chromosomes 1, 6, and 10. Theor Appl Genet 82:704–712

    Article  Google Scholar 

  • Chetelat RT, Pertuze RA, Faundez L, Graham EB, Jones CM (2009) Distribution, ecology and reproductive biology of wild tomatoes and related nightshades from the Atacama Desert region of northern Chile. Euphytica 167:77–93

    Article  Google Scholar 

  • Cheung AY, Wu HM (2008) Structural and signaling networks for the polar cell growth machinery in pollen tubes. Annu Rev Plant Biol 59:547–572

    Article  PubMed  CAS  Google Scholar 

  • Covey PA, KondoK, Welch L, Frank E, Kumar A, Knaap Evd, Nunez R, Lopez-Casado G, Rose JKC, McClure BA, Bedinger PA (2010) Multiple features that distinguish unilateral incongruity and self-incompatibility in the tomato clade. Plant J. doi:10.1111/j.1365-313X.2010.04340.x

  • Coyne JA, Aulard S, Berry A (1991) Lack of underdominance in a naturally occurring pericentric inversion in Drosophila melanogaster and its implications for chromosome evolution. Genetics 129:791–802

    PubMed  CAS  Google Scholar 

  • Cruden R (2009) Pollen grain size, stigma depth, and style length: the relationships revisited. Plant Syst Evol 278:223–238

    Article  Google Scholar 

  • Cruden RW, Lyon DL (1985) Correlations among stigma depth, style length, and pollen grain size: do they reflect function or phylogeny? Botanical Gazette 146:143–149

    Article  Google Scholar 

  • Dai S, Wang T, Yan X, Chen S (2007) Proteomics of pollen development and germination. J Proteome Res 6:4556–4563

    Google Scholar 

  • Darwin C (1897) The different forms of flowers on plants of the same species. D. Appleton and Company, London

    Google Scholar 

  • Dawe RK (2005) Centromere renewal and replacement in the plant kingdom. Proc Natl Acad Sci USA 192:11573–11574

    Article  Google Scholar 

  • Delphino F (1867) Sull’opera, la distribuzione dei sessi nelle piante e la legge che osta alla perennita della fecundazione consanguinea. Atti Soc Itl Sci Natil 10:272–303

    Google Scholar 

  • Dobzhansky T (1936) Studies on hybrid sterility II. Localization of sterility factors in Drosophila pseudoobscura hybrids. Genetics 21:113–135

    PubMed  CAS  Google Scholar 

  • Eshed Y, Zamir D (1995) An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 141:1147–1162

    PubMed  CAS  Google Scholar 

  • Garcia CC (2007) Pollen starch reserves in tomato relatives: ecophysiological implications. Grana 46:13–19

    Google Scholar 

  • Georgiady M, Lord S, Elizabeth M (2002) Evolution of the inbred flower form in the currant tomato, Lycopersicon pimpinellifolium. Int J Plant Sci 163:531–541

    Article  Google Scholar 

  • Gillies CB (1981) Electron microscopy of spread maize pachytene synaptonemal complexes. Chromosoma 83:575–591

    Article  Google Scholar 

  • Gottschalk W (1954) Die Chromosomenstruktur der Solanaceen unter Berücksichtigung (relation). Chromosoma 6:539–626

    Article  PubMed  CAS  Google Scholar 

  • Graham EB, Shannon SM, Persrsen JP, Chetelat RT (2003) A self-compatible population of Lycopersicon peruvianum collected from N. Chile. Tomato Genet Coop 53:22–24

    Google Scholar 

  • Grobei MA, Qeli E, Brunner E, Rehrauer H, Zhang R, Roschitzki B, Basler K, Ahrens CH, Grossniklaus U (2009) Deterministic protein inference for shotgun proteomics data provides new insights into Arabidopsis pollen development and function. Genome Res 19:1786–1800

    Google Scholar 

  • Haerizadeh F, Wong C, Bhalla P, Gresshoff P, Singh M (2009) Genomic expression profiling of mature soybean (Glycine max) pollen. BMC Plant Biol 9:25

    Google Scholar 

  • Hancock CN, Kent L, McClure BA (2005) The stylar 120 kDa glycoprotein is required for S-specific pollen rejection in Nicotiana. Plant J 43:716–723

    Article  PubMed  CAS  Google Scholar 

  • Hardon JJ (1967) Unilateral incompatibility between Solanum pennellii and Lycopersicon esculentum. Genetics 57:795–808

    PubMed  CAS  Google Scholar 

  • Hirano K, Aya K, Hobo T, Sakakibara H, Kojima M, Shim RA, Hasegawa Y, Ueguchi-Tanaka M, Matsuoka M (2008) Comprehensive transcriptome analysis of phytohormone biosynthesis and signaling genes in microspore/pollen and tapetum of rice. Plant Cell Physiol 49:1429–1450

    Google Scholar 

  • Hobo T, Suwabe K, Aya K, Suzuki G, Yano K, Ishimizu T, Fujita M, Kikuchi S, Hamada K, Miyano M, Fujioka T, Kaneko F, Kazama, T, Mizuta Y, Takahashi H, Shiono K, Nakazono M, Tsutsumi N, Nagamura Y, Kurata N, Watanabe M, Matsuoka M (2008) Various spatiotemporal expression profiles of anther-expressed genes in rice. Plant Cell Physiol 49:1417–1428

    Google Scholar 

  • Hogenboom NG (1972) Breaking breeding barriers in Lycopersicon. 5. The inheritance of the unilateral incongruity between L. peruvianum (L.) Mill. and L. esculentum Mill. and the genetics of its breakdown. Euphytica 21:405–414

    Article  Google Scholar 

  • Holle M, Rick CM, Hunt DG (1978–1979) Catalog of collections of green-fruited Lycopersicon species and Solanum pennellii found in watersheds of Peru. Tomato Genet Cooper 28–29, 49–78, 63–91

  • Holmes-Davis R, Tanaka CK, Vensel WH, Hurkman WJ, McCormick S (2005) Proteome mapping of mature pollen of Arabidopsis thaliana. Proteomics 5:4864–4884

    Google Scholar 

  • Honys D, Twell D (2004) Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol 5:R85

    Google Scholar 

  • Kadej AJ, Wilms HJ, Willemse MTM (1985) Stigma and stigmatoid tissue of Lycopersicon esculentum Miller

  • Kerim T, Imin N, Weinman JJ, Rolfe BG (2003) Proteome analysis of male gametophyte development in rice anthers. Proteomics 3:738–751

    Google Scholar 

  • Kondo K, Yamamoto M, Itahashi R, Sato T, Egashira H, Hattori T, Kowyama Y (2002) Insights into the evolution of self-compatibility in Lycopersicon from a study of stylar factors. Plant J 30:143–153

    Article  PubMed  CAS  Google Scholar 

  • Lai Z, Nakazato T, Salmaso M, Burke JM, Tang S, Knapp SJ, Rieseberg LH (2005) Extensive chromosomal repatterning and the evolution of sterility barriers in hybrid sunflower species. Genetics 171:291–303

    Article  PubMed  CAS  Google Scholar 

  • Lee H-S, Huang S, Kao T-h (1994) S proteins control rejection of incompatible pollen in Petunia inflata. Nature 367:560–563

    Article  PubMed  CAS  Google Scholar 

  • Lee C, Page L, McClure B, Holtsford T (2008) Post-pollination hybridization barriers in Nicotiana section Alatae. Sex Plant Reprod 21:183–195

    Article  Google Scholar 

  • Lee CB, Kim S, McClure B (2009) A pollen protein, NaPCCP, that binds pistil arabinogalactan proteins also binds phosphatidylinositol 3-phosphate and associates with the pollen tube endomembrane system. Plant Physiol 149:791–802

    Article  PubMed  CAS  Google Scholar 

  • Lewis D, Crowe L (1958) Unilateral interspecific incompatibility in flowering plants. Heredity 12:233–256

    Article  Google Scholar 

  • Li W, Royer S, Chetelat RT (2010) Fine mapping of ui6.1, a gametophytic factor controlling pollen-side unilateral incompatibility in interspecific Solanum hybrids. Genetics. doi:genetics.110.116343

  • Liedl BE, McCormick S, Mutschler MA (1996) Unilateral incongruity in crosses involving Lycopersicon pennellii and L. esculentum is distinct from self-incompatibility in expression, timing and location. Sexual Plant Reprod 9:299–308

    Article  Google Scholar 

  • Linsley EG, Rick CM, Stephens SG (1966) Observations on the floral relationships of the Galapagos carpenter bee (Hymenoptera: Apidae). Pan-Pacific Entomol 42:1–18

    Google Scholar 

  • Lowry DB, Modliszewski JL, Wright KM, Wu CA, Willis JH (2008) The strength and genetic basis of reproductive isolating barriers in flowering plants. Philos Trans Royal Soc B Biol Sci 363:3009–3021

    Article  Google Scholar 

  • Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen Y-J, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer MLI, Jarvie TP, Jirage KB, Kim J-B, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu P, Begley RF, Rothberg JM (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    Google Scholar 

  • Martin FW (1961) The inheritance of self-incompatibility in hybrids of Lycopersicon Esculentum Mill. x L. Chilense Dun. Genetics 46:1443–1454

    PubMed  CAS  Google Scholar 

  • Martin FW (1964) The inheritance of unilateral incompatibility in Lycopersicon hirsutum. Genetics 50:459–469

    PubMed  CAS  Google Scholar 

  • Matton DP, Maes O, Laublin G, Xike Q, Bertrand C, Morse D, Cappadocia M (1997) Hypervariable domains of self-incompatibility RNases mediate allele-specific pollen recognition. Plant Cell 9:1757–1766

    Article  PubMed  CAS  Google Scholar 

  • McClure B, Mou B, Canevascini S, Bernatzky R (1999) A small asparagine-rich protein required for S-allele-specific pollen rejection in Nicotiana. Proc Natl Acad Sci USA 96:13548–13553

    Article  PubMed  CAS  Google Scholar 

  • McCormick S (1991) Transformation of tomato with Agrobacterium tumefaciens. Plant Tissue Cult Manual B6:1–9

    Google Scholar 

  • McGuire DC, Rick CM (1954) Self-Incompatibility in species of Lycopersicon sect. Eriopersicon and hybrids with L. esculentum. Hilgardia 23:101–124

    Google Scholar 

  • Moses M (1968) Synaptinemal complex. Ann Rev Genet 2:363–412

    Article  Google Scholar 

  • Moses M, Poorman P (1984) Synapsis, synaptic adjustment and DNA synthesis in mouse oocytes. Chromosom Today 8:99–103

    Google Scholar 

  • Moyle LC, Graham EB (2005) Genetics of hybrid incompatibility between Lycopersicon esculentum and L. hirsutum. Genetics 169:355–373

    Article  PubMed  CAS  Google Scholar 

  • Moyle LC, Nakazato T (2008) Comparative genetics of hybrid incompatibility: sterility in two Solanum species crosses. Genetics 179:1437–1453

    Article  PubMed  Google Scholar 

  • Moyle LC, Nakazato T (2009) Complex epistasis for Dobzhansky-Muller hybrid incompatibility in Solanum. Genetics 181:347–351

    Article  PubMed  Google Scholar 

  • Moyle LC, Nakazato T (2010) Hybrid incompatibility “snowballs” between Solanum species. Science 329:1521–1523

    Google Scholar 

  • Mueller HJ (1942) Isolating mechanisms, evolution and temperature. Biol Symp 6:71–125

    Google Scholar 

  • Murfett J, McClure BA (1998) Expressing foreign genes in the pistil: a comparison of S-RNase constructs in different Nicotiana backgrounds. Plant Mol Biol 37:561–569

    Article  PubMed  CAS  Google Scholar 

  • Murfett J, Cornish EC, Ebert PR, Bonig I, McClure BA, Clarke AE (1992) Expression of a self-incompatibility glycoprotein (S2-Ribonuclease) from Nicotiana alata in Transgenic Nicotiana tabacum. Plant Cell 4:1063–1074

    Article  PubMed  CAS  Google Scholar 

  • Murfett J, Atherton TL, Mou B, Gasser CS, McClure BA (1994) S-RNase expressed in transgenic Nicotiana causes S-allele-specific pollen rejection. Nature 367:563–566

    Article  PubMed  CAS  Google Scholar 

  • Murfett J, Strabala TJ, Zurek DM, Mou B, Beecher B, McClure BA (1996) S-RNase and interspecific pollen rejection in the Genus Nicotiana: multiple pollen-rejection pathways contribute to unilateral incompatibility between self-incompatible and self-compatible species. Plant Cell 8:943–958

    Article  PubMed  CAS  Google Scholar 

  • Mutschler M, Liedl B (1994) Interspecific crossing barriers in Lycopersicon and their relationship to self-incompatibility. In: Williams E (ed) Genetic control of self-incompatibility and reproductive development in flowering plants. Kluwer Academic, Netherlands, pp 164–188

  • Nasrallah JB (2002) Recognition and rejection of self in plant reproduction. Science 296:305–308

    Article  PubMed  CAS  Google Scholar 

  • Nasrallah JB, Liu P, Sherman-Broyles S, Schmidt R, Nasrallah ME (2007) Epigenetic mechanisms for breakdown of self-incompatibility in interspecific hybrids. Genetics 175:1965–1973

    Article  PubMed  CAS  Google Scholar 

  • Nesbitt TC, Tanksley SD (2002) Comparative sequencing in the genus Lycopersicon. Implications for the evolution of fruit size in the domestication of cultivated tomatoes. Genetics 162:365–379

    Google Scholar 

  • Noor MAF, Bertucci LA, Reiland J (2001) Chromosomal inversions and the reproductive isolation of species. PNAS USA 98:12084–12088

    Article  PubMed  CAS  Google Scholar 

  • O’Brien M, Kapfer C, Major G, Laurin M, Bertrand C, Kondo K, Kowyama Y, Matton DP (2002) Molecular analysis of the stylar-expressed Solanum chacoense small asparagine-rich protein family related to the HT modifier of gametophytic self-incompatibility in Nicotiana. Plant J 32:985–996

    Article  PubMed  Google Scholar 

  • Peralta IE, Spooner DM, Knapp S (2008) Taxonomy of wild tomatoes and their relatives (Solanum sect. Lycopersicoides, sect. Juglandifolia, sect. Lycopersicon; Solanaceae). Syst Botany Monogr 84:186

    Google Scholar 

  • Qiao H, Wang H, Zhao L, Zhou J, Huang J, Zhang Y, Xue Y (2004) The F-box protein AhSLFS2 physically interacts with S-RNases that may be inhibited by the ubiquitin/26S proteasome pathway of protein degradation during compatible pollination in Antirrhinum. Plant Cell 16:582–595

    Google Scholar 

  • Qin Y, Leydon AR, Manziello A, Pandey R, Mount D, Denic S, Vasic B, Johnson MA, Palanivelu R (2009) Penetration of the stigma and style elicits a novel transcriptome in pollen tubes, pointing to genes critical for growth in a pistil. PLoS Genet 5:e1000621

    Google Scholar 

  • Quiros C (1991) Lycopersicon cytogenetics. In: Tsuchiya T, Gupta PK (eds) Chromosome engineering in plants: genetics, breeding, evolution (Part B). Elsevier Science Publishers, Amsterdam, pp 119–137

    Google Scholar 

  • Rick CM (1950) Pollination relations of Lycopersicon esculentum in native and foreign regions. Evolution 4:110–122

    Article  Google Scholar 

  • Rick MC (1988) Tomato-like nightshades: affinities, autoecology, and breeders’ opportunities. Econ Bot 42:145–154

    Article  Google Scholar 

  • Rick CM, Chetelat RT (1991) The breakdown of self-incompatibility in Lycopersicon hirsutum. In: Hawkes L, Nee E (eds) Solanaceae III: taxonomy, chemistry, evolution, Royal Botanical Gardens Kew and Linnean Society of London, pp 253–256

  • Rick CM, Tanksley SD (1981) Genetic variation in Solanum pennellii: comparisons with two other sympatric tomato species. Plant Syst Evol 139:11–45

    Article  Google Scholar 

  • Rick CM, Holle M, Robbin TW (1978) Rates of cross-pollination in Lycopersicon pimpinellifolium: impact of genetic variation in floral characters. Plant Syst Evol 129:31–44

    Article  Google Scholar 

  • Rick CM, Fobes JF, Tanksley SD (1979) Evolution of mating systems in Lycopersicon hirsutum as deduced from genetic variation in electrophoretic and morphological characters. Plant Syst Evol 132:279–298

    Article  Google Scholar 

  • Rieseberg LH, Willis JH (2007) Plant speciation. Science 317:910–914

    Article  PubMed  CAS  Google Scholar 

  • Rieseberg LH, Linder CR, Seiler GJ (1995) Chromosomal and genic barriers to introgression in helianthus. Genetics 141:1163–1171

    PubMed  CAS  Google Scholar 

  • Rieseberg LH, Whitton J, Gardner K (1999) Hybrid zones and the genetic architecture of a barrier to gene flow between Two sunflower species. Genetics 152:713–727

    PubMed  CAS  Google Scholar 

  • Rodriguez F, Wu F, Ane C, Tanksley S, Spooner D (2009) Do potatoes and tomatoes have a single evolutionary history, and what proportion of the genome supports this history? BMC Evol Biology 9:191

    Article  Google Scholar 

  • Sassa H, Hirano H (2006) Identification of a new class of pistil-specific proteins of Petunia inflata that is structurally similar to, but functionally distinct from, the self-incompatibility factor HT. Mol Gen Genomics 275:97–104

    Article  CAS  Google Scholar 

  • Schopfer CR, Nasrallah ME, Nasrallah JB (1999) The male determinant of self-incompatibility in Brassica. Science 286:1697–1700

    Article  PubMed  CAS  Google Scholar 

  • Sheoran IS, Ross AR, Olson DJ, Sawhney VK (2007) Proteomic analysis of tomato (Lycopersicon esculentum) pollen. J Exp Bot 58:3525–3535

    Google Scholar 

  • Sherman JD, Stack SM (1992) Two-dimensional spreads of synaptonemal complexes from solanaceous plants. Genome 35:354–359

    Article  Google Scholar 

  • Sherman JD, Stack SM (1995) Two-dimensional spreads of synaptonemal complexes from solanaceous plants. VI. High-resolution recombination nodule map for tomato (Lycopersicon esculentum). Genetics 141:686–708

    Google Scholar 

  • Stack SM (1982) Two-dimensional spreads of synaptonemal complexes from solanaceous plants. I. The technique. Stain Technol 57:265–272

    PubMed  CAS  Google Scholar 

  • Stack SM, Anderson LK (1986a) Two-dimensional spreads of synaptonemal complexes from solanaceous plants. II. Synapsis in Lycopersicon esculentum. Am J Botany 73:264–281

    Article  Google Scholar 

  • Stack SM, Anderson LK (1986b) Two-dimensional spreads of synaptonemal complexes from solanaceous plants. III. Recombination nodules and crossing over in Lycopersicon esculentum (tomato). Chromosoma 94:253–258

    Article  Google Scholar 

  • Stack SM, Anderson LK (2009) Electron microscopic immunogold localization of recombination-related proteins in spreads of synaptonemal complexes from tomato microsporocytes. In: Keeney S (ed) Meiosis. Humana Press, Inc, Totowa, pp 147–169

    Chapter  Google Scholar 

  • Stack SM, Royer SM, Shearer LA, Chang SB, Giovannoni JJ, Westfall DH, White RA, Anderson LK (2009) Role of fluorescence in situ hybridization in sequencing the tomato genome. Cytogenet Genome Res 124:339–350

    Article  PubMed  CAS  Google Scholar 

  • Swanson C (1957) Cytology and cytogenetics. Printice-Hall, Inc), Englewood Cliffs

    Google Scholar 

  • Szinay D (2010) The development of FISH tools for genetic, phylogenetic and breeding studies in tomato (Solanum lycopersicum). Wageningen University, The Netherlands

  • Torres C (2000) Pollen size evolution: correlation between pollen volume and pistil length in Asteraceae. Sex Plant Reprod 12:365–370

    Article  Google Scholar 

  • von Wagenheim K-H (1957) Das Pachytan und der weiter Ablauf der meiose in diploiden Solanum-Arten und–Bastarden. Chromosoma 8:671–690

    Article  Google Scholar 

  • von Wettstein D, Rasmussen SW, Holm PB (1984) The synaptonemal complex in genetic segregation. Ann Rev Genet 18:331–413

    Article  Google Scholar 

  • Widmer A, Lexer C, Cozzolino S (2008) Evolution of reproductive isolation in plants. Heredity 102:31–38

    Article  PubMed  Google Scholar 

  • Williams EG, Rouse JL (1990) Relationships of pollen size, pistil length and pollen tube growth rates in Rhododendron and their influence on hybridization. Sex Plant Reprod 3:7–17

    Article  Google Scholar 

  • Wolters-Arts M, Lush WM, Mariani C (1998) Lipids are required for directional pollen-tube growth. Nature 392:818–821

    Article  PubMed  CAS  Google Scholar 

  • Yamane H, Ikeda K, Ushijima K, Sassa H, Tao R (2003) A pollen-expressed gene for a novel protein with an F-box motif that is very tightly linked to a gene for S-RNase in two species of cherry, Prunus cerasus and P. avium. Plant Cell Physiol 44:764–769

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation, grant number DBI-0605200. We thank Ms. Ashley Denney and Ms. Margaret Fleming for helpful editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia A. Bedinger.

Additional information

Communicated by Scott Russell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bedinger, P.A., Chetelat, R.T., McClure, B. et al. Interspecific reproductive barriers in the tomato clade: opportunities to decipher mechanisms of reproductive isolation. Sex Plant Reprod 24, 171–187 (2011). https://doi.org/10.1007/s00497-010-0155-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00497-010-0155-7

Keywords

Navigation