Skip to main content

Historical Perspective and Basic Principles of Plant Tissue Culture

  • Chapter
  • First Online:
Plant Biotechnology: Principles and Applications

Abstract

In 1902 Gottlieb Haberlandt proposed the idea to culture individual plant cells on artificial nutrient medium. Although he failed to culture them due to poor choice of experimental materials and inadequate nutrient supply, he made several valuable predictions about the nutrients’ requirement for in vitro culture conditions, which could possibly induce cell division, proliferation and embryo induction. Tissue culture has now become a well-established technique for culturing and studying the physiological behaviour of isolated plant organs, tissues, cells, protoplasts and even cell organelles under precisely controlled physical and chemical conditions. Micropropagation is one of the most important applications of plant tissue culture. It provides numerous advantages over conventional propagation like mass production of true-to-type and disease-free plants of elite species in highly speedy manner irrespective of the season requiring smaller space and tissue source. Therefore, it provides a reliable technique for in vitro conservation of various rare, endangered and threatened germplasm. Micropropagation protocols have been standardized for commercial production of many important medicinal and horticultural crops. Somatic embryogenesis is an extremely important aspect of plant tissue culture, occurring in vitro either indirectly from callus, suspension or protoplast culture or directly from the cell(s) of an organized structure. Advantages of somatic embryogenesis over organogenesis include several practical means of micropropagation. It reduces the necessity of timely and costly manipulations of individual explants as compared to organogenesis.

Moreover, somatic embryogenesis does not require the time-consuming subculture steps. As somatic embryos are the bipolar structures, they overcome difficulties with micropropagation of difficult to root species (mainly recalcitrant tree species). In addition to micropropagation, plant tissue culture is extensively used for the production of secondary metabolites through callus, suspension and organ culture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akula C, Akula A, Drew R (2003) Somatic embryogenesis in clonal neem, Azadirachta indica A. Juss. and analysis for in vitro azadirachtin production. In Vitro Cell Dev Biol Plant 39(3):304–310

    Article  CAS  Google Scholar 

  • Al-Mizory LSM, Yaseen SA, Hassan AM (2014) Effect of different explant and different concentrations of plant growth regulators on micropropagation of (Dianthus caryophyllus L.). IOSR J Agric Vet Sci 7:1–9

    Article  Google Scholar 

  • Andrzejewska-Golec E, Makowczynska J (2008) Micropropagation of Plantago camtschatica link. Acta Soc Bot Pol 77:269–273

    Article  CAS  Google Scholar 

  • Azadi P, Khosh-Khui M (2007) Micropropagation of Lilium ledebourii (Baker) Boiss as affected by plant growth regulator, sucrose concentration, harvesting season and cold treatments. Electron J Biotechnol 10:717–3458

    Article  CAS  Google Scholar 

  • Banerjee P (2013) In vitro plant regeneration of Bauhinia variegata Linn. through direct and indirect shoot bud development from different explants on MS solid and liquid media. Indian J Appl Pure Biol 28:181–192

    CAS  Google Scholar 

  • Bapat V, Fulzele D, Heble M, Rao P (1990) Production of sandalwood somatic embryos in bioreactors. Curr Sci 59:746–748

    Google Scholar 

  • Behar N, Tiwari KL, Jadhav SK (2014) Effect of explant type in development of in vitro micropropagation protocol of an endangered medicinal plant: Curcuma caesia Roxb. Biotechnology 13:22–27

    Article  Google Scholar 

  • Bhaskaran S, Smith RH (1990) Regeneration in cereal tissue culture: a review. Crop Sci 30:1328–1337

    Article  CAS  Google Scholar 

  • Bhatt ID, Dhar U (2004) Factors controlling micropropagation of Myrica esculenta buch.- Ham. ex D. Don: a high value wild edible of Kumaun Himalaya. Afr J Biotechnol 3:534–540

    Article  CAS  Google Scholar 

  • Bhau BS, Wakhlu AK (2001) Effect of genotype, explant type and growth regulators on organogenesis in Morus alba. Plant Cell Tissue Org Cult 66:25–29

    Article  CAS  Google Scholar 

  • Bhojwani SS, Razdan MK (1996) Plant tissue culture: theory and practice, a revised edition. Elsevier Amsterdam-Lausanne-New York-Oxford-Shannon-Tokyo

    Google Scholar 

  • Bienick ME, Harrell RC, Cantliffe DJ (1995) Enhancement of somatic embryogenesis of Ipomoea batatas in solid eultures and production of mature somatic embryos in liquid cultures for application to a bioreactor production system. Plant Cell Tissue Organ Cult 41:1–8

    Article  Google Scholar 

  • Bozena B (2001) Morphological and phylosiological characteristics of micropropagationed strawberry plants rooted in vitro or ex vitro. Sci Hortic 89:195–206

    Article  Google Scholar 

  • Cantelmo BO, Soares LP, Rocha JA, Pettinelli CH, Callado E, Mansur A, Castellar RF, Gagliardi R (2013) Repetitive somatic embryogenesis from leaves of the medicinal plant Petiveria alliacea L. Plant Cell Tiss Org Cult 115:385–393

    Article  CAS  Google Scholar 

  • Choffe KL, Victor JM, Murch SJ, Saxena PK (2000) In vitro regeneration of Echinacea purpurea L.: direct somatic embryogenesis and indirect shoot organogenesis in petiole culture. In Vitro Cellular & Developmental Biology-Plant 36:30–36

    Article  CAS  Google Scholar 

  • Choi YE, Kim JW, Soh WY (1997) Somatic embryogenesis and plant regeneration from suspension cultures of Acanthopanax koreanum Nakai. Plant Cell Rep 17:84–88

    Article  CAS  Google Scholar 

  • Choi Y-E, Yang D-C, Yoon E-S (1999) Rapid propagation of Eleutherococcus senticosus via direct somatic embryogenesis from explants of seedlings. Plant Cell Tissue Organ Cult 58:93–97

    Article  Google Scholar 

  • Choi YE, Ko SK, Lee KS, Yoon ES (2002) Production of plantlets of Eleutherococcus sessiliflorus via somatic embryogenesis and successful transfer to soil. Plant Cell Tiss Org Cult 69:201–204

    Article  CAS  Google Scholar 

  • Chu C-C (1978) The N6 medium and its applications to anther culture of cereal crops. In: Proceedings of symposium on plant tissue culture. Science Press Beijing, China, pp 43–50

    Google Scholar 

  • Close K, Ludeman L (1987) The effect of auxin-like plant growth regulators and osmotic regulation on induction of somatic embryogenesis from elite maize inbreds. Plant Sci 52:81–89

    Article  CAS  Google Scholar 

  • Cybularz-Urban T, Hanus-Fajerska E, Świderski A (2007) Effect of light wavelength on in vitro organogenesis of a Cattleya hybrid. Acta Biol Cracov Ser Bot 49:113–118

    Google Scholar 

  • de Jong AJ, Schmidt ED, de Vries SC (1993) Early events in higher-plant embryogenesis. Plant Mol Biol 22:367–377

    Article  PubMed  Google Scholar 

  • De Klerk GJ (2002) Rooting of microcuttings: theory and practice. Vitro Cell Dev Biol Plant 38(5):415–422

    Article  CAS  Google Scholar 

  • De Klerk GJ, Van Der Krieken WM, de Jong JC (1999) The formation of adventitious roots: new concepts, new possibilities. In Vitro Cell Dev Biol- Plant 35:189–199

    Article  Google Scholar 

  • Devendra B, Srinivas N, Reddy AS (2011) High frequency somatic embryogenesis and plant regeneration in nodal explant cultures of Eclipta alba L. Hassk. Ann Biol Res 2:143–149

    CAS  Google Scholar 

  • Dhandapani M, Kim DH, Hong S-B (2008) Efficient plant regeneration via somatic embryogenesis and organogenesis from the explants of Catharanthus roseus. In Vitro Cellular & Developmental Biology-Plant 44:18–25

    Article  CAS  Google Scholar 

  • Dipti FS, Mujib A (2014) Morphological anomalies in somatic embryo structure in Catharanthus roseus: improving embryo germination by amending plant growth regulators, activated charcoal and sucrose level. Br Biotechnol J 4:10–20

    Article  CAS  Google Scholar 

  • Dodeman VL, Ducreux G, Kreis M (1997) REVIEW ARTICLE Zygotic embryogenesis versus somatic embryogenesis. J Exp Bot 48:1493–1509

    CAS  Google Scholar 

  • Dudits D, Bogre L, Gyorgyey J (1991) Molecular and cellular approaches to the analysis of plant embryo development from somatic cells in vitro. J Cell Sci (UK)

    Google Scholar 

  • Epstein E, Müller J (1993) Indole-3-bmc acid in plants: occurrence, synthesis, metabolism and transport. Physiol Plant 88:382–389

    Article  CAS  Google Scholar 

  • Eriksson T (1965) Studies on the growth requirements and growth measurements of cell cultures of Haplopappus gracilis. Physiol Plant 18:976–993

    Article  CAS  Google Scholar 

  • Faisal M, Siddique I, Anis M (2006) An efficient plant regeneration system for Mucuna pruriens L. (DC) using cotyledonary node explants. In Vitro Cell Dev Biol Plant 42:59–64

    Article  CAS  Google Scholar 

  • Fajinmi OO, Amoo SO, Finnie JF, Staden JV (2014) Optimization of in vitro propagation of Coleonema album, a highly utilized medicinal and ornamental plant. S Afr J Bot 94:9–13

    Article  CAS  Google Scholar 

  • FehÈr A (2008) The initiation phase of somatic embryogenesis: what we know and what we don’t. Acta Biol Szeged 52:53–56

    Google Scholar 

  • Franklin G, Dias A (2006) Organogenesis and embryogenesis in several Hypericum perforatum genotypes. In Vitro Cellular & Developmental Biology-Plant 42:324–330

    Article  CAS  Google Scholar 

  • Fracaro F, Echeverrigaray S (2001) Micropropagation of Cunita galiodes, a popular medicinal plant of south Brazil. Plant Cell Tiss Org Cult 64:1–4

    Article  CAS  Google Scholar 

  • Gangopadhyay G, Das S, Mitra SK et al (2002) Enhanced rate of multiplication and rooting through the use of coir in aseptic liquid culture media. Plant Cell Tissue Organ Cult 68:301–310

    Article  CAS  Google Scholar 

  • Gangopadhyay G, Bandyopadhyay T, Basu Gangopadhyay S et al (2004) Luffa sponge – a unique matrix for tissue culture of Philodendron. Curr Sci 86:315–319

    Google Scholar 

  • Ghasemi Y, Nematzadeh GA, Omran VG, Dehestani A, Hosseini S (2012) The effects of explant type and phytohormones on African violet (Saintpaulia ionantha) micropropagation efficiency. Biharean Biol 6:73–76

    Google Scholar 

  • Gautheret RJ (1934) Culture du tissu cambial. CR Acad Sci Paris 198:2195–2196

    Google Scholar 

  • Gharyal P, Maheshwari S (1981) In vitro differentiation of somatic embryoids in a leguminous tree—Albizzia lebbeck L. Naturwissenschaften 68:379–380

    Article  Google Scholar 

  • Gingas VM, Lineberger RD (1989) Asexual embryogenesis and plant regeneration in Quercus. Plant Cell Tissue Organ Cult 17:191–203

    Article  Google Scholar 

  • Giridhar P, Rajasekaran T, Ravishankar GA (2005) Improvement of growth and root specific flavor compound 2-hydroxy-4-methoxy benzaldehyde of micro propagated plants of Decalepis hamiltonii Wight & Arn., under triacontanol treatment. Sci Hortic 106:228–236

    Article  CAS  Google Scholar 

  • Gomes F, Simoes M, Lopes ML, Canhoto JM (2010) Effect of plant growth regulators and genotype on the micropropagation of adult trees of Arbutus unedo L. (strawberry tree). New Biotechnol 27:882–892

    Article  CAS  Google Scholar 

  • Goyal P, Kachhwaha S, Kothari SL (2012) Micropropagation of Pithecellobium dulce (Roxb.) Benth- a multipurpose leguminous tree and assessment of genetic fidelity of micropropagated plants using molecular markers. Physiol Mol Biol Plants 18:169–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haberlandt G (1902) Cellular totipotency. Elsevier Science Publishing Co., New York, pp 71–90

    Google Scholar 

  • Haccius B (1978) Question of unicellular origin or non-zygotic embryos in callus cultures. Phytomorphology

    Google Scholar 

  • Hajong S, Kumaria S, Tandon P (2013) Effect of plant growth regulators on regeneration potential of axenic nodal segments of Dendrobium chrysanthum Wall. ex Lindl. J Agric Sci Tech 15:1425–1435

    CAS  Google Scholar 

  • Hammatt N, Grant NJ (1996) Micropropagation of mature British wild cherry. Plant Cell Tissue Organ Cult 47:103–110

    Article  Google Scholar 

  • Heller R (1953) Researches on the mineral nutrition of plant tissues. Ann Sci Nat Bot Biol Veg 14:1–223

    Google Scholar 

  • Hernandez-Fernandez MM, Christie BR (1989) Inheritance of somatic embryogenesis in alfalfa (Medicago sativa L.). Genome 32:318–321

    Article  Google Scholar 

  • Homes JLA (1968) In: Les Cultures de Tissues de Plantes. Paris CNRS. pp 49–60

    Google Scholar 

  • Husain M, Anis M, Shahzad A (2007) In vitro propagation of Indian Kino (Pterocarpus marsupium Roxb.) using thidiazuron. In Vitro Cellular & Developmental Biology-Plant 43:59–64

    Article  CAS  Google Scholar 

  • Husain MK, Anis M, Shahzad A (2008) In vitro propagation of a multipurpose leguminous tree (Pterocarpus marsupium Roxb.) using nodal explants. Acta Physiol Plant 30:353–359

    Article  CAS  Google Scholar 

  • Husain MK, Anis M, Shahzad A (2010) Somatic embryogenesis and plant regeneration in Pterocarpus marsupium Roxb. Trees 24:781–787

    Article  CAS  Google Scholar 

  • Ingram B, Mavituna F (2000) Effect of bioreactor configuration on the growth and maturation of Picea sitchensis somatic embryo cultures. Plant Cell Tissue Organ Cult 61:87–96

    Article  Google Scholar 

  • Islam MT, Dembele DP, Keller ERJ (2005) Influence of explant, temperature and different culture vessels on in vitro culture for germplasm maintenance of four mint accessions. Plant Cell Tissue Org Cult 81:123–130

    Article  Google Scholar 

  • Ivanova A, Velcheva M, Denchev P, Atanassov A, Onckelen HA (1994) Endogenous hormone levels during direct somatic embryogenesis in Medicago falcata. Physiol Plant 92:85–89

    Article  CAS  Google Scholar 

  • Jablonski JR, Skoog F (1954) Cell enlargement and cell division in excised tobacco pith tissue1. Physiol Plant 7:16–24

    Article  CAS  Google Scholar 

  • Jaskani MJ, Abbas H, Khan M, Qasim M, Khan I (2008) Effect of growth hormones on micropropagation of Vitis vinifera L. cv. Perlette. Pak J Bot 40:105

    CAS  Google Scholar 

  • Jayanthi M, Mandal P (2001) Plant regeneration through somatic embryogenesis and RAPD analysis of regenerated plants in Tylophora indica (Burm. f. Merrill.). In Vitro Cellular & Developmental Biology-Plant 37:576–580

    Article  CAS  Google Scholar 

  • Jesmin S, Sarker MAQ, Alam MF (2013) Multiple shoot proliferation in Tridax procumbens L. through in vitro method. Int J Biosci (IJB) 3:177–187

    Article  CAS  Google Scholar 

  • Jimenez V, Bangerth F (2001) Endogenous hormone levels in initial explants and in embryogenic and nonembryogenic callus cultures of competent and non-competent wheat genotypes. Plant Cell Tissue Organ Cult 67:37–46

    Article  CAS  Google Scholar 

  • Jiménez V, Guevara E, Herrera J, Bangerth F (2005) Evolution of endogenous hormone concentration in embryogenic cultures of carrot during early expression of somatic embryogenesis. Plant Cell Rep 23:567–572

    Article  PubMed  CAS  Google Scholar 

  • Jones MPA, Yi Z, Murch SJ, Saxena PK (2007) Thidiazuron-induced regeneration of Echinacea purpurea L.: micropropagation in solid and liquid culture systems. Plant Cell Rep 26:13–19

    Article  CAS  PubMed  Google Scholar 

  • Kallak H, Reidla M, Hilpus I, Virumäe K (1997) Effects of genotype, explant source and growth regulators on organogenesis in carnation callus. Plant Cell Tissue Org Cult 51:127–135

    Article  CAS  Google Scholar 

  • Kato H (1968) The serial observations of the adventive embryogenesis in the microculture of carrot tissue. Sci Pap Coll Gen Educ, Univ Tokyo 18:191–197

    Google Scholar 

  • Kevers C, Hausman JF, Faivre-Rampant O et al (1997) Hormonal control of adventitious rooting: progress and questions. Angew Bot 71(1):71–79

    CAS  Google Scholar 

  • Khar A, Yadav RC, Yadav N, Bhutani RD (2005) Transient GUS expression studies in onion (Allium cepa L.) and garlic (Allium sativum L.). Akdeniz Üniversitesi Ziraat Fakültesi Dergisi 18:301–304

    Google Scholar 

  • Kim SW, Kim TJ, Liu JR (2003) High frequency somatic embryogenesis and plant regeneration in petiole and leaf explant cultures and petiolederived embryogenic cell suspension cultures of Hylomecon vernalis. Plant Cell Tissue Org Cult 74:163–167

    Article  CAS  Google Scholar 

  • Kim SW, Su In D, Choi PS, Liu JR (2004) Plant regeneration from immature zygotic embryo-derived embryogenic calluses and cell suspension cultures of Catharanthus roseus. Plant Cell Tiss Org Cult 76:131–135

    Article  CAS  Google Scholar 

  • Knop W (1865) Quantitative Untersuchungenuber die Ernahrungsprocesse der Pflanzen. LandwirtschVersStn 7:93

    Google Scholar 

  • Komalavalli N, Rao M (2000) In vitro micropropagation of gymnema sylvestre–a multipurpose medicinal plant. Plant Cell Tissue Organ Cult 61:97–105

    Article  Google Scholar 

  • Konan KE, Durand-Gasselin T, Kouadio YJ, Flori A, Rival A, Duval Y, Pannetier C (2010) In vitro conservation of oil palm somatic embryos for 20 years on a hormone-free culture medium: characteristics of the embryogenic cultures, derived plantlets and adult palms. Plant Cell Rep 29:1–13

    Article  CAS  PubMed  Google Scholar 

  • Kotte W (1922) Kulturversuche mit isolierten Wurzelspitzen. Beitr Allg Bot 2:413–434

    Google Scholar 

  • Kozai T, Ting K, Aitken-Christie J (1991) Consideration for automation of micropropagation systems

    Google Scholar 

  • Kozgar MI, Shahzad A (2012) An improved protocol for micropropagation of teak tree (Tectona grandis L.). Rendiconti Lincei 23:195–202

    Article  Google Scholar 

  • Kris P, Tess A, Jerry N (2005) Tissue culture propagation of mongolian cherry (Prunus fruticosa) and nanking cherry (Prunus tomentosa). Plant Cell Tissue Organ Cult 82:207–211

    Article  Google Scholar 

  • Kuklin AI, Denchev PD, Atanassov AI, Scragg AH (1994) Alfalfa embryo production in airlift vessels via direct somatic embryogenesis. Plant Cell Tissue Organ Cult 38:19–23

    Article  Google Scholar 

  • Kumar HA, Murthy H, Paek K (2002) Somatic embryogenesis and plant regeneration in gymnema sylvestre. Plant Cell Tissue Organ Cult 71:85–88

    Article  Google Scholar 

  • Kumari R, Priyadarshni M, Anjali K, Shukla L (2014) In vitro mass multiplication of Bacopa monnieri (L.) an endangered and valuable medicinal herb. Indian J Sci Res 7:1248–1253

    Google Scholar 

  • Larkin PJ, Scowcroft WR (1981) Somaclonal variation- A novel source of variability from cell cultures for plant improvement. Theor Appl Genet 58:197–214

    Article  Google Scholar 

  • Lazzeri PA, Hildebrand DF, Collins GB (1987) Soybean somatic embryogenesis: effects of nutritional, physical and chemical factors. Plant Cell Tissue Organ Cult 10:209–220

    Article  CAS  Google Scholar 

  • Lloyd G, McCown B (1980) Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. In: Combined proceedings, International Plant Propagators’ Society, pp 421–427

    Google Scholar 

  • Lu YX, Godo T, Fujiwara K, Guan KY, Mii M (2013) Effects of nitrogen sources and wavelength of LED- light on organogenesis from leaf and shoot tip cultures in Lysionotus pauciflorus Maxim. Propag Ornamental Plants 13:174–180

    Google Scholar 

  • Ma G, Lü J, da Silva JAT, Zhang X, Zhao J (2011) Shoot organogenesis and somatic embryogenesis from leaf and shoot explants of Ochna integerrima (Lour). Plant Cell Tissue and Organ Culture (PCTOC) 104:157–162

    Article  CAS  Google Scholar 

  • Macedo AF, Leal-Costa MV, Tavares ES, Lage CLS, Esquibel MA (2011) The effect of light quality on leaf production and development of in vitrocultured plants of Alternanthera brasiliana Kuntze. Env Exp Bot 70:43–50

    Article  Google Scholar 

  • Maës OC, Chibbar RN, Caswell K, Leung N, Kartha KK (1996) Somatic embryogenesis from isolated scutella of wheat: effects of physical, physiological and genetic factors. Plant Sci 121:75–84

    Article  Google Scholar 

  • Malik C, Wadhwani C (2009) Influence of explanting season on in vitro multiplication in Tridax procumbens L.-A medicinal herb. Afr J Biotechnol 8:3239–3243

    CAS  Google Scholar 

  • Mallikarjuna K, Rajendrudu G (2007) High frequency in vitro propagation of Holarrhena antidysenterica from nodal buds of mature tree. Biol Plant 51(3):525–529

    Article  CAS  Google Scholar 

  • Mannan MA, Nasrin H, Islam M (2006) Effect of season and growth regulators on in vitro propagation of jackfruit (Artocarpus heterophyllus lam). Khulna Univ Stud 7:83–88

    Google Scholar 

  • Martin K (2003) Plant regeneration through somatic embryogenesis on Holostemma ada-kodien, a rare medicinal plant. Plant Cell Tissue Organ Cult 72:79–82

    Article  CAS  Google Scholar 

  • Martin K (2004) Plant regeneration through somatic embryogenesis in medicinally important Centella asiatica L. In Vitro Cellular & Developmental Biology-Plant 40:586–591

    Article  CAS  Google Scholar 

  • Martin K, Pradeep A (2003) Simple strategy for the in vitro conservation of Ipsea malabarica an endemic and endangered orchid of the Western Ghats of Kerala, India. Plant Cell Tissue Organ Cult 74:197–200

    Article  Google Scholar 

  • Martin G, Geetha SP, SS R et al (2006) An efficient micropropagation system for Celastrus paniculatus Willd: a vulnerable medicinal plant. J For Res 11:461–465

    Article  Google Scholar 

  • Mikuła A, Rybczyński JJ (2001) Somatic embryogenesis of Gentiana genus I. The effect of the preculture treatment and primary explant origin on somatic embryogenesis of Gentiana cruciata (L.), G. pannonica (Scop.), and G. tibetica (King). Acta Physiol Plant 23:15–25

    Article  Google Scholar 

  • Miller CO, Skoog F, Von Saltza MH, Strong F (1955) Kinetin, a cell division factor from deoxyribonucleic acid1. J Am Chem Soc 77:1392–1392

    Article  CAS  Google Scholar 

  • Mohebalipour N, Aharizad S, Mohammadi S, Motallebiazar A, Arefi H (2012) Effect of plant growth regulators BAP and IAA on micropropagation of Iranian lemon balm (Melissa officinalis L.) landraces. Journal of Food Agriculture and Environment 10:280–286

    CAS  Google Scholar 

  • Molina DM, Aponte ME, Cortina H, Moreno G (2002) The effect of genotype and explant age on somatic embryogenesis of coffee. Plant Cell Tissue Organ Cult 71:117–123

    Article  CAS  Google Scholar 

  • Molliard M (1921) Sur le développement des plantules fragmentées. CR Soc Biol (Paris) 84:770–772

    Google Scholar 

  • Moyo M, Finnie JF, Van Staden J (2011) Recalcitrant effects associated with the development of basal callus-like tissue on caulogenesis and rhizogenesis in Sclerocarya birrea. Plant Growth Regul 63:187–195

    Article  CAS  Google Scholar 

  • Murashige T (1974) Plant propagation through tissue cultures. Annu Rev Plant Physiol 25:135–166

    Article  CAS  Google Scholar 

  • Murashige T (1977) Plant cell and organ cultures as horticultural practices. Symp Tissue Cult Hortic Purp 78:17–30

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murthy B, Saxena PK (1998) Somatic embryogenesis and plant regeneration of neem (Azadirachta indica A. Juss.). Plant Cell Rep 17:469–475

    Article  CAS  Google Scholar 

  • Nabi SA, Rashid MM, Al-Amin M, Rasul MG (2002) Organogenesis in teasle gourd (Momordica dioeca Roxb.). Plant Tissue Cul 12(2):173–180

    Google Scholar 

  • Nagata T, Takebe I (1971) Plating of isolated tobacco mesophyll protoplasts on agar medium. Planta 99:12–20

    Article  CAS  PubMed  Google Scholar 

  • Nair RR, Gupta SD (2005) Effect of explants and genotypes on primary somatic embryogenesis in black pepper (Piper nigrum L.). Cytologia 70:195–202

    Article  Google Scholar 

  • Nas MN, Bolek Y, Sevgin N (2010) The effects of explant and cytokinin type on regeneration of Prunus microcarpa. Sci Hortic 126:88–94

    Article  CAS  Google Scholar 

  • Nishiwaki M, Fujino K, Koda Y, Masuda K, Kikuta Y (2000) Somatic embryogenesis induced by the simple application of abscisic acid to carrot (Daucus carota L.) seedlings in culture. Planta 211:756–759

    Article  CAS  PubMed  Google Scholar 

  • Nissen SJ, Sutter EG (1990) Stability of IAA and IBA in nutrient medium of several tissue culture procedures. Hortic Sci 800-802

    Google Scholar 

  • Nitsch J, Nitsch C (1969) Haploid plants from pollen grains. Science 163:85–87

    Article  CAS  PubMed  Google Scholar 

  • Nomura K, Komamine A (1995) Physiological and biochemical aspects of somatic embryogenesis. In: In vitro embryogenesis in plants. Springer, pp 249–265

    Google Scholar 

  • Nowak K, Wojcikowska B, Szyrajew K, Gaj M (2012) Evaluation of different embryogenic systems for production of true somatic embryos in Arabidopsis. Biol Plant 56:401–408

    Article  CAS  Google Scholar 

  • Panaia M, Senaratna T, Dixon K et al (2004) The role of cytokinins and thidiazuron in the stimulation of somatic embryogenesis in key members of the Restionaceae. Aust J Bot 52:257–265

    Article  CAS  Google Scholar 

  • Pandeya K, Tiwari KN, Singh J et al (2010) In vitro propagation of Clitoria ternatea L: A rare medicinal plant. J Med Plants Res 4:664–668

    CAS  Google Scholar 

  • Paramageetham C, Prasad Babu G, Rao J (2004) Somatic embryogenesis in Centella asiatica L. an important medicinal and neutraceutical plant of India. Plant Cell Tissue Organ Cult 79:19–24

    Article  CAS  Google Scholar 

  • Parrott W, Williams E, Hildebrand D, Collins G (1989) Effect of genotype on somatic embryogenesis from immature cotyledons of soybean. Plant Cell Tissue Organ Cult 16:15–21

    Article  Google Scholar 

  • Parveen S, Shahzad A (2011) A micropropagation protocol for Cassia angustifolia Vahl. from root explants. Acta Physiol Plant 33:789–796

    Article  Google Scholar 

  • Parveen S, Shahzad A (2014a) Factors affecting in vitro plant regeneration from cotyledonary node explant of Senna sophera (L.) Roxb.- A highly medicinal legume. Afr J Biotechnol 13:413–422

    Article  CAS  Google Scholar 

  • Parveen S, Shahzad A (2014b) Somatic embryogenesis and plantlet regeneration of Cassia angustifolia from immature cotyledon-derived callus. Biol Plant 58:411–418

    Article  Google Scholar 

  • Parveen S, Shahzad A, Saema S (2010) In vitro plant regeneration system for Cassia siamea Lam., a leguminous tree of economic importance. Agrofor Syst 80:109–116

    Article  Google Scholar 

  • Parveen S, Shahzad A, Anis M (2012) Enhanced shoot organogenesis in Cassia angustifolia Vahl.—a difficult-to-root drought resistant medicinal shrub. J Plant Biochem Biotechnol 21:213–219

    Article  CAS  Google Scholar 

  • Pasternak TP, Prinsen E, Ayaydin F, Miskolczi P, Potters G, Asard H, Van Onckelen HA, Dudits D, Fehér A (2002) The role of auxin, pH, and stress in the activation of embryogenic cell division in leaf protoplast-derived cells of alfalfa. Plant Physiol 129:1807–1819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul S, Dam A, Bhattacharyya A, Bandyopadhyay TK (2011) An efficient regeneration system via direct and indirect somatic embryogenesis for the medicinal tree Murraya koenigii. Plant Cell Tiss Org Cult 105:271–283

    Article  Google Scholar 

  • Phelan S, Hunter A, Douglas GC (2009) Effect of explants source on shoot proliferation and adventitious regeneration in 10 Buddleia cultivars. Sci Hortic 120:518–524

    Article  Google Scholar 

  • Pinto G, Silva S, Park YS, Neves L, Araújo C, Santos C (2008) Factors influencing somatic embryogenesis induction in Eucalyptus globulus Labill.: basal medium and anti-browning agents. Plant Cell Tiss Org Cult 95:79–88

    Article  CAS  Google Scholar 

  • Pospisilova J, Synkova H, Haisel D et al (2007) Acclimation of plantlets to ex vitro condition: effects of air humidity, irradiance, CO2 concentration and abscisic acid. Acta Hortic 748:29–38

    Article  CAS  Google Scholar 

  • Pruski K, Kozai T, Lewis T et al (2000) Sucrose and light effects on in vitro cultures of potato, chokecherry and saskatoon berry during low temperature storage. Plant Cell Tissue Org Cult 63:215–221

    Article  CAS  Google Scholar 

  • Pyati AN, Murthy HN, Hahn EJ et al (2002) In vitro propagation of Dendrobium macrostachyum Lindl.-a threatened orchid. Indian J Exp Biol 40:620–623

    CAS  PubMed  Google Scholar 

  • Quiroz-Figueroa F, Fuentes-Cerda C, Rojas-Herrera R, Loyola-Vargas V (2002) Histological studies on the developmental stages and differentiation of two different somatic embryogenesis systems of Coffea arabica. Plant Cell Rep 20:1141–1149

    Article  CAS  Google Scholar 

  • Quiroz-Figueroa FR, Rojas-Herrera R, Galaz-Avalos RM, Loyola-Vargas VM (2006) Embryo production through somatic embryogenesis can be used to study cell differentiation in plants. Plant Cell Tissue Organ Cult 86:285–301

    Article  Google Scholar 

  • Ragavendran C, Kamalanathan D, Natarajan D (2014) A rapid micropropagation of nodal explants of Eclipta alba (L.) a multipurpose medicinal herb. Res Biotechnol 5:6–1

    Google Scholar 

  • Raghu AV, Geetha SP, Martin G et al (2006) Direct shoot organogenesis from leaf explants of Embelia ribes Burm. F.: a vulnerable medicinal plant. J Fore Res 11:57–60

    Article  Google Scholar 

  • Raghu AV, Geetha SP, Martin G et al (2007) An improved micropropagation protocol for Bael a vulnerable medicinal tree. Res J Bot 2(4):186–194

    Article  CAS  Google Scholar 

  • Rai VR, McComb J (2002) Direct somatic embryogenesis from mature embryos of sandalwood. Plant Cell Tissue Organ Cult 69:65–70

    Article  CAS  Google Scholar 

  • Rani S, Rana J (2010) In vitro propagation of Tylophora indica-influence of explanting season, growth regulator synergy, culture passage and planting substrate. J Am Sci 6:386–392

    Google Scholar 

  • Rao AQ, Hussain SS, Shahzad MS, Bokhari SYA, Raza MH, Rakha A, Majeed A, Shahid AA, Saleem Z, Husnain T (2006) Somatic embryogenesis in wild relatives of cotton (Gossypium Spp.). J Zhejiang Univ Sci B 7:291–298

    Article  PubMed  PubMed Central  Google Scholar 

  • Raomai S, Kumaria S, Tandon P (2014) Plant regeneration through direct somatic embryogenesis from immature zygotic embryos of the medicinal plant, Paris polyphylla Sm. Plant Cell Tissue and Organ Culture (PCTOC) 118:445–455

    Article  CAS  Google Scholar 

  • Reddy PS, Gopal GR, Sita GL (1998) In vitro multiplication of gymnema sylvestre R. Br. – an important medicinal plant. Curr Sci 75:843–845

    Google Scholar 

  • Reinert J (1958) Morphogenese und ihre Kontrolle an Gewebekulturen aus Carotten. Naturwissenschaften 45:344–345

    Article  CAS  Google Scholar 

  • Reinert J (1959) Uber die kontrolle der morphogenese und die induktion von adventivembryonen an gew- ebekulturen aus karotten. Planta 53:318–333

    Article  Google Scholar 

  • Robbins WJ (1922) Cultivation of excised root tips and stem tips under sterile conditions. Botanical gazette 376–390

    Google Scholar 

  • Rout G, Samantaray S, Das P (2000) In vitro manipulation and propagation of medicinal plants. Biotechnol Adv 18:91–120

    Article  CAS  PubMed  Google Scholar 

  • Rudus I, Kepczynska E, Kepczynski J (2002) Regulation of Medicago sativa L. somatic embryogenesis by gibberellins. Plant Growth Regul 36:91–95

    Article  CAS  Google Scholar 

  • Rugini E (1988) Somatic embryogenesis and plant regeneration in olive (Olea europaea L.). Plant Cell Tissue Organ Cult 14:207–214

    Article  Google Scholar 

  • Sadeq MA, Pathak MR, Salih AA, Abido M, Abahussain A (2014) Highly efficient in vitro regeneration method of endangered medicinal plant Heliotropium kotschyi (Ramram) in the kingdom of Bahrain. Am J Plant Sci 5(5):736–747

    Article  CAS  Google Scholar 

  • Saeed T, Shahzad A (2015) High frequency plant regeneration in Indian Siris via cyclic somatic embryogenesis with biochemical, histological and SEM investigations. Ind Crop Prod 76:623–637

    Article  CAS  Google Scholar 

  • Sagare AP, Lee YL, Lin TC, Chen CC, Tsay HS (2000) Cytokinin-induced somatic embryogenesis and plant regeneration in Corydalis yanhusuo (Fumariaceae) – a medicinal plant. Plant Sci 160:139–147

    Article  CAS  PubMed  Google Scholar 

  • Sahai A, Shahzad A, Mohammad A (2010) High frequency plant production via shoot organogenesis and somatic embryogenesis from callus in Tylophora indica, an endangered plant species. Turk J Bot 34:11–20

    CAS  Google Scholar 

  • Sahai A, Shahzad A (2013) High frequency in vitro regeneration system for conservation of Coleus forskohlii: a threatened medicinal herb. Acta Physiol Plant 35:473–481

    Article  CAS  Google Scholar 

  • Sakhanokho HF, Zipf A, Rajasekaran K, Saha S, Sharma GC (2001) Induction of highly embryogenic calli and plant regeneration in Upland (L.) and Pima (L.) cottons. Crop Sci 41:1235–1240

    Article  Google Scholar 

  • Samson NP, Campa C, Le Gal L, Noirot M, Thomas G, Lokeswari T, De Kochko A (2006) Effect of primary culture medium composition on high frequency somatic embryogenesis in different Coffea species. Plant Cell Tissue Organ Cult 86:37–45

    Article  Google Scholar 

  • Schenk RU, Hildebrandt A (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50:199–204

    Article  CAS  Google Scholar 

  • Schleiden MJ (1838) Einige Bemerkungen über den vegetabilischen Faserstoff und sein Verhältniss zum Stärkemehl. Ann Phys 119:391–398

    Article  Google Scholar 

  • Schuller A, Reuther G, Geier T (1989) Somatic embryogenesis from seed explants of Abies alba. Plant Cell Tissue Organ Cult 17:53–58

    Google Scholar 

  • Schwann T (1839) Mikroskopische Untersuchungen. Sander, Berlin, p 268

    Google Scholar 

  • Shahana S, Gupta SC (2002) Somatic embryogenesis in Sesbania sesban var. bicolor: a multipurpose fabaceous woody species. Plant Cell Tiss Org Cult 69:289–292

    Article  CAS  Google Scholar 

  • Shaheen A, Shahzad A (2015) Nutrient encapsulation of nodal segments of an endangered white cedar for studies of regrowth, short term conservation and ethylene inhibitors influenced ex vitro rooting. Indus Crop Prod 69:204–211

    Article  CAS  Google Scholar 

  • Shahzad A, Faisal M, Anis M (2007) Micropropagation through excised root culture of Clitoria ternatea and comparison between in vitro–regenerated plants and seedlings. Ann Appl Biol 150:341–349

    Article  CAS  Google Scholar 

  • Shahzad A, Faisal M, Ahmad N et al (2012) An efficient system for in vitro multiplication of Ocimum basilicum through node culture. Afr J Biotechnol 11:6055–6059

    Article  CAS  Google Scholar 

  • Sharma G, Nautiyal AR (2009) Influence of explants type and plant growth regulators on in vitro multiple shoots regeneration of a Laurel from Himalaya. Nat Sci 7:1–7

    Google Scholar 

  • Sharma S, Shahzad A (2011) High frequency clonal multiplication of Stevia rebaudiana Bertoni, sweetener of the future. J Func Environ Bot 1:70–76

    Article  Google Scholar 

  • Sharma S, Shahzad A (2013) Efficient micropropagation of Spilanthes acmella (L.) Murr.: a Threatened medicinal herb. Br Biotechnol J 3:405–415

    Article  Google Scholar 

  • Sharma S, Shahzad A, Jan N, Sahai A (2009) In vitro studies on shoot regeneration through various explants and alginate-encapsuated nodal segments of Spilanthes mauritiana DC. An endangered medicinal herb. Int J Plant Dev Biol 3:56–61

    Google Scholar 

  • Sharma S, Shahzad A, Anis M (2010) In vitro shoot organogenesis and regeneration of plantlets from nodal explants of Murraya koenigii (L.) Spreng.(Rutaceae), a multipurpose aromatic medicinal plant. Med Aromat Plant Sci Biotechnol 4:33–36

    Google Scholar 

  • Sharma S, Shahzad A, Kumar J, Anis M (2014) In vitro propagation and synseed production of scarlet salvia (Salvia splendens). Rendiconti Lincei 25:359–368

    Article  Google Scholar 

  • Shi X, Dai X, Liu G, Zhang J, Ning G, Bao M (2010) Cyclic secondary somatic embryogenesis and efficient plant regeneration in camphor tree (Cinnamomum camphora L.). In Vitro Cellular & Developmental Biology-Plant 46:117–125

    Article  CAS  Google Scholar 

  • Shohael AM, Ali MB, Yu KW, Hahn EJ, Paek KY (2006a) Effect of temperature on secondary metabolites production and antioxidant enzyme activities in Eleutherococcus senticosus somatic embryos. Plant Cell Tiss Org Cult 85:219–228

    Article  CAS  Google Scholar 

  • Shohael AM, Ali MB, Yu KW, Hahn EJ, Islam R, Paek KY (2006b) Effect of light on oxidative stress, secondary metabolites and induction of antioxidant enzymes in Eleutherococcus senticosus somatic embryos in bioreactor. Process Biochem 41:1179–1185

    Article  CAS  Google Scholar 

  • Silja P, Gisha G, Satheeshkumar K (2014) Enhanced plumbagin accumulation in embryogenic cell suspension cultures of Plumbago rosea L. following elicitation. Plant Cell Tissue Organ Cult (PCTOC) 119:469–477

    Article  CAS  Google Scholar 

  • Silva NCB, Macedo AF, Lage CLS, Esquibel MA, Sato A (2005) Developmental effects of additional ultraviolet a radiation growth regulators and tyrosine in Alternanthera brasiliana (L.) Kuntze cultured in vitro. Braz Arch Biol Technol 48:779–786

    Google Scholar 

  • Skoog F (1944) Growth and organ formation in tobacco tissue cultures. Am J Bot 31:19–24

    Article  Google Scholar 

  • Skoog F, Miller CO (1957) Chemical regulation of growth and organ formation in plant tissue cultures in vitro. Symp Soc Exp Biol 11:118–131

    CAS  PubMed  Google Scholar 

  • Skoog F, Tsui C (1951) Growth substances and the formation of buds in plant tissues. Plant Growth Substances University of Wisconsin Press, Madison, pp 263–285

    Google Scholar 

  • Skokut TA, Manchester J, Schaefer J (1985) Regeneration in alfalfa tissue culture. Stimulation of somatic embryo production by amino acids and N-15 NMR determination of nitrogen utilization. Plant Physiol 79:579–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stasolla C, Kong L, Yeung EC, Thorpe TA (2002) Maturation of somatic embryos in conifers: morphogenesis, physiology, biochemistry, and molecular biology. In Vitro Cell Dev Biol-Plant 38:93–105

    Article  CAS  Google Scholar 

  • Steephen M, Nagarajan S, Ganesh D (2010) Phloroglucinol and silver nitrate enhances axillary shoot proliferation in nodal explants of Vitex negundo L. â an aromatic medicinal plant. Iran J Biotechnol 8:82–89

    CAS  Google Scholar 

  • Steward F, Mapes MO, Mears K (1958) Growth and organized development of cultured cells. II. Organization in cultures grown from freely suspended cells. Am J Bot 45:705–708

    Article  Google Scholar 

  • Subotic A, Jevremović S, Grubišić D (2008) Influence of cytokinins on in vitro morphogenesis in root cultures of Centaurium erythraea-valuable medicinal plant. Sci Hortic 120:386–390

    Article  CAS  Google Scholar 

  • Thangjam R, Maibam RS (2006) Induction of callus and somatic embryogenesis from cotyledonary explants of Parkia timoriana (DC.) Merr., a multipurpose tree legume. J Food Agric Environ 4:335

    Google Scholar 

  • Tisserat B (1981) Date palm tissue culture. US Department of Agriculture, Agricultural Research Service, Oakland

    Google Scholar 

  • Tisserat B, Esan E, Murashige T (1978) Somatic embryogenesis in angiosperms. Hortic Rev 1:1–78

    Google Scholar 

  • Tiwari SK, Kashyap MK, Ujjaini MM, Agrawal AP (2002) In vitro propagation of Lagerstroemia parviflora Roxb. from adult tree. Indian J Exp Biol 40:212–215

    CAS  PubMed  Google Scholar 

  • Tokuji Y, Kuriyama K (2003) Involvement of gibberellin and cytokinin in the formation of embryogenic cell clumps in carrot (Daucus carota). J Plant Physiol 160:133–141

    Article  CAS  PubMed  Google Scholar 

  • Trejgell A, Bednarek M, Tretyn A (2009) Micropropagation of Carlina Acaulis L. Acta Biol Cracov Ser Bot 51:97–103

    Google Scholar 

  • Trigiano R, May R, Conger B (1992) Reduced nitrogen influences somatic embryo quality and plant regeneration from suspension cultures of orchardgrass. In Vitro–Plant 28:187–191

    Article  Google Scholar 

  • Tyagi P, Kothari S (2004) Rapid in vitro regeneration of Gerbera jamesonii (H. Bolus ex Hook. f.) from different explants. Indian J Biotechnol 3:584–586

    CAS  Google Scholar 

  • Uzelac B, Ninković S, Smigocki A, Budimir S (2007) Origin and development of secondary somatic embryos in transformed embryogenic cultures of Medicago sativa. Biol Plant 51:1–6

    Article  Google Scholar 

  • Varshney A, Shahzad A, Anis M (2009) High frequency induction of somatic embryos and plantlet regeneration from nodal explants of Hygrophila spinosa T. Anders. Afr J Biotechnol 8:6141–6145

    Article  CAS  Google Scholar 

  • Verma S, Yadav K, Singh N (2011) Optimization of the protocols for surface sterilization, regeneration and acclimatization of Stevia rebaudiana Bertoni. Am Eurasian J Agric Environ Sci 11:221–227

    CAS  Google Scholar 

  • Vijaya S, Udayasri P, Aswani K, Ravi B, Phani K, Vijay V (2010) Advancements in the production of secondary metabolites. J Nat Prod 3:112–123

    Google Scholar 

  • Went FW (1926) On growth-accelerating substances in the coleoptile of Avena sativa. Proc Kon Ned Akad Wet 30:10–19

    Google Scholar 

  • Wetherell DF, Halperin W (1963) Embryos derived from the callus tissue culture of wild carrot. Nature (London) 200:1336–1337

    Article  Google Scholar 

  • Williams E, Maheswaran G (1986) Somatic embryogenesis: factors influencing coordinated behaviour of cells as an embryogenic group. Ann Bot 57:443–462

    Article  Google Scholar 

  • Xing W, Bao M, Qin H, Ning G (2010) Micropropagation of Rosa rugosa through axillary shoot proliferation. Acta Biol Cracov Ser Bot 52:69–75

    Google Scholar 

  • Yadav K, Singh N (2012) Factors influencing in vitro plant regeneration of Liquorice (Glycyrrhiza glabra L.). Iran J Biotechnol 10:161–167

    CAS  Google Scholar 

  • Yadav R, Saleh MT, Grumet R (1996) High frequency shoot regeneration from leaf explants of muskmelon. Plant Cell Tissue Organ Cult 45:207–214

    Article  CAS  Google Scholar 

  • Yadav K, Lal D, Singh N (2011) Influence of explanting season on in vitro multiplication of Celastrus paniculatus Willd.-An endangered medicinal herb. J Agric Technol 7:1355–1361

    Google Scholar 

  • Yan Z, Delannoy M, Ling C et al (2010) A histone-fold complex and FANCM form a conserved DNA-remodeling complex to maintain genome stability. Mol Cell 37(6):865–878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Wu S, Li C (2013) High efficiency secondary somatic embryogenesis in Hovenia dulcis Thunb. through solid and liquid cultures. Sci World J 718754:1–6

    Google Scholar 

  • Yuan F, Wang Q, Pan Q, Wang G, Zhao TY, Tang K (2011) An efficient somatic embryogenesis based plant regeneration from the hypocotyl of Catharanthus roseus. Afr J Biotechnol 10:14786–14795

    CAS  Google Scholar 

  • Zanol GC, Strengths GRL, Silva JB’s, Campos AD, Centellas AQ, Müller NT, Gottinari RA (1998) Dark and IBA on rooting in vitro and peroxidase activity of apple rootstocks, Cv. Marubakaido ( Malus prunifolia ). J Agrociência Pelotas 3(1):23–30

    Google Scholar 

  • Zhang C, Li W, Mao Y, Zhao D, Dong W, Guo G (2005) Endogenous hormonal levels in Scutellaria baicalensis calli induced by thidiazuron. Russ J Plant Physiol 52:345–351

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. Shiwali Sharma and Dr. Shahina Parveen are thankful to DST for the award of financial assistance under Young Scientist under Fast Track Scheme, SERB (vide no. SB/FT/LS-364/2012 and No. SB/YS/LS-156/2013, respectively). Taiba Saeed and Rakhshanda Akhtar acknowledge the financial support provided by UGC under the scheme of Maulana Azad National Fellowship (file no. MANF-2011-12-MUS-UTT-2624 and MANF-2013-14-MUS-BIH-21399, respectively).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anwar Shahzad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Shahzad, A. et al. (2017). Historical Perspective and Basic Principles of Plant Tissue Culture. In: Abdin, M., Kiran, U., Kamaluddin, Ali, A. (eds) Plant Biotechnology: Principles and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-10-2961-5_1

Download citation

Publish with us

Policies and ethics