Skip to main content
Log in

Review the formation of adventitious roots: New concepts, new possibilities

  • Developmental Biology/Morphogenesis
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

Considerable progress has recently been made in understanding adventitious root formation using physiological studies. It is recognized that rooting is a process consisting of distinct phases, each with its own requirements. In this review, the successive phases in the rooting process are described and the possible roles of wounding-related compounds, auxin, ethylene and phenolic compounds during these specific phases are discussed. Recent results are assisting the development of advanced rooting treatments. Molecular studies on rooting are underway and will be essential in revealing the mechanisms underlying adventitious root formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Attfield, E. M.; Evans, P. K. Stages in the initiation of root and shoot organogenesis in cultured leaf explants of Nicotiana tabacum cv. Xanthi nc. J. Exp. Bot. 42:59–63; 1991.

    Article  Google Scholar 

  • Blazkova, A.; Sotta, B.; Tranvan, H.; Maldiney, R.; Bonnet, M.; Einhorn, J.; Kerhoas, L.; Miginiac, E. Auxin metabolism and rooting in young and mature clones of Sequoia sempervirens. Physiol. Plant. 99:73–80; 1997.

    Article  CAS  Google Scholar 

  • Bollmark, M.; Kubat, B.; Eliasson, L. Variation in endogenous cytokinin content during adventitious root formation in pea cuttings. J. Plant Physiol. 132:262–265; 1988.

    CAS  Google Scholar 

  • Burritt, D. J.; Leung, D. W. M. Organogenesis in cultured petiole explants of Begonia x erythrophylla: the timing and specificity of the inductive stimuli. J. Exp. Bot. 47:557–567; 1996.

    Article  CAS  Google Scholar 

  • Christianson, M. L.; Warnick, D. A. Competence and determination in the process of in vitro shoot organogenesis. Dev. Biol. 95:288–293; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Croes, A. F.; Wullems, G. J. Hormonal induction of regeneration: how to open the black box? Adv. Hortic. Sci. 8:37–42; 1994.

    Google Scholar 

  • Curir, P.; Van Sumere, C. F.; Termini, A.; Barthe, P.; Marchesini, A.; Dolci, M. Flavonoid accumulation is correlated with adventitious root formation in Eucalyptus gunnii Hook micropropagated through axillary bud stimulation. Plant Physiol. 92:1148–1153; 1990.

    PubMed  CAS  Google Scholar 

  • De Klerk, G. J. Hormone requirements during the successive phases of rooting of Malus microcuttings. In: Terzi, M.; Cella, R.; Falavigna, A., ed. Current issues in plant cellular and molecular biology. Dordrecht, The Netherlands: Kluwer Academic Publishers; 1995:111–116.

    Google Scholar 

  • De Klerk, G. J. Markers of adventitious root formation. Agronomie 16:563–571; 1996.

    Google Scholar 

  • De Klerk, G. J.; Ter Brugge, J.; Smulders, R.; Benschop, M. Basic peroxidases and rooting in microcuttings of Malus. Acta Hortic. 280:29–36; 1990.

    Google Scholar 

  • De Klerk, G. J.; Keppel, M.; Ter Brugge, J.; Meekes, H. Timing of the phases in adventitious root formation in apple microcuttings. J. Exp. Bot. 46:965–972; 1995.

    Article  Google Scholar 

  • De Klerk, G. J.; Ter Brugge, J.; Marinova, S. Effectiveness of indoleacetic acid, indolebutyric acid and naphthaleneacetic acid during adventitious root formation in vitro in Malus ‘Jork 9’. Plant Cell Tissue Organ Cult. 49:39–44; 1997a.

    Article  Google Scholar 

  • De Klerk, G. J.; Arnholdt-Schmitt, B.; Lieberei, R.; Neumann, K. H. Regeneration of roots, shoots and embryos: physiological, biochemical and molecular aspects. Biol. Plant. 39:53–66; 1997b.

    Article  Google Scholar 

  • De Klerk, G. J.; Marinova, S.; Rouf, S.; Ter Brugge, J. Salicylic acid affects rooting of apple microcuttings by enhancement of oxidation of auxin. Acta Hortic.; 1998. (in press).

  • De Klerk, G. J.; Paffen, A.; Jasik, J.; Haralampieva, V. A dual effect of ethylene during rooting of apple microcuttings. In: Altman, A.; Ziv, M., ed. Proceedings of the Congress on Plant Biotechnology and In Vitro Biology in the 21st Century. Dordrecht, The Netherlands: Kluwer Academic Publishers. (In press).

  • Delbarre, A.; Muller, P.; Imhoff, V.; Guern, J. Comparison of mechanisms controlling uptake and accumulation of 2,4-dichlorophenoxy acetic acid, naphthalene-1-acetic acid, and indole-3-acetic acid in suspension-cultured tobacco cells. Planta 198:532–541; 1996.

    Article  CAS  Google Scholar 

  • De Wit, L.; Liu, J.-H.; Reid, D. M. Production of ethylene by gravistimulation; a potential problem with the interpretation of data from some experimental techniques. Plant Cell Environ. 13:237–242; 1990.

    Article  Google Scholar 

  • Diaz-Sala, C.; Hutchison, K. W.; Goldfarb, W.; Greenwood, M. S. Maturation-related loss in rooting competence by loblolly pine stem cuttings: the role of auxin transport, metabolism and tissue sensitivity. Physiol. Plant. 97:481–490; 1996.

    Article  CAS  Google Scholar 

  • Doerner, P.; Jørgensen, J.-E.; You, R.; Steppuhn, J.; Lamb, C. Control of root growth and development by cyclin expression. Nature (Lond.) 380:520–523; 1996.

    Article  CAS  Google Scholar 

  • Dominov, J. A.; Stenzler, L.; Lee, S.; Schwarz, J. J.; Leisner, S.; Howell, S. H. Cytokinins and auxins control the expression of a gene in Nicotiana plumbagnifolia cells by feedback regulation. Plant Cell 4:451–461; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Epstein, E.; Ludwig-Müller, J. Indole-3-butyric acid in plants: occurrence, synthesis, metabolism and transport. Physiol. Plant. 88:382–389; 1993.

    Article  CAS  Google Scholar 

  • Finstad, K.; Brown, D. W.; Joy, K. Characterization of competence during induction of somatic embryogenesis in alfalfa tissue culture. Plant Cell Tissue Organ Cult. 34:125–132; 1993.

    Article  CAS  Google Scholar 

  • Gorst, J. R.; Slaytor, M.; De Fossard, R. A. The effect of indole-3-butyric acid and riboflavin on the morphogenesis of adventitious roots of Eucalyptus ficifolia F. Muell. grown in vitro. J. Exp. Bot. 34:1503–1515; 1983.

    Article  CAS  Google Scholar 

  • Grace, N. H. Physiologic curve of response to phytohormones by seeds, growing plants, cuttings and lower plant forms. Can. J. Res. C 15:538–546; 1937.

    Google Scholar 

  • Guan, H.; Huisman, P.; De Klerk, G. J. Rooting of apple stem slices in vitro is affected by rapid decline of indoleacetic acid in the medium. J. Appl. Bot. 71:80–84; 1997.

    CAS  Google Scholar 

  • Hackett, W. P.; Lund, S. T.; Smith, A. G. The use of mutants to understand competence for shoot-borne root initiation. In: Altman, A.; Waisel, Y., ed. Biology of root formation and development. New York and London: Plenum Publishing Corp.; 1997:169–174.

    Google Scholar 

  • Haissig, B. E.; Davis, T. D. A historical evaluation of adventitious rooting research to 1993. In: Davis, T. D.; Haissig, B. E., ed. Biology of adventitious root formation. New York and London: Plenum Publishing Corp.; 1994:275–331.

    Google Scholar 

  • Hartmann, H. T.; Kester, D. E.; Davies, F. T. Plant propagation: principles and practices. Englewood Cliffs, NJ: Prentice Hall; 1990.

    Google Scholar 

  • Hemerly, A. S.; Ferreira, P.; De Almeira Engler, J.; Van Montagu, M.; Engler, G.; Inzé, D. cdc2a expression in Arabidopsis thaliana is linked with competence for cell division. Plant Cell 5:1711–1723; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Hitchcock, A. E.; Zimmerman, P. W. Effect of the use of growth substances on the rooting response of cuttings. Contrib. Boyce Thompson Inst. 8:63–79; 1936.

    CAS  Google Scholar 

  • Howard, A.; Pelc, S. R. Synthesis of deoxyribonucleic acid in normal and irradiated cells and its relation to chromosome breakage. Heredity (Suppl.) 6:216–273; 1953.

    Google Scholar 

  • Jackson, M. B. Ethylene and responses of plants to soil waterlogging and submergence. Annu. Rev. Plant Physiol. 36:146–174; 1985.

    Article  Google Scholar 

  • Jacobs, T. W. Cell cycle control. Annu. Rev. Plant Physiol. 46:317–339; 1995.

    Article  CAS  Google Scholar 

  • James, D. J.; Thurbon, I. J. Phenolic compounds and other factors controlling rhizogenesis in vitro in the apple rootstocks M.9 and M.26. Z. Pflanzenphysiol. 105:11–20; 1981.

    CAS  Google Scholar 

  • Jasik, J.; De Klerk, G. J. Anatomical and ultrastructural examination of adventitious root formation in stem slices of apple. Biol. Plant. 39:79–90; 1997.

    Article  Google Scholar 

  • Jönsson, Å. Chemical structure and growth activity of auxins and antiauxins. In: Ruhland, W., ed. Encyclopedia of plant physiology. Vol. IVX. Berlin, Gottingen, Heidelberg: Springer-Verlag; 1961:959–1006.

    Google Scholar 

  • Kenney, G.; Sudi, J.; Blackman, G. E. The uptake of growth substances XIII. Differential uptake of indole-3yl-acetic acid through the epidermal and cut surfaces of etiolated stem segments. J. Exp. Bot. 20:820–840; 1969.

    Article  CAS  Google Scholar 

  • Kevers, C.; Hausman, J. F.; Faivre-Rampant, O.; Evers, D.; Gaspar, T. Hormonal control of adventitious rooting: progress and questions. J. Appl. Bot. 71:71–79; 1997.

    CAS  Google Scholar 

  • Kling, G. J.; Meyer, M. M. Effects of phenolic compounds and indoleacetic acid on adventitious root initiation in cuttings of Phaseolus aureus, Acer saccharinum, and Acer griseum. HortScience 18:352–354; 1983.

    CAS  Google Scholar 

  • Libbenga, K. R.; Mennes, A. M. Hormone binding and signal transduction, In: Davies, P. J., ed. Plant hormones. Dordrecht, The Netherlands: Kluwer Academic Publishers; 1995:272–297.

    Google Scholar 

  • Liu, J. H.; Reid, D. M. Adventitious rooting in hypocotyls of sunflower (Helianthus annuus) seedlings. IV. The role of changes in endogenous free and conjugated indole-3-acetic acid. Physiol. Plant. 86:285–292; 1992a.

    Article  CAS  Google Scholar 

  • Liu, J. H.; Reid, D. M. Auxin and ethylene-stimulated adventitious rooting in relation to tissue sensitivity to auxin and ethylene production in sunflower hypocotyls. J. Exp. Bot. 43:1191–1198; 1992b.

    Article  CAS  Google Scholar 

  • Lyon, G. D.; Reglinski, T.; Newton, C. Novel disease control compounds: the potential to “immunize” plants against infection. Plant Pathol. 44:407–427; 1995.

    Article  CAS  Google Scholar 

  • Meyer, E. M.; Morgan, P. W.; Yang, S. F. Ethylene. In: Wilkins, M. B., ed. Advanced plant physiology. London: Pitman Publishing Ltd.; 1984:111–126.

    Google Scholar 

  • Milborrow, B. V. Inhibitors. In: Wilkins, M. B., ed. Advanced plant physiology. London: Pitman Publishing Ltd.; 1984:76–110.

    Google Scholar 

  • Mitsuhashi, M.; Shibaoka, H.; Shimokoriyama, M. Morphological and physiological characterization of IAA-less-sensitive and IAA-sensitive phases in rooting of Azukia cuttings. Plant Cell Physiol. 10:867–874; 1969.

    CAS  Google Scholar 

  • Mudge, K. W. Effect of ethylene on rooting. In: Davis, T. D.; Haissig, B. E.; Sankhla, N., ed. Adventitious root formation by cuttings. Portland: Dioscorides Press; 1988:150–161.

    Google Scholar 

  • Nordström, A. C.; Eliasson, L. Levels of endogenous indole-3-acetic acid and indole-3-acetylaspartic acid during adventitious root formation in pea cuttings. Physiol. Plant 82:599–605; 1991.

    Article  Google Scholar 

  • Nordström, A. C.; Jacobs, A. C.; Eliasson, L. Effect of exogenous indole-3-acetic acid and indole-3-butyric acid on the internal levels of the respective auxins and their conjugation with aspartic acid during adventitious root formation in pea cuttings. Plant Physiol. 96:856–861; 1991.

    Article  PubMed  Google Scholar 

  • Quinto, C.; Wijfjes, A. H. M.; Bloemberg, G. V.; Blok-Tip, L.; LoApez-Lara, I. M.; Lugtenberg, B. J. J.; Thomas-Oates, J. E.; Spaink, H. P. Bacterial nodulation protein NodZ is a chitin oligosaccharide fucosyltransferase which can also recognize related substrates of animal origin. Proc. Natl. Acad. Sci. USA 94:4336–4341; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Rubery, P. H.; Sheldrake, A. R. Effect of pH and surface charge on cell uptake of auxin. Nat. New Biol. 244:285–288; 1973.

    PubMed  CAS  Google Scholar 

  • Smith, D. L.; Fedoroff, N. V. LRP1, a gene expressed in lateral and adventitious root primordia of Arabidopsis. Plant Cell 7:735–745; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Smith, D. R.; Thorpe, T. A. Root initiation in cuttings of Pinus radiata seedlings. II. Growth regulator interactions. J. Exp. Bot. 26:193–202; 1975.

    Article  CAS  Google Scholar 

  • Smulders, M. J. M.; Van de Ven, E. T. W. M.; Croes, A. F.; Wullems, G. J. Metabolism of 1-naphthaleneacetic acid in explants of tobacco: evidence for release of free hormone from conjugates. J. Plant Growth Regul. 9:27–34; 1990.

    Article  CAS  Google Scholar 

  • Suttle, J. Effect of ethylene treatment on polar IAA transport, net IAA uptake and specific binding of N-1-naphthylphthalamic acid in tissues and microsomes isolated from etioated pea epicotyls. Plant Physiol. 88:795–799; 1988.

    PubMed  CAS  Google Scholar 

  • Thimann, K. V. Auxins and the growth of roots. Am. J. Bot. 23:561–569; 1936.

    Article  CAS  Google Scholar 

  • Thimann, K. V.; Went, F. W. On the chemical nature of the rootforming hormone. Proc. K. Ned. Akad. Wet. Ser. C Biol. Med. Sci. 37:456–459; 1934.

    CAS  Google Scholar 

  • Ueda, J. Promotive effect of capillarol and related compounds on root growth. Physiol. Plant. 76:42–46; 1989.

    Article  CAS  Google Scholar 

  • Van der Krieken, W. M.; Breteler, H.; Visser, M. H. M. Uptake and metabolism of indolebutyric acid during root formation of Malus microcuttings. Acta Bot. Neerl. 41:435–442; 1992.

    Google Scholar 

  • Van der Krieken, W. M.; Breteler, H.; Visser, M. H. M.; Mavridou, D. The role of the conversion of IBA into IAA on root regeneration in apple: introduction of a test system. Plant Cell Rep. 12:203–206; 1993.

    Article  Google Scholar 

  • Van der Krieken, W. M.; Kodde, J.; Visser, M. H. M.; Tsardakas, D.; Blaakmeer, A.; De Groot, K.; Leegstra, L. Increased induction of adventitious rooting by slow release auxins and elicitors. In: Altman, A.; Waisel, Y., ed. Biology of root formation and development. New York and London: Plenum Publishing Corp.; 1997:95–105.

    Google Scholar 

  • Van der Lek, H. A. A. Over eenige toepasingen van ‘groeistoffen’ in de practijk van de plantenteelt. Vakbl. Biol. 22:29–35; 1941 (in Dutch).

    Google Scholar 

  • Visser, E. J. W.; Cohen, J. D.; Barendse, G. W. M.; Blom, C. W. P. M.; Voesenek, L. A. C. J. An ethylene-mediated increase in sensitivity to auxin induces adventitious root formation in flooded Rumex palustris Sm. Plant Physiol. 112:1687–1692; 1996.

    CAS  Google Scholar 

  • Vieitez, A. M.; Sánchez, C.; San-José, S. Prevention of shoot-tip necrosis in shoot cultures of chestnut and oak. Soi. Hortic. (Canterb.) 41:151–159; 1989.

    Article  Google Scholar 

  • Went, F. W. The dual effect of auxin on root formation. Am. J. Bot. 26:24–29; 1939.

    Article  CAS  Google Scholar 

  • Zhou, J.; Wu, H.; Collet, G. F. Histological study of initiation and development in vitro of adventitious roots in minicuttings of apple rootstocks of M26 and EMLA9. Physiol. Plant. 84:433–440; 1992.

    Article  Google Scholar 

  • Zimmerman, W.; Crocker, W.; Hitchcock, A. E. Initiation and stimulation of roots from exposure of plants to carbon monoxide gas. Contrib. Boyce Thompson Inst. 5:1–17; 1933.

    CAS  Google Scholar 

  • Zimmerman, W.; Wilcoxon, F. Several chemical growth substances which cause initiation of roots and other responses in plants. Contrib. Boyce Thompson Inst. 7:209–217; 1935.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Klerk, GJ., van der Krieken, W. & de Jong, J.C. Review the formation of adventitious roots: New concepts, new possibilities. In Vitro Cell.Dev.Biol.-Plant 35, 189–199 (1999). https://doi.org/10.1007/s11627-999-0076-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-999-0076-z

Key words

Navigation