Skip to main content
Log in

Enhanced plumbagin accumulation in embryogenic cell suspension cultures of Plumbago rosea L. following elicitation

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

This study focused on enhancing the production of plumbagin, an anticancer compound, in embryogenic cell suspension cultures of Plumbago rosea. Elicitation techniques have been reported to enhance plumbagin production. Cell suspension cultures raised from embryogenic calli induced from in vitro leaf explants were exposed to different concentrations of jasmonic acid, yeast extract and different auxin combinations. Influence of these on cell growth, biomass and plumbagin production was studied. To our knowledge this is the first report on elicitation of embryogenic cell suspension cultures of P. rosea for enhanced plumbagin production. Elicitor treated suspension cultures exhibited decreased culture viability and increased plumbagin synthesis. A maximum of 5.59-fold enhancement of plumbagin production was observed in cultures added with 1 mg L−1 naphthalene acetic acid after 6 days of incubation. Viability of cultures decreased with increased concentration of elicitors and prolonged incubation period. Application of elicitors in cell suspension cultures induces defense related responses which lead to increased secondary metabolite production for making the cells adapt to the situation. If the stressed condition persists or is in intolerable level this will eventually lead to programmed cell death and loss of culture viability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Baker JC, Mock NM (1994) An improved method for monitoring cell death in cell suspension and leaf disc assays using evans blue. Plant Cell Tissue Organ Cult 39:7–12

    Article  Google Scholar 

  • Bhambhani S, Karwasara VS, Dixit VK, Banerjee S (2012) Enhanced production of vasicine in Adhatoda vasica (L.) Nees cell culture by elicitation. Acta Physiol Plant 34:1571–1578

    Article  CAS  Google Scholar 

  • Bourgaud F, Gravot A, Milesi S, Gontier E (2001) Production of plant secondary metabolites: a historical perspective. Plant Sci 161:839–851

    Article  CAS  Google Scholar 

  • Buitelaar RM, Tramper J (1992) Strategies to improve the production of secondary metabolites with plant cell cultures: a literature review. J Biotechnol 23:111–141

    Article  CAS  Google Scholar 

  • Chang Z, Guo D, Shen X, Wang S, Zheng J (1998) Anthraquinone production and analysis in the hairy root cultures of Rheum palmatum L. Acta Pharm Sin 33:869–872

    CAS  Google Scholar 

  • Crouch IJ, Finnie JF, Staden J (1990) Studies on the isolation of plumbagin from in vitro and in vivo grown Drosera species. Plant Cell Tissue Organ Cult 21:79–82

    Article  CAS  Google Scholar 

  • Curtin C, Zhang W, Franco C (2003) Manipulating anthocyanin composition in Vitis vinifera suspension cultures by elicitation with jasmonic acid and light irradiation. Biotechnol Lett 25:1131–1135

    Article  CAS  PubMed  Google Scholar 

  • Deo PC, Taylor M, Harding RM, Tyagi AP, Becker DK (2010) Initiation of embryogenic cell suspensions of taro (Colocasia esculenta var. esculenta) and plant regeneration. Plant Cell Tissue Organ Cult 100:283–291

    Article  CAS  Google Scholar 

  • Deus B, Zenk MH (1982) Exploitation of plant cells for the production of natural compounds. Biotechnol Bioeng 24:1965–1974

    Article  CAS  PubMed  Google Scholar 

  • Devi Y, Lieberei SR (2011) Camptothecin accumulation in various organ cultures of Camptotheca acuminata Decne grown in different culture systems. Plant Cell Tissue Organ Cult 106:445–454

    Article  Google Scholar 

  • DiCosmo F, Towers GHN (1984) Stress and secondary metabolism in cultured plant cells. In: Timmerman BN, Steelink FA, Loewus FA (eds) Recent advances in phytochemistry, vol 18. Plenum, New York, pp 97–175

    Google Scholar 

  • Dixon RA (1999) Plant natural products: the molecular genetic basis of biosynthetic diversity. Curr Opinion Biotechnol 10:192–197

    Article  CAS  Google Scholar 

  • Dörnenburg H, Knorr D (1995) Strategies for the improvement of secondary metabolite production in plant cell cultures. Enzyme Microb Technol 17:674–684

    Article  Google Scholar 

  • Farmer EE, Ryan CA (1990) Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci USA 87:7713–7716

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fujii N, Yamashita Y, Arima Y, Nagashima M, Nakano H (1992) Induction of topoisomerase II-mediated DNA cleavage by the plant naphthoquinones plumbagin and shikonin. Antimicrob Agents Chemother 36:2589–2594

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gangopadhyay M, Dewanjee S, Bhattacharya S (2011) Enhanced plumbagin production in elicited Plumbago indica hairy root cultures. J Biosci Bioeng 111:706–710

    Article  CAS  PubMed  Google Scholar 

  • Gomathinayagam R, Sowmyalakshmi S, Mardhatillah F, Kumar R, Akbarsha MA, Damodaran C (2008) Anticancer mechanism of plumbagin, a natural compound, on non-small cell lung cancer cells. Anticancer Res 28:785–792

    CAS  PubMed  Google Scholar 

  • Hagendoom MJM, Wagner AM, Segers C, Plas LHW, Van D, Oostdam A, Van Walraven HS (1994) Cytoplasmic acidification and secondary metabolite production in different plant cell suspensions a comparative study. Plant Physiol 106:723–730

    Google Scholar 

  • Halperin W, Jensen WA (1967) Ultrastructural changes during growth and embryogenesis in carrot cell cultures. J Ultrastruct Res 18:428–443

    Article  CAS  PubMed  Google Scholar 

  • Ho CW, Jian WT, Lai HC (2013) Plant regeneration via somatic embryogenesis from suspension cell cultures of Lilium formolongi Hort. using a bioreactor system. In Vitro Cell Dev Biol Pl 42:240–246

    Article  Google Scholar 

  • Hsu Y, Cho C, Kuo P, Huang Y, Lin C (2006) Plumbagin (5-hydroxy-2-methyl-1, 4-naphthoquinone) induces apoptosis and cell cycle arrest in A549 cells through p53 accumulation via c-Jun NH2-terminal kinase. J Pharmacol Exp Ther 318:484–494

    Article  CAS  PubMed  Google Scholar 

  • Inbaraj J, Chignell C (2004) Cytotoxic action of juglone and plumbagin: a mechanistic study using HaCaT keratinocytes. Chem Res Toxicol 17:55–62

    Article  CAS  PubMed  Google Scholar 

  • Jayasankar S, Gray DJ, Litz RE (1999) High efficiency somatic embryogenesis and plant regeneration from suspension cultures of grapevine. Plant Cell Rep 18:533–537

    Article  CAS  Google Scholar 

  • Kargi F, Ganapathi B (1991) Effects of precursors and stimulating agents on formation of indole alkaloids by C. roseus in a biofilm reactor. Enzyme Microb Technol 13:643–647

    Article  CAS  Google Scholar 

  • Kessmann H, Edwards R, Geno PW, Dixon RA (1990) Stress responses in Alfalfa (Medicago sativa L.). Plant Physiol 94:227–232

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ketchum REB, Gibson DM, Croteau RB, Shuler ML (1999) The kinetics of taxoid accumulation in cell suspension cultures of taxus following elicitation with methyl jasmonate. Biotechnol Bioeng 62:94–105

    Article  Google Scholar 

  • Komaraiah P, Naga AR, Kavi KP, Ramakrishna S (2002) Elicitor enhanced production of plumbagin in suspension cultures of Plumbago rosea L. Enzyme Microb Technol 31(5):634–639

    Article  CAS  Google Scholar 

  • Komaraiah P, Jogeswar G, Ramakrishna SV, Kishor KP (2004) Acetylsalicylic acid and ammonium induced somatic embryogenesis and enhanced plumbagin production in suspension cultures of Plumbago rosea L. In Vitro Cell Dev Biol 40:230–234

    Article  CAS  Google Scholar 

  • Krzyzanowska J, Czubacka AP, Lukasz P, Marcin D, Teresa S, Anna WO (2012) The effects of jasmonic acid and methyl jasmonate on rosmarinic acid production in Mentha piperita cell suspension cultures. Plant Cell Tissue Organ Cult 108:73–81

    Article  CAS  Google Scholar 

  • Lai L, Liu J, Zhai D, Lin Q, He L, Dong Y, Liu M (2012) Plumbagin inhibits tumour angiogenesis and tumour growth through the Ras signalling pathway following activation of the VEGF receptor-2. Br J Pharmacol 165:1084–1096

    Article  PubMed Central  PubMed  Google Scholar 

  • León J, Sánchez-Serrano JJ (1999) Molecular biology of jasmonic acid biosynthesis in plants. Plant Physiol Biochem 37:373–380

    Article  Google Scholar 

  • León J, Rojo E, Sánchez-Serrano JJ (2001) Wound signaling in plants. J Exp Bot 52:1–9

    Article  PubMed  Google Scholar 

  • Lim E, Bowles D (2012) Plant production systems for bioactive small molecules. Curr Opinion Biotechnol 23:1–7

    Article  Google Scholar 

  • Lu M, Wong H, Teng W (2001) Effects of elicitation on the production of saponin in cell culture of Panax ginseng. Plant Cell Rep 20:674–677

    CAS  Google Scholar 

  • Luczkiewicz M, Kokotkiewicz A (2012) Elicitation and permeabilisation affect the accumulation and storage profile of phytoestrogens in high productive suspension cultures of Genista tinctoria. Acta Physiol Plant 34:1–16

    Article  CAS  Google Scholar 

  • Mark CM (2003) The effects of phytohormones on growth and artemisisnin production in hairy root cultures of Artemisia annuna L. Ph D Thesis Worcester Polytechnic Institute pp 11

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nahálka J, Nahálková J, Gemeiner P, Blanárik P (1998) Elicitation of plumbagin by chitin and its release into the medium in Drosophyllum lusitanicum link: suspension cultures. Biotechnol Lett 20:841–845

    Article  Google Scholar 

  • Naill Roberts SC (2004) Preparation of single cells from aggregated Taxus suspension cultures for population analysis. Biotechnol Bioeng 86:817–826

    Article  CAS  PubMed  Google Scholar 

  • Nair S, Nair RRK, Srinivas P, Srinivas G, Pillai MR (2008) Radiosensitizing effects of plumbagin in cervical cancer cells is through modulation of apoptotic pathway. Mol Carcinog 33:22–33

    Article  Google Scholar 

  • Nakagawa K, Fukui H, Tabata M (1986) Hormonal regulation of berberine production in cell suspension cultures of Thalictrum minus. Plant Cell Rep 5:69–71

    Article  CAS  PubMed  Google Scholar 

  • Namedo GA (2007) Review article plant cell elicitation for production of secondary metabolites: a review. Pharmacogn Rev 1:69–79

    Google Scholar 

  • Narasimhan S, Nair GM (2004) Effect of auxins on berberine synthesis in cell suspension culture of Coscinium fenestratum (Gaertn.) Colebra critically endangered medicinal liana of Western Ghats. Indian J Exp Biol 42:616–619

    CAS  PubMed  Google Scholar 

  • Parimala R, Sachdanandam P (1993) Effect of plumbagin on some glucose metabolising enzymes studied in rats in experimental hepatoma. Mol Cell Biochem 125:59–63

    Article  CAS  PubMed  Google Scholar 

  • Pieterse CMJ, Leon-Reyes A, Van der Ent S, Van WSCM (2009) Networking by small molecule hormones in plant immunity. Nat Chem Biol 5(5):308–316

    Article  CAS  PubMed  Google Scholar 

  • Poosarla A, Rao DN, Athota RR, Sunkara VG (2011) Modulation of T cell proliferation and cytokine response by plumbagin, extracted from Plumbago zeylanica in collagen induced arthritis. BMC Complement Altern Med 11:114

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Putalun W, Udomsin O, Yusakul G, Juengwatanatrakul T, Sakamoto S, Hiroyuki T (2010) Enhanced plumbagin production from in vitro cultures of Drosera burmanii using elicitation. Biotechnol Lett 32:721–724

    Article  CAS  PubMed  Google Scholar 

  • Rao SR, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 20:101–153

    Article  CAS  PubMed  Google Scholar 

  • Ravishankar GA, Venkataraman LV, Prakash J, Pierik RLM (1993) Role of plant cell culture in food biotechnology: current trends, limitations and future prospects. Oxford IBH Press, New Delhi, pp 255–274

    Google Scholar 

  • Rhodes MJC, Parr AJ, Giuletti A, Aird ELH (1994) Influence of exogenous hormones on the growth and secondary metabolite formation in transformed root cultures. Plant Cell Tissue Org Cult 38:143–151

    Article  CAS  Google Scholar 

  • Rijhwani SK, Shanks JV (1998) Effect of subculture cycle on growth and indole alkaloid production by Catharanthus roseus hairy root cultures. Enzyme Microb Technol 22:606–611

    Article  CAS  Google Scholar 

  • Satheeshkumar K, Seeni S (2002) Cell suspension cultures of Plumbago indica. Indian J Biotechnol I:305–308

    Google Scholar 

  • Satheeshkumar K, Seeni S (2003) In vitro mass multiplication and production of roots in Plumbago rosea. Planta Med 69:83–86

    Article  CAS  PubMed  Google Scholar 

  • Srinivas P, Gopinath G, Banerji A, Dinakar A, Srinivas G (2004) Plumbagin induces reactive oxygen species, which mediate apoptosis in human cervical cancer cells. Mol Carcinog 40:201–211

    Article  CAS  PubMed  Google Scholar 

  • Sugie S, Okamoto K, Rahman K, Tanaka T (1998) Inhibitory effects of plumbagin and juglone on azoxymethane induced intestinal carcinogenesis in rats. Cancer Lett 127:177–183

    Article  CAS  PubMed  Google Scholar 

  • Thasni KA, Rakesh S, Rojini G, Ratheeshkumar T, Srinivas G, Priya S (2008) BRCA1-blocked BG1 ovarian cancer cells in response to plumbagin and other chemotherapeutic agents. Ann Oncol 1–10

  • Vázquez LH, Mangas S, Palazón J, Navarrooca A (2010) Valuable medicinal plants and resins: commercial phytochemicals with bioactive properties. Ind Crops Prod 31:476–480

    Article  Google Scholar 

  • Walling L (2000) The myriad plant responses to herbivores. J Plant Growth Regul 19:195–216

    CAS  PubMed  Google Scholar 

  • Wang C, Chiang Y, Sung S, Hsu Y (2008) Plumbagin induces cell cycle arrest and apoptosis through reactive oxygen species/c-Jun N-terminal kinase pathways in human melanoma A375 S2 cells. Cancer Lett 259:82–98

    Article  CAS  PubMed  Google Scholar 

  • Washida D, Shimomura K, Takido M, Kitanaka S (2004) Auxins affected ginsenoside production and growth of hairy roots in Panax Hybrid. Biol Pharm Bull 27:657–660

    Article  CAS  PubMed  Google Scholar 

  • Williams EG, Maheswaran G (1986) Somatic embryogenesis: factors influencing coordinated behaviour of cells as an embryogenic group. Ann Bot 57:443–462

    Google Scholar 

  • Wucherpfenning T, Annika S, Jaime AP, Gabriel C, Dominik S, Matthias P, Gilbert G, Kai S, Christoh W, Rainer K (2014) Viability characterization of Taxus chinensis plant cell suspension cultures by rapid colorimetric and image analysis based techniques. Bioprocess Biosyst Eng. doi:10.1007/s00449-014-1153-1

    Google Scholar 

Download references

Acknowledgments

The authors thank the Director of the Institute for providing facilities and Council for Scientific and Industrial Research (CSIR), Government of India for financial support as Ph.D fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Satheeshkumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silja, P.K., Gisha, G.P. & Satheeshkumar, K. Enhanced plumbagin accumulation in embryogenic cell suspension cultures of Plumbago rosea L. following elicitation. Plant Cell Tiss Organ Cult 119, 469–477 (2014). https://doi.org/10.1007/s11240-014-0547-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-014-0547-8

Keywords

Navigation