Skip to main content

Plant–Rhizobacteria Interaction and Drought Stress Tolerance in Plants

  • Chapter
  • First Online:
Drought Stress Tolerance in Plants, Vol 1

Abstract

Agricultural productivity is threatened mainly by climate changes and excessive use of agrochemicals resulting in continuous environmental degradation. In the following decades, warmer temperatures, high dioxide carbon levels and an increase in the frequency and duration of drought are expected. Moreover, water shortage is considered one of the major environmental factors that has adverse effects on yield and quality in agricultural crops worldwide. Therefore, alternative eco-friendly approaches need to be considered. Rhizobacteria are symbiotic, free-living, or endophytic microorganisms that colonize the roots of plants system. Numerous studies indicate that plant growth-promoting rhizobacteria (PGPR) have an important role in the metabolism, growth, and development of plants. The use of PGPR as biofertilizers is proposed as an alternative solution for the sustainability of agro-ecosystems. The beneficial effects of PGPRs have been demonstrated in many agricultural crops and several rhizobacteria strains are responsible for alleviating plants from biotic and/or abiotic stresses. Production of plant growth regulators by PGPR is one of the principal mechanisms used to explain the improvement of plant growth and development. This chapter is focused on plant–rhizobacteria interaction and its effect on regulation abscisic acid (ABA) metabolism in plants submitted to drought stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad M, Zahir ZA, Asghar N, Asghar M. Inducing salt tolerance in mung bean through coinoculation with rhizobia and plant-growth promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol. 2011;57:578–89.

    Article  CAS  PubMed  Google Scholar 

  • Ahuja I, de Vos RC, Bones AM, Hall RD. Plant molecular stress responses face climate change. Trends Plant Sci. 2010;15(12):664–74.

    Article  CAS  PubMed  Google Scholar 

  • Akiyoshi DE, Regier AD, Gordon MP. Cytokinin production by Agrobacterium and Pseudomonas spp. J Bacteriol. 1987;169:135–40.

    Google Scholar 

  • Arkhipova TN, Veselov SU, Melentiev AI, Martynenko EV, Kudoyarova GR. Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. Plant Soil. 2005;272:201–9.

    Article  CAS  Google Scholar 

  • Arkhipova TN, Prinsen E, Veselov SU, Martynenko EV, Martynenko EV, Kudoyarova GR. Cytokinin producing bacteria enhance plant growth in drying soil. Plant Soil. 2007;292:305–15.

    Article  CAS  Google Scholar 

  • Arshad M, Frankenberger Jr WT. Microbial production of plant growth regulators. In: Metting Jr FB, editor. Soil microbial ecology. New York: Marcel and Dekker; 1993. p. 307–47.

    Google Scholar 

  • Asghar H, Zahir Z, Arshad M, Khaliq A. Relationship between in vitro production of auxins by rhizobacteria and their growth-promoting activities in Brassica juncea L. Biol Fert Soils. 2002;35:231–7.

    Article  CAS  Google Scholar 

  • Ayyadurai N, Ravindra Naik P, Sakthivel N. Functional characterization of antagonistic fluorescent pseudomonads associated with rhizospheric soil of rice (Oryza sativa L.). J Microbiol Biotechnol. 2007;17:919–92.

    CAS  PubMed  Google Scholar 

  • Azcón R, Barea JM. Mycorrhizosphere interactions for legume improvement. In: Khanf MS, Zaidi A, Musarrar J, editors. Microbes for legume improvement. Vienna: Springer; 2010. p. 237–71.

    Chapter  Google Scholar 

  • Babalola OO. Beneficial bacteria of agricultural importance. Biotechnol Lett. 2010;32:1559–70.

    Article  CAS  PubMed  Google Scholar 

  • Bakker MG, Schlatter DC, Otto-Hanson L, Kinkel LL. Diffuse symbioses: roles of plant-plant, plant-microbe and microbe-microbe interactions in structuring the soil microbiome. Mol Ecol. 2014;23:1571–83.

    Article  PubMed  Google Scholar 

  • Bano N, Musarrat J. Characterization of a new Pseudomonas aeruginosa strain NJ-15 as a potential biocontrol agent. Curr Microbiol. 2003;46(5):324–8.

    Article  CAS  PubMed  Google Scholar 

  • Barea J, Navarro M, Montoya E. Production of plant growth regulators by rhizosphere phosphate-solubilizing bacteria. J Appl Bacteriol. 1976;40:129–34.

    Article  CAS  PubMed  Google Scholar 

  • Barea J-M, Pozo MJ, Azcón R, Azcón-Aguilar C. Microbial cooperation in the rhizosphere. J Exp Bot. 2005;56:1761–78.

    Article  CAS  PubMed  Google Scholar 

  • Bartels D, Sunkar R. Drought and salt tolerance in plants. Crit Rev Plant Sci. 2005;24(1):23–58.

    Article  CAS  Google Scholar 

  • Bashan Y, de-Bashan L. Plant Growth-Promoting. In: D. Hillel (Editor-in-Chief), Encyclopedia of soils in the environment, Vol. 1. Oxford: Elsevier; 2005, p. 103–15.

    Google Scholar 

  • Bashan Y, Bustillos JJ, Leyva LA, Hernandez J-P, Bacilio M. Increase in auxiliary photoprotective photosynthetic pigments in wheat seedlings induced by Azospirillum brasilense. Biol Fertil Soils. 2006;42:279–285.

    Google Scholar 

  • Bashan Y, de-Bashan L. How the plant growth-promoting bacterium Azospirillum promotes plant growth. A critical assessment. Adv Agron. 2010;108:77–136.

    Google Scholar 

  • Bashan Y, de-Bashan LE, Prabhu SR, Hernandez J-P. Advances in plant growth-promoting bacterial inoculants technology: Formulations and practical perspectives (1998-2013). Plant Soil. 2014;378(1-2):1–33.

    Google Scholar 

  • Bassaganya-Riera J, Guri AJ, Lu P, Climent M, Carbo A, Sobral BW, Horne WT, Lewis SN, Bevan DR, Hontecillas R. Abscisic acid regulates inflammation via ligand-binding domain-independent activation of peroxisome proliferator-activated receptor gamma. J Biol Chem. 2011;286(4):2504–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bastián F, Cohen AC, Piccoli P, Luna V, Baraldi R, Bottini R. Production of indole-3-acetic acid and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically-defined culture media. Plant Growth Regul. 1998;24:7–11.

    Article  Google Scholar 

  • Bastián F, Rapparini F, Baraldi R, Piccoli P, Bottini R. Inoculation with Acetobacter diazotrophicus increases glucose and fructose content in shoots of Sorghum bicolor (L.) Moench. Symbiosis 1999;27:147–156.

    Google Scholar 

  • Belimov AA, Safronova VI, Sergeyeva TA, Egorova TN, Matveyeva VA, Tsyganov VE, Borisov AY, Tikhonovich IA, Kluge C, Preisfeld A, Dietz KJ, Stepanok VV. Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol. 2001;47:242–52.

    Article  Google Scholar 

  • Belimov AA, Dodd IC, Safronova VI, Dumova VA, Shaposhnikov AI, Ladatko AG, Davies WJ. Abscisic acid metabolizing rhizobacteria decrease ABA concentrations in planta and alter plant growth. Plant Physiol Biochem. 2014;74:84–91.

    Article  CAS  PubMed  Google Scholar 

  • Berg G, Alavi M, Schmidt CS, Zachow C, Egamberdieva D, Kamilova F, Lugtenberg B. Biocontrol and osmoprotection for plants under salinated conditions. In: de Bruijn FJ, editor. Molecular microbial ecology of the rhizosphere. Hoboken: Wiley-Blackwell; 2013. p. 561–73.

    Google Scholar 

  • Berli FJ, Moreno D, Piccoli P, Hespanhol-Viana L, Silva MF, Bressan-Smith R, Cavagnaro JB, Bottini R. Abscisic acid is involved in the response of grape (Vitis vinifera L.) cv. Malbec leaf tissues to ultraviolet-B radiation by enhancing ultraviolet-absorbing compounds, antioxidant enzymes and membrane sterols. Plant Cell Environ. 2010;33:1–10.

    CAS  PubMed  Google Scholar 

  • Berli FJ, Fanzone M, Piccoli P, Bottini R. Solar UV-B and ABA are involved in phenol metabolism of Vitis vinifera L. increasing biosynthesis of berry skin polyphenols. J Agric Food Chem. 2011;59:4874–84.

    Article  CAS  PubMed  Google Scholar 

  • Bloemberg GV, Lugtenberg BJ. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Review. Curr Opin Plant Biol. 2001;4(4):343–50.

    Article  CAS  PubMed  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot. 2002;91:179–94.

    Article  CAS  Google Scholar 

  • Boddey RM, Dobereiner J. Nitrogen fixation associated with grasses and cereals: recent progress and perspectives for the future. Fert Res. 1995;42:241–50.

    Article  CAS  Google Scholar 

  • Bohnert HJ, Gong Q, Li P, Ma S. Unraveling a biotic stress tolerance mechanism-getting genomics going. Plant Biol. 2006;9:180–8.

    CAS  Google Scholar 

  • Bottini R, Fulchieri M, Pearce D, Pharis RP. Identification of gibberellins A1, A3 and iso-A3 in cultures of Azospirillum lipoferum. Plant Physiol. 1989;90:45–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bottini R, Cassán F, Piccoli P. Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Biotechnol. 2004;65:497–503.

    Article  CAS  PubMed  Google Scholar 

  • Boyer JS. Plant productivity and environment. Science. 1982;218:443–8.

    Article  CAS  PubMed  Google Scholar 

  • Bray EA. Abscisic acid regulation of gene expression during water-deficit stress in the era of the Arabidopsis genome. Plant Cell Environ. 2002;25:153–61.

    Article  CAS  PubMed  Google Scholar 

  • Bresson J, Varoquaux F, Bontpart T, Touraine B, Vile D. The PGPR strain Phyllobacterium brassicacearum STM196 induces a reproductive delay and physiological changes that result in improved drought tolerance in Arabidopsis. New Phytol. 2013;200:558–69.

    Article  CAS  PubMed  Google Scholar 

  • Bruzzone S, Moreschi I, Usai C, Guida L, Damonte G, Salis A, Scarfì S, Millo E, De Flora A, Zocchi E. Abscisic acid is an endogenous cytokine in human granulocytes with cyclic ADP-ribose as second messenger. Proc Natl Acad Sci U S A. 2007;104(14):5759–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burd GI, Dixon DG, Glick BR. A plant growth promoting bacterium that decreases nickel toxicity in plant seedlings. Appl Environ Microbiol. 1998;64:3663–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cakmakci R, Dönmez F, Aydın A, Sahin F. Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biol Biochem. 2006;38:1482–7.

    Article  CAS  Google Scholar 

  • Calvo P, Nelson L, Kloepper JW. Agricultural uses of plant biostimulants. Plant Soil. 2014;383(1-2):3–41.

    Article  CAS  Google Scholar 

  • Chanway CP, Holl FB. Ecological growth response specificity of two Douglas-fir ecotypes inoculated with coexistent beneficial bacteria. Can J Bot. 1994;72:582–6.

    Article  Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS. Understanding plant responses to drought-from genes to the whole plant. Funct Plant Biol. 2003;30:239–64.

    Article  CAS  Google Scholar 

  • Chaves MM, Felxas J, Pnheiro C. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot. 2009;103:551–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen TH, Murata N. Glycinebetaine: an effective protectant against abiotic stress in plants. Trends Plant Sci. 2008;13(9):499–505.

    Article  CAS  PubMed  Google Scholar 

  • Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol. 2006;34(1):33–41.

    Article  Google Scholar 

  • Cohen AC, Pontin M, Bottini R, Piccoli P. Azospirillum brasilense and ABA improve growth in Arabidopsis thaliana, 19th International plant growth substances association meeting. México: Puerto Vallarta; 2007.

    Google Scholar 

  • Cohen AC, Bottini R, Piccoli P. Azospirillum brasilense Sp 245 produces ABA in chemically-defined culture medium and increases ABA content in Arabidopsis plants. Plant Growth Regul. 2008;54:97–103.

    Article  CAS  Google Scholar 

  • Cohen AC, Travaglia C, Bottini R, Piccoli P. Participation of abscisic acid and gibberellins produced by entophytic Azospirillum in the alleviation of drought effects in maize. Botany. 2009;87:455–62.

    Article  CAS  Google Scholar 

  • Cohen AC, Bottini R, Pontin M, Berli FJ, Moreno D, Boccanlandro H, Travaglia CN, Piccoli PN. Azospirillum brasilense ameliorates the response of Arabidopsis thaliana to drought mainly via enhancement of ABA levels. Physiol Plant. 2015a;153(1):79–90.

    Article  CAS  PubMed  Google Scholar 

  • Cohen AC, Bottini R, Piccoli P. Role of abscisic acid producing PGPR in sustainable agriculture. In: Maheshwari DK, editor. Bacterial metabolites in sustainable agro-ecosystem. New York: Springer; 2015b (in press).

    Google Scholar 

  • Compant E, van der Heijden MGA, Sessitsch A. Climate change effects on beneficial-plant microorganism interactions. FEMS Microbiol Ecol. 2010;73:197–214.

    CAS  PubMed  Google Scholar 

  • Corrêa de Souza T, Magalhães PC, de Castro EM, Pereira de Albuquerque PM, Marabesi MA. The influence of ABA on water relation, photosynthesis parameters, and chlorophyll fluorescence under drought conditions in two maize hybrids with contrasting drought resistance. Acta Physiol Plant. 2013;35:515–27.

    Article  CAS  Google Scholar 

  • Corrêa de Souza T, Magalhães PC, de Castro EM, Carneiro NP, Padilha FA, Gomes Júnior CC. ABA application to maize hybrids contrasting for drought tolerance: changes in water parameters and in antioxidant enzyme activity. Plant Growth Regul. 2014;73(3):205–17.

    Article  CAS  Google Scholar 

  • Costacurta A, Vanderleyden J. Synthesis of phytohormones by plant-associated bacteria. Crit Rev Microbiol. 1995;21(1):1–18.

    Article  PubMed  Google Scholar 

  • Creus C, Sueldo R, Barassi C. Shoot growth and water status in Azospirillum-inoculated wheat seedlings grown under osmotic and salt stresses. Plant Physiol Biochem. 1997;35:939–44.

    CAS  Google Scholar 

  • Creus CM, Sueldo RJ, Barassi CA. Water relations in Azospirillum-inoculated wheat seedlings under osmotic stress. Can J Bot. 1998;76:238–44.

    Google Scholar 

  • Creus CM, Sueldo RJ, Barassi CA. Water relations and yield in Azospirillum inoculated wheat exposed to drought in the field. Can J Bot. 2004;82:273–81.

    Article  Google Scholar 

  • Crozier A, Arruda P, Jasmim JM, Monteiro AM, Sandberg G. Analysis of indole-3-acetic acid and related indoles in culture medium from Azospirillum lipoferum and Azospirillum brasilense. Appl Environ Microbiol. 1988;54:2833–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dardanelli MS, Fernandez de Cordoba FJ, Espuny MR, Rodriguez Carvajal MA, Soria Diaz ME, Gil Serrano A, Okon Y, Megias M. Effect of Azospirillum brasilense coinoculated with Rhizobiumon Phaseolus vulgaris flavonoids and Nod factor production under salt stress. Soil Biol Biochem. 2008;40:2713–21.

    Article  CAS  Google Scholar 

  • Davies P. The plant hormones; their nature occurrence and function. In: Davies P, editor. Plant Hormones. Biosynthesis, Signal Transduction, Action. Dordrecht: Kluwer Academic Press; 2005;1–15.

    Google Scholar 

  • Davies P. The plant hormone: their nature, occurrence and functions. In: Davies PJ, editor. Plant hormones: biosynthesis, signal transduction, action. Dordrecht: Springer; 2010. p. 1–15.

    Chapter  Google Scholar 

  • Davies WJ, Zhang JH. Root signals and the regulation of growth and development of plants in drying soil. Annu Rev Plant Physiol. 1991;42:55–76.

    Article  CAS  Google Scholar 

  • De Freitas JR, Banerjee MR, Germida JJ. Phosphate solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L.). Biol Fertil Soil. 1997;24:358–64.

    Article  Google Scholar 

  • De Smet I, Zhang H, Inze D, Beeckman T. A novel role for abscisic acid emerges from underground. Trends Plant Sci. 2006;11:434–9.

    Article  PubMed  CAS  Google Scholar 

  • Deak KI, Malamy J. Osmotic regulation of root system architecture. Plant J. 2005;43:17–28.

    Article  CAS  PubMed  Google Scholar 

  • Deka Boruah HP, Dileep Kumar BS. Plant disease suppression and growth promotion by florescent Pseudomonas strain. Folia Microbiol. 2002;47(2):137–43.

    Article  Google Scholar 

  • Dodd IC, Pérez-Alfocea F. Microbial amelioration of crop salinity stress. J Exp Bot. 2012;63:3415–28.

    Article  CAS  PubMed  Google Scholar 

  • Domínguez JE, García Lampasona S, Cohen AC, Salomon MV, Piccoli P. Estudio del gen CrtZ, intermediario clave en la vía del Ácido Abscísico en Pseudomonas fluorescens, aisladas de raíces de plantas de vid. Tucumán: XVII Congr. SAMIGE; 2011.

    Google Scholar 

  • Dursun A, Turan M, Ekinci M, Gunes A, Ataoglu N, Esringü A, Yildirim E. Effects of boron fertilizer on tomato, pepper, and cucumber yields and chemical composition. Commun Soil Sci Plant Anal. 2010;41:1576–93.

    Article  CAS  Google Scholar 

  • Egamberdieva D. Plant growth promoting properties of rhizobacteria isolated from wheat and pea grown in loamy sand soil. Turk J Biol. 2008;32(1):9–15.

    Google Scholar 

  • Eisenhauer N, Cesarz S, Koller R, Worm K, Reich PB. Global change belowground: impacts of elevated CO2, nitrogen, and summer drought on soil food webs and biodiversity. Global Change Biol. 2012;18:435–47.

    Article  Google Scholar 

  • Engelbrecht BMJ, Comita LS, Condit R, Kursar TA, Tyree MT, Turner BL, Hubbell SP. Drought sensitivity shapes species distribution patterns in tropical forests. Nature. 2007;447:80–2.

    Article  CAS  PubMed  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA. Plant drought stress: effects, mechanisms and management. Agron Sustain Dev. 2009;29:185–212.

    Article  Google Scholar 

  • Figueiredo MVB, Burity HA, Martinez CR, Chanway CP. Alleviation of drought stress in common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl Soil Ecol. 2008;40:182–8.

    Article  Google Scholar 

  • Forchetti G, Masciarelli O, Alemano S, Alvarez D, Abdala G. Endophytic bacteria in sunflower (Helianthus annuus L.): isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl Microb Biotechnol. 2007;76:1145–52.

    Article  CAS  Google Scholar 

  • Freitas ADS, Vieira CL, Santos CERS, Stamford NP, Lyra MCCP. Caracterização de rizóbios isolados de Jacatupé cultivado em solo salino no Estado de Pernanbuco, Brazil. Bragantia. 2007;66:497–504.

    Article  Google Scholar 

  • García de Salamone IE, Hynes RK, Nelson LM. Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Can J Microbiol. 2001;47:404–11.

    Article  PubMed  Google Scholar 

  • Glick BR. The enhancement of plant growth by free-living bacteria. Can J Microbiol. 1995;41:109–17.

    Article  CAS  Google Scholar 

  • Glick BR, Bashan Y. Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of fungal phytopathogens. Biotechnol Adv. 1997;15:353–78.

    Article  CAS  PubMed  Google Scholar 

  • Glick BR. Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett. 2005;251:1–7.

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Cheng Z, Duan J. Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol. 2007;119:329–39.

    Article  CAS  Google Scholar 

  • Glick BR. Using soil bacteria to facilitate phytoremediation. Biotechnol Adv. 2010;28:367–74.

    Article  CAS  PubMed  Google Scholar 

  • Guóth A, Tari I, Gallé A, Csiszár J, Pécsváradi A, Cseuz L, Erdei L. Comparison of the drought stress responses of tolerant and sensitive wheat cultivars during grain filling: changes in flag leaf photosynthetic activity, ABA levels, and grain yield. J Plant Growth Regul. 2009;28:167–76.

    Article  CAS  Google Scholar 

  • Gutiérrez-Mañero F, Ramos-Solano B, Probanza A, Mehouachi J, Tadeob F, Talon M. The plant-growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol Plant. 2001;111:206–11.

    Article  Google Scholar 

  • Hasegawa S, Poling SM, Maier VP, Bennett RD. Metabolism of abscisic acid: bacterial conversion to dehydrovomifoliol and vomifoliol dehydrogenase activity. Phytochem. 1984;23(12):2769–2771.

    Google Scholar 

  • Heidari M, Mousavinik SM, Golpayegani A. Plant growth promoting rhizobacteria (PGPR) effect on physiological parameters and mineral uptake in basil (Ociumum basilicum L.) under water stress. ARPN J Agric Biol Sci. 2011;6(5):6–11.

    Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, Vander Linden PJ, Xiaosu D (2001) Climate change 2001: the scientific basis. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, Vander Linder PJ, Dai X, Maskell K, Johnson CA (eds). Cambridge: Cambridge University Press, p. 1–83.

    Google Scholar 

  • Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci U S A. 2006;103:12987–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu J, Lin X, Wang J, Chu H, Yin R, Zhang J. Population size and specific potential of P-mineralizing and P-solubilizing bacteria under long-term P-deficiency fertilization in a sandy loam soil. Pedobiologia. 2009;53:49–58.

    Article  CAS  Google Scholar 

  • Huang D, Wu W, Abrams SR, Cutler AJ. The relationship of drought-related gene expression in Arabidopsis thaliana to hormonal and environmental factors. J Exp Bot. 2008;59:2991–3007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change 2007): Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt FB, Tignor M, Miller HL (eds). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996 pp

  • IPCC (Intergovernmental Panel on Climate Change). Climate Change 2014: Synthesis Report. In: Core Writing Team, Pachauri RK, Meyer LA, editors. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva: IPCC; 2014. 151 p.

    Google Scholar 

  • Janzen R, Rood S, Dormar J, McGill W. Azospirillum brasilense produces gibberellins in pure culture and chemically- medium and in co-culture on straw. Soil Biol Biochem. 1992;24:1061–4.

    Article  CAS  Google Scholar 

  • Jha BK, Pragash MG, Cletus J, Raman G, Sakthivel N. Simultaneous phosphate solubilization potential and antifungal activity of new fluorescent pseudomonad strains, Pseudomonas aeruginosa, P. plecoglossicida and P. mosselii. World J Microbiol Biotechnol. 2009;25:573–81.

    Article  CAS  Google Scholar 

  • Jiang M, Zhang J. Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. J Exp Bot. 2002;53:2401–10.

    Article  CAS  PubMed  Google Scholar 

  • Jiang M, Zhang J. Cross-talk between calcium and reactive oxygen species originated from NADPH oxidase in abscisic acid-induced antioxidant defense in leaves of maize seedlings. Plant Cell Environ. 2003;26:929–93.

    Article  CAS  PubMed  Google Scholar 

  • Joo G-J, Kang S-M, Hamayun M, Kim S-K, Na C-I, Shin D-H, Lee I-J. Burkholderia sp. 11096BP as a newly isolated gibberellin producing bacterium. J Microbiol. 2009;47(2):167–71.

    Article  CAS  PubMed  Google Scholar 

  • Joo G-J, Kim Y-M, Lee I-J, Song K-S, Rhee I-K. Growth promotion of red pepper plug seedlings and the production of gibberellins by Bacillus cereus, Bacillus macroides and Bacillus pumilus. Biotechnol Lett. 2004;26:487–91.

    Article  CAS  PubMed  Google Scholar 

  • Karadeniz A, Topcuoğlu SF, İnan S. Auxin, gibberellin, cytokinin and abscisic acid production in some bacteria. World J Microbiol Biotechnol. 2006;22:1061–4.

    Article  CAS  Google Scholar 

  • Kaymak HC, Guvenc I, Yarali F, Donmez MF. The effects of bio-priming with PGPR on germination of radish (Raphanus sativus L.) seeds under saline conditions. Turk J Agric For. 2009;33(2):173–9.

    CAS  Google Scholar 

  • Kloepper JW, Schroth M (1978) Plant growth promoting rhizobacteria on radishes. Prov. IV Int Conf Plant Pathol Bacteria, Angers 2:879–82.

    Google Scholar 

  • Kloepper JW, Lifshitz R, Zablotowicz RM. Free living bacterial inocula for enhancing crop productivity. Trends Biotechnol. 1989;7:39–44.

    Article  Google Scholar 

  • Kloepper JW, Zablotowiez RM, Tipping EM, Lifshitz R. Inorganic plant growth promotion mediated by bacterial rhizosphere colonizer. In: Keister KL, Gregan PB, editors. The rhizosphere and plant growth. Dordrecht: Kluwer; 1991. p. 315–26.

    Google Scholar 

  • Kohler J, Hernández JA, Caravaca F, Roldán A. Plant-growth promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants. Funct Plant Biol. 2008;35:141–51.

    Article  CAS  Google Scholar 

  • Kolb W, Martin P. Response of plant roots to inoculation with Azospirillum brasilense and to application of indole acetic acid. In: Klingmüller W, editor. Azospirillum III: genetics, physiology, ecology. Berlin: Springer; 1985. p. 215–21.

    Chapter  Google Scholar 

  • Kumar KR. Plant responses to water stress: Role of reactive oxygen species. Plant Signal Behav. 2011;6(1):1741–5.

    Google Scholar 

  • Lambers H, Raven JA, Shaver GR, Smith SE. Plant nutrient-acquisition strategies change with soil age. Trends Ecol Evol. 2008;23(2):95–103.

    Article  PubMed  Google Scholar 

  • Lambrecht M, Okon Y, VandeBroek A, Vanderleyden J. Indole-3-acetic acid: a reciprocal signalling molecule in bacteria–plant interactions. Trends Microbiol. 2000;8:298–300.

    Article  CAS  PubMed  Google Scholar 

  • Li YP, Ye W, Wang M, Yan XD. Climate change and drought: a risk assessment of crop-yield impacts. Clim Res. 2009;39:31–46.

    Article  CAS  Google Scholar 

  • Liu F, Jensen CR, Shahanzari A, Andersen MN, Jacobse S-E. ABA regulated stomatal control and photosynthetic water use efficiency of potato (Solanum tuberosum L.) during progressive soil drying. Plant Sci. 2005;168(3):831–6.

    Article  CAS  Google Scholar 

  • Lucangeli C, Bottini R. Reversion of dwarfism in dwarf-1 maize (Zea mays L.) and dwarf-x rice (Oryza sativa L.) mutants by endophytic Azospirillum spp. Biocell 1996;20:223–228.

    Google Scholar 

  • Lucangeli C, Bottini R. Effects of Azospirillum spp. on endogenous gibberellin content and growth of maize (Zea mays L.) treated with uniconazole. Symbiosis 1997;23:63–72.

    Google Scholar 

  • Lugtenberg B, Kamilova F. Plant-growth-promoting rhizobacteria. Annu Rev Microbiol. 2009;63:54–6.

    Article  CAS  Google Scholar 

  • Manivannan P, Jaleel CA, Somasundaram R, Panneerselvam R. Osmoregulation and antioxidant metabolism in drought stressed Helianthus annuus under triadimefon drenching. C R Biol. 2008;331(6):418–25.

    Article  CAS  PubMed  Google Scholar 

  • Mansouri S, Bunch AW. Bacterial ethylene synthesis from 2-0 × 0-4-thiobutyric acid and from methionine. J Gen Microbiol. 1989;135:2819–27.

    CAS  PubMed  Google Scholar 

  • Marasco EK, Schmidt-Dannert C. Exploring and accessing plant natural product biosynthesis in engineered microbial hosts. In: Kayser O, Quax WJ, editors. Medicinal plant biotechnology: from basic research to industrial applications. Weinheim: Wiley; 2007. p. 287–317.

    Google Scholar 

  • Marasco R, Rolli E, Ettoumi B, Vigani G, Mapelli F, Borin S, et al. A Drought resistance-promoting microbiome is selected by root system under desert farming. PLoS One. 2012;7:48479.

    Article  CAS  Google Scholar 

  • Marulanda A, Barea JM, Azcón R. An indigenous drought-tolerant strain of Glomus intraradices associated with a native bacterium improves water transport and root development in Retama sphaerocarpa. Microb Ecol. 2006;52:670–8.

    Article  CAS  PubMed  Google Scholar 

  • Mayak S, Tirosh T, Glick BR. Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and pepper. Plant Sci. 2004a;166:525–30.

    Article  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR. Plant growth promoting bacteria confers resistance in tomato plants to salt stress. Plant Physiol Biochem. 2004b;42:565–72.

    Article  CAS  PubMed  Google Scholar 

  • Meloni DA, Oliva MA, Ruiz HA, Martinez CA. Contribution of proline and inorganic solutes to osmotic adjustment in cotton under salt stress. J Plant Nutr. 2001;24:599–612.

    Article  CAS  Google Scholar 

  • Mishra V, Cherkauer KA. Retrospective droughts in the crop growing season: Implications to corn and soybean yield in the Midwestern United States. Agr Forest Meteorol. 2010;150(7–8):1030–45.

    Google Scholar 

  • Mizokami Y, Noguchi K, Kojima M, Sakakibara H, Terashima I. Mesophyll conductance decreases in the wild type but not in an ABA-deficient mutant (aba1) of Nicotiana plumbaginifolia under drought conditions. Plant Cell Environ. 2015;38:388–98.

    Article  CAS  PubMed  Google Scholar 

  • Moreno D, Berli FJ, Piccoli P, Bottini R. Gibberellins and abscisic acid promote carbon allocation in roots and berries of grape plants. J Plant Growth Regul. 2011;30:220–8.

    Article  CAS  Google Scholar 

  • Munns R. Genes and salt tolerance: bringing them together. New Phytol. 2005;167(3):645–63.

    Article  CAS  PubMed  Google Scholar 

  • Murcia G, Pontin M, Reinoso H, Baraldi R, Bertazza G, Gómez-Talquenca S, Bottini R, Piccoli P. ABA and GA3 increase carbon allocation in different organs of grapevine plants by inducing accumulation of non-structural carbohydrates in leaves, enhancement of phloem area and expression of sugar transporters. Physiol Plant. 2015. doi:10.1111/ppl.12390 (in press).

  • Nambara E, Marion-Poll A. Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol. 2005;56:165–85.

    Article  CAS  PubMed  Google Scholar 

  • Nehring RB, Ecker JR. Ethylene responses in seedling growth and development. InPlant Hormones Springer Netherlands. 2010;1:358–376.

    Google Scholar 

  • Noel ITC, Sheng C, Yost CK, Pharis RP, Hynes MF. Rhizobium leguminosarum as a plant I growth-promoting rhizobacterium: direct growth promotion of canola and lettuce. Can J Microbiol. 1996;42:279–83.

    Article  CAS  PubMed  Google Scholar 

  • Normander B, Prosser JI. Bacterial origin and community composition in the barley phytosphere as a function of habitat and pre-sowing conditions. Appl Environ Microbiol. 2000;66(10):4372–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patten CL, Glick BR. Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol. 1996;42:207–20.

    Article  CAS  PubMed  Google Scholar 

  • Perrig D, Boiero L, Masciarelli O, Penna C, Cassán F, Luna V. Plant growth promoting compounds produced by two agronomically important strains of Azospirillum brasilense, and their implications for inoculant formulation. Appl Microbiol Biotechnol. 2007;75:1143–50.

    Article  CAS  PubMed  Google Scholar 

  • Persello-Cartieaux F, Nussaume L, Robaglia C. Tales from the underground: molecular plant-rhizobacterial interactions. Plant Cell Environ. 2003;26:189–99.

    Article  CAS  Google Scholar 

  • Phalan B, Onial M, Balmford A, Green RE. Reconciling food production and biodiversity conservation: Land sharing and land sparing compared. Science. 2011;333:1289–91.

    Article  CAS  PubMed  Google Scholar 

  • Piccoli P, Travaglia C, Cohen A, Sosa CP, Masuelli R, Bottini R. An endophytic bacterium isolated from roots of the halophyte Prosopis strombulifera produces ABA, IAA, gibberellins A1 and A3 and jasmonic acid in chemically-defined culture medium. Plant Growth Regul. 2011;64:207–10.

    Article  CAS  Google Scholar 

  • Piccoli P, Bottini R. Abiotic stress tolerance induced by endophytic PGPR (Chapter 3). In: Aroca R, editor. Progress in symbiotic endophytes, Soil biology book series. Dordrecht: Springer; 2013. p. 151–63.

    Chapter  Google Scholar 

  • Poupin MJ, Timmermann T, Vega A, Zuñiga A, González B. Effects of the plant growth-promoting bacterium Burkholderia phytofirmans PsJN throughout the life cycle of Arabidopsis thaliana. PLoS One. 2013;8, e69435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Probanza A, Garcíıa JAL, Palomino MR, Ramos B, Manero FJG. Pinus pinea L. seedling growth and bacterial rhizosphere structure after inoculation with PGPR Bacillus (B. licheniformis CECT 5106 and B. pumilus CECT 5105). Appl Soil Ecol. 2002;20:75–84.

    Google Scholar 

  • Quiroga AM, Berli F, Moreno D, Cavagnaro JB, Bottini R. Abscisic acid sprays significantly increase yield per plant in vine yard grown wine grape (Vitis vinifera L.) cv. Cabernet sauvignon through increased berry set with no negative effects on anthocyanin content and total polyphenol index of both juice and wine. J Plant Growth Regul. 2009;28:28–35.

    Article  CAS  Google Scholar 

  • Ren H, Gao Z, Chen L, Wei K, Liu J, Fan Y, Davies WJ, Jia W, Zhang J. Dynamic analysis of ABA accumulation in relation to the rate of ABA catabolism in maize tissues under water deficit. J Exp Bot. 2007;58:211–9.

    Article  CAS  PubMed  Google Scholar 

  • Reynolds JF, Stafford Smith DM, Lambin EF, Turner BL, Mortimore M, Batterbury SPJ, Downing TE, Dowlatabadi H, et al. Global desertification: building a science for dry land development. Science. 2007;316:847–51.

    Article  CAS  PubMed  Google Scholar 

  • Richardson AE. Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Aust J Plant Physiol. 2001;28:897–906.

    Google Scholar 

  • Rodriguez H, Fraga R. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv. 1999;17:319–39.

    Article  CAS  PubMed  Google Scholar 

  • Sakakibara H. Cytokinin biosynthesis and metabolism. In: Davies PJ, editor. Plant hormones: biosynthesis, signal transduction, action. Dordrecht: Springer; 2010. p. 95–114.

    Chapter  Google Scholar 

  • Salomon MV, Bottini R, de Souza Filho GA, Cohen AC, Moreno D, Gil M, Piccoli P. Bacteria isolated from roots and rhizosphere of Vitis vinifera retard water losses, induce abscisic acid accumulation and synthesis of defense-related terpenes in in vitro cultured grapevine. Physiol Plant. 2014;151(4):359–74.

    Article  CAS  PubMed  Google Scholar 

  • Sandhya V, Ali SZ, Grover M, Reddy G, Venkateswarlu B. Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biol Fertil Soils. 2009;1:46(1):17–26.

    Google Scholar 

  • Sandhya V, Ali SZ, Grover M, Reddy G, Venkateswarlu B. Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Regul. 2010;62(1):21–30.

    Article  CAS  Google Scholar 

  • Sansberro P, Mroginski L, Bottini R. Abscisic Acid promotes growth of Ilex paraguariensis plants by alleviating diurnal water stress. Plant Growth Regul. 2004;42:105–11.

    Article  CAS  Google Scholar 

  • Sarig S, Blum A, Okon Y. Improvement of water status and yield of field-grown grain sorghum (Sorghum bicolor) by inoculation with Azospirillum brasilense. J Agric Sci. 1988;110:271–7.

    Article  Google Scholar 

  • Sarma RK, Saikia R. Alleviation of drought stress in mung bean by strain Pseudomonas aeruginosa GGRJ21. Plant Soil. 2014;377:111–26.

    Article  CAS  Google Scholar 

  • Schachtman DP, Goodger JQD. Chemical root to shoot signaling under drought. Trends Plant Sci. 2008;13:281–7.

    Article  CAS  PubMed  Google Scholar 

  • Schmelz EA, Engelberth J, Alborn HT, O’Donnell P, Sammons M, Toshima H, Tumlinson III JH. Simultaneous analysis of phytohormones, phytotoxins, and volatile organic compounds in plants. Proc Natl Acad Sci. 2003;100(18):10552–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, et al. Monitoring the expression profiles of ca 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J. 2002;31:279–92.

    Article  CAS  PubMed  Google Scholar 

  • Seki M, Umezawa T, Urano K, Shinozaki K. Regulatory metabolic networks in drought stress responses. Curr Opin Plant Biol. 2007;10:296–302.

    Article  CAS  PubMed  Google Scholar 

  • Sgroy V, Cassán F, Masciarelli O, Del Papa M, Lagares A, Luna V. Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera. Appl Microbiol Biotechnol. 2009;85:371–81.

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Kumar V, Tripathi RB. Isolation of phosphate solubilizing microorganism (PSMs) from soil. J Microbiol Biotechnol Res. 2011;1:90–5.

    Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance. J Exp Bot. 2007;58:221–7.

    Article  CAS  PubMed  Google Scholar 

  • Siddikee MA, Glick BR, Chauhan PS, Yim WJ, Sa T. Enhancement of growth and salt tolerance of red pepper seedlings (Capsicum annuum L.) by regulating stress ethylene synthesis with halotolerant bacteria containing 1-aminocyclopropane-1-carboxylic acid deaminase activity. Plant Physiol Biochem. 2011;49:427–34.

    Article  CAS  PubMed  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev. 2007;31:425–48.

    Article  CAS  PubMed  Google Scholar 

  • Sperdouli I, Moustakas M. Interaction of proline, sugars, and anthocyanins during photosynthetic acclimation of Arabidopsis thaliana to drought stress. J Plant Physiol. 2012;169:577–85.

    Article  CAS  PubMed  Google Scholar 

  • Sponsel VM, Hedden P. Gibberellin biosynthesis and inactivation. In: Davies PJ, editor. Plant hormones: biosynthesis, signal transduction, action. Dordrecht: Springer; 2010. p. 63–94.

    Chapter  Google Scholar 

  • Takezawa D, Komatsu K, Sakata Y. ABA in bryophytes: how a universal growth regulator in life became a plant hormone? J Plant Res. 2011;124:437–53.

    Article  CAS  PubMed  Google Scholar 

  • Taller BG, Wong T-Y. Cytokinins in Azotobacter vinelandii culture medium. Appl Environ Microbiol. 1989;55(1):266–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tan S, Jiang Y, Song S, Huang J, Ling N, Xu Y, Shen Q. Two Bacillus amyloliquefaciens strains isolated using the competitive tomato root enrichment method and their effects on suppressing Ralstonia solanacearum and promoting tomato plant growth. Crop Prot. 2013;43:134–40.

    Article  Google Scholar 

  • Tank N, Saraf M. Salinity resistant plant growth promoting rhizobacteria ameliorates sodium chloride stress on tomato plants. J Plant Interact. 2010;5:51–8.

    Article  CAS  Google Scholar 

  • Tardieu F, Davies WJ. Stomatal response to abscisic acid is a function of current plant water status. Plant Physiol. 1992;98:540–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tardieu F, Parent B, Simonneau T. Control of leaf growth by abscisic acid: hydraulic or non-hydraulic processes? Plant Cell Environ. 2010;33:636–47.

    Article  PubMed  Google Scholar 

  • Thompson AJ, Andrews J, Mulholland BJ, McKee JM, Hilton HW, Horridge JS, Farquhar GD, Smeeton RC, Smillie IR, Black CR, Taylor IB. Overproduction of abscisic acid in tomato increases transpiration efficiency and root hydraulic conductivity and influences leaf expansion. Plant Physiol. 2007;143:1905–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timmusk S, Wagner GH. The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol Plant Microbe Interact. 1999;12:951–9.

    Article  CAS  PubMed  Google Scholar 

  • Tomlinson I. Doubling food production to feed the 9 billion: a critical perspective on a key discourse of food security in the UK. J Rural Stud. 2013;21:81–90.

    Article  Google Scholar 

  • Travaglia C, Cohen AC, Reinoso H, Castillo C, Bottini R. Exogenous abscisic acid increases carbohydrate accumulation and redistribution to the grains in wheat grown under field conditions of soil water restriction. J Plant Growth Regul. 2007;26:285–9.

    Article  CAS  Google Scholar 

  • Travaglia C, Reinoso H, Bottini R. Application of abscisic acid promotes yield in field-cultured soybean by enhancing production of carbohydrates and their allocation in seed. Crop Pasture Sci. 2009;60:1131–6.

    Article  CAS  Google Scholar 

  • Travaglia C, Reinoso H, Cohen AC, Luna C, Castillo C, Bottini R. Exogenous ABA increases yield in field-grown wheat with a moderate water restriction. J Plant Growth Regul. 2010;29:366–74.

    Article  CAS  Google Scholar 

  • Travaglia C, Balboa G, Espósito G, Reinoso H. ABA action on the production and redistribution of field-grown maize carbohydrates in semiarid regions. Plant Growth Regul. 2012;1:67(1):27–34.

    Google Scholar 

  • Travaglia C, Masciarelli O, Fortuna J, Marchetti G, Cardozo P, Lucero M, et al. Towards sustainable maize production: Glyphosate detoxification by Azospirillum sp. and Pseudomonas sp. Crop Prot. 2015;77:102–9.

    Article  CAS  Google Scholar 

  • Tsavkelova EA, Cherdyntseva TA, Netrusov AI. Auxin production by bacteria associated with orchid roots. Microbiology. 2005;74(1):46–53.

    Article  CAS  Google Scholar 

  • Tsavkelova EA, Klimova SY, Cherdyntseva TA, Netrusov AI. Microbial producers of plant growth stimulators and their practical use: a review. Appl Biochem Microb. 2006;42:117–26.

    Article  CAS  Google Scholar 

  • Vessey JK. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil. 2003;255:571–86.

    Article  CAS  Google Scholar 

  • Vickers CE, Gershenzon J, Lerdau MT, Loreto F. A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nat Chem Biol. 2009;1:5(5):283–91.

    Google Scholar 

  • Vile D, Pervent M, Belluau M, Vasseur F, Bresson J, Muller B, Granier C, Simonneau T. Arabidopsis growth under prolonged high temperature and water deficit: independent or interactive effects? Plant Cell Environ. 2012;35:702–18.

    Article  PubMed  Google Scholar 

  • Weingart H, Völksch B. Ethylene production by Pseudomonas syringae pathovars in vitro and in planta. Appl Environ Microbiol. 1997;63:156–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whipps JM. Carbon economy. In: Lynch JM, editor. The rhizosphere. Wiley: Chichester; 1990. p. 59–97.

    Google Scholar 

  • Wilkinson S, Davies WJ. Drought, ozone, ABA and ethylene: new insights from cell to plant to community. Plant Cell Environ. 2010;33:510–25.

    Article  CAS  PubMed  Google Scholar 

  • Xie X, Zhang H, Paré PW. Sustained growth promotion in Arabidopsis with long-term exposure to the beneficial soil bacterium Bacillus subtilis (GB03). Plant Signal Behav. 2009;4:948–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu ZZ, Zhou GS, Wang YL, Han GX, Li YJ. Changes in chlorophyll l fluorescence in maize plants with imposed rapid dehydration at different leaf ages. J Plant Growth Regul. 2008;27:83–92.

    Article  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K. Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci. 2005;10:88–94.

    Article  CAS  PubMed  Google Scholar 

  • Yanni YG, Rizk RY, El-Fattah FK, Squartini A, Corich V, Giacomini A, de Bruijn F, Rademaker J, Maya-Flores J, Ostrom P, Vega-Hernandez M. The beneficial plant growth-promoting association of Rhizobium leguminosarum bv. trifolii with rice roots. Functional Plant Biology. 2001;21:28(9):845–70.

    Google Scholar 

  • Zahir ZA, Arshad M, Frankenberger Jr WT. Plant growth promoting rhizobacteria application and perspectives in agriculture. Adv Agron. 2004;81:96–168.

    Google Scholar 

  • Zahir ZA, Ghani U, Naveed M, Nadeem SM, Asghar HN. Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.) under salt-stressed conditions. Arch Microbiol. 2009;191:415–24.

    Article  CAS  PubMed  Google Scholar 

  • Zawoznik MS, Ameneiros M, Benavides MP, Vázquez S, Groppa MD. Response to saline stress and aquaporin expression in Azospirillum-inoculated barley seedlings. Appl Microbiol Biotechnol. 2011;90:1389–97.

    Article  CAS  PubMed  Google Scholar 

  • Zeevaart J. Abscisic acid metabolism and its regulation. In: Hooykaas P, Hall M, Libbenga K, editors. Biochemistry and molecular biology of plant hormones. Amsterdam: Elsevier Science; 1999. p. 189–207.

    Chapter  Google Scholar 

  • Zhang H, Xie X, Kim MS, Kornyeyev DA, Holaday S, Paré PW. Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in plant. Plant J. 2008;56:264–73.

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Yuan B, Leng P. The role of ABA in triggering ethylene biosynthesis and ripening of tomato fruit. J Exp Bot. 2009a;60(6):1579–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang SQ, Outlaw Jr WH. Abscisic acid introduced into the transpiration stream accumulates in the guard-cell apoplast and causes stomatal closure. Plant Cell Environ. 2001;24:1045–54.

    Article  CAS  Google Scholar 

  • Zhang Y, Zhu H, Zhang Q, Li M, Yan M, Wang R, Wang L, Welti R, Zhang W, Wang X. Phospholipase Da1 and phosphatidic acid regulate NADPH oxidase activity and production of reactive oxygen species in ABA-mediated stomatal closure in Arabidopsis. Plant Cell. 2009b;21:2357–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This chapter was supported by Fondo para la Investigación Científica y Tecnológica (FONCYT, PICT 2008 1666 to R. Bottini and PICT 2007 02190 to P. Piccoli), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET, PIP 2008 to P. Piccoli), and Secretaría de Ciencia y Técnica-Universidad Nacional de Cuyo to A. Cohen, R. Bottini and P. Piccoli. A. Cohen, R. Bottini and P. Piccoli are fellows of CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cohen Ana Carmen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Carmen, C.A., Patricia, P., Rubén, B., Victoria, S.M. (2016). Plant–Rhizobacteria Interaction and Drought Stress Tolerance in Plants. In: Hossain, M., Wani, S., Bhattacharjee, S., Burritt, D., Tran, LS. (eds) Drought Stress Tolerance in Plants, Vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-28899-4_12

Download citation

Publish with us

Policies and ethics