Skip to main content
Log in

ABA in bryophytes: how a universal growth regulator in life became a plant hormone?

  • JPR Symposium
  • Opening a New Era of ABA Research
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Abscisic acid (ABA) is not a plant-specific compound but one found in organisms across kingdoms from bacteria to animals, suggesting that it is a ubiquitous and versatile substance that can modulate physiological functions of various organisms. Recent studies have shown that plants developed an elegant system for ABA sensing and early signal transduction mechanisms to modulate responses to environmental stresses for survival in terrestrial conditions. ABA-induced increase in stress tolerance has been reported not only in vascular plants but also in non-vascular bryophytes. Since bryophytes are the key group of organisms in the context of plant evolution, clarification of their ABA-dependent processes is important for understanding evolutionary adaptation of land plants. Molecular approaches using Physcomitrella patens have revealed that ABA plays a role in dehydration stress tolerance in mosses, which comprise a major group of bryophytes. Furthermore, we recently reported that signaling machinery for ABA responses is also conserved in liverworts, representing the most basal members of extant land plant lineage. Conservation of the mechanism for ABA sensing and responses in angiosperms and basal land plants suggests that acquisition of this mechanism for stress tolerance in vegetative tissues was one of the critical evolutionary events for adaptation to the land. This review describes the role of ABA in basal land plants as well as non-land plant organisms and further elaborates on recent progress in molecular studies of model bryophytes by comparative and functional genomic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Audenaert K, De Meyer GB, Hofte MM (2002) Abscisic acid determines basal susceptibility of tomato to Botrytis cinerea and suppresses salicylic acid-dependent signaling mechanisms. Plant Physiol 128:491–501

    PubMed  CAS  Google Scholar 

  • Bajguz A (2009) Brassinosteroid enhanced the level of abscisic acid in Chlorella vulgaris subjected to short-term heat stress. J Plant Physiol 166:882–886

    PubMed  CAS  Google Scholar 

  • Bassaganya-Riera J, Guri AJ, Lu P, Climent M, Carbo A, Sobral BW, Horne WT, Lewis SN, Bevan DR, Hontecillas R (2010) Abscisic acid regulates inflammation via ligand-binding domain-independent activation of PPARγ. J Biol Chem. doi:10.1074/jbc.M110.160077

  • Beckett RP, Csintalan Z, Tuba Z (2000) ABA treatment increases both the desiccation tolerance of photosynthesis, and non photochemical quenching in the moss Atrichum undulatum. Plant Ecol 151:65–71

    Google Scholar 

  • Belin C, de Franco PO, Bourbousse C, Chaignepain S, Schmitter JM, Vavasseur A, Giraudat J, Barbier-Brygoo H, Thomine S (2006) Identification of features regulating OST1 kinase activity and OST1 function in guard cells. Plant Physiol 141:1316–1327

    PubMed  CAS  Google Scholar 

  • Bezanilla M, Pan A, Quatrano RS (2003) RNA interference in the moss Physcomitrella patens. Plant Physiol 133:470–474

    PubMed  CAS  Google Scholar 

  • Bhatla SC, Chopra RN (1981) Hormonal regulation of gametangial formation in the moss Bryum argenteum Hedw. J Exp Bot 32:1243–1256

    CAS  Google Scholar 

  • Bodrato N, Franco L, Fresia C, Guida L, Usai C, Salis A, Moreschi I, Ferraris C, Verderio C, Basile G, Bruzzone S, Scarfi S, De Flora A, Zocchi E (2009) Abscisic acid activates the murine microglial cell line N9 through the second messenger cyclic ADP-ribose. J Biol Chem 284:14777–14787

    PubMed  CAS  Google Scholar 

  • Boyer GL, Dougherty SS (1988) Identification of abscisic acid in the seaweed Ascophyllum nodosum. Phytochemistry 27:1521–1522

    CAS  Google Scholar 

  • Bradley PM (1991) Plant hormones do have a role in controlling growth and development of algae. J Phycol 27:317–321

    CAS  Google Scholar 

  • Bruzzone S, Moreschi I, Usai C, Guida L, Damonte G, Salis A, Scarfi S, Millo E, De Flora A, Zocchi E (2007) Abscisic acid is an endogenous cytokine in human granulocytes with cyclic ADP-ribose as second messenger. Proc Natl Acad Sci USA 104:5759–5764

    PubMed  CAS  Google Scholar 

  • Bruzzone S, Bodrato N, Usai C, Guida L, Moreschi I, Nano R, Antonioli B, Fruscione F, Magnone M, Scarfi S, De Flora A, Zocchi E (2008) Abscisic acid is an endogenous stimulator of insulin release from human pancreatic islets with cyclic-ADP ribose as second messenger. J Biol Chem 283(47):32188–32197

    PubMed  CAS  Google Scholar 

  • Burch J, Wilkinson T (2002) Cryopreservation of protonemata of Ditrichum cornubicum (paton) comparing the effectiveness of four cryoprotectant pretreatments. Cryo Lett 23:197–208

    CAS  Google Scholar 

  • Chen JG, Ellis BE (2008) GCR2 is a new member of the eukaryotic lanthionine synthetase component C-like protein family. Plant Signal Behav 3:307–310

    PubMed  Google Scholar 

  • Cheng J-Y, Schraudolf V (1974) Nachweis von Abscisinsure in Sporen and jungen Prothallien von Anemia phyllitidis L. Sw. Zeitschrift fur Pflanzenphysiologie 71:366–369

    CAS  Google Scholar 

  • Chia SGE, Raghavan V (1982) Abscisic acid effects on spore germination and protonemal growth in the fern, Mohria caffrorum. New Phytol 92:31–37

    CAS  Google Scholar 

  • Chopra RN, Kapur A (1989) Effect of abscisic acid and kinetin on protonemal differentiation in Timmiella anomala. Plant Sci 61:203–206

    CAS  Google Scholar 

  • Chopra RN, Mehta P (1987) Effect of some known growth regulators on growth and fertility in male clones of the moss Microdus brasiliensis (Dub.). Ther J Exp Bot 38:331–339

    CAS  Google Scholar 

  • Christianson ML (1998) A simple protocol for cryopreservation of mosses. Bryologist 101:32–35

    Google Scholar 

  • Christianson ML (2000) ABA prevents the second cytokinin-mediated event during the induction of shoot buds in the moss Funaria hygrometrica. Am J Bot 87:1540–1545

    PubMed  CAS  Google Scholar 

  • Close TJ, Lammers PJ (1993) An osmotic stress protein of cyanobacteria is immunologically related to plant dehydrins. Plant Physiol 101:773–779

    PubMed  CAS  Google Scholar 

  • Cohen AC, Bottini R, Piccoli PN (2008) Azospirillum brasilense Sp 245 produces ABA in chemically-defined culture medium and increases ABA content in arabidopsis plants. Plant Growth Regul 54:97–103

    CAS  Google Scholar 

  • Cohen AC, Travaglia CN, Bottini R, Piccoli PN (2009) Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany 87:455–462

    CAS  Google Scholar 

  • Correa LG, Riano-Pachon DM, Schrago CG, dos Santos RV, Mueller-Roeber B, Vincentz M (2008) The role of bZIP transcription factors in green plant evolution: adaptive features emerging from four founder genes. PLoS One 3:e2944

    PubMed  Google Scholar 

  • Cove DJ, Knight CD, Lamparter T (1997) Mosses as model systems. Trends Plant Sci 2:99

    Google Scholar 

  • Cowan AK, Rose PD (1991) Abscisic-acid metabolism in salt-stressed cells of Dunaliella salina—possible interrelationship with β-carotene accumulation. Plant Physiol 97:798–803

    PubMed  CAS  Google Scholar 

  • Cuming AC, Cho SH, Kamisugi Y, Graham H, Quatrano RS (2007) Microarray analysis of transcriptional responses to abscisic acid and osmotic, salt, and drought stress in the moss, Physcomitrella patens. New Phytol 176:275–287

    PubMed  CAS  Google Scholar 

  • Decker EL, Frank W, Sarnighausen E, Reski R (2006) Moss systems biology en route: phytohormones in Physcomitrella development. Plant Biol (Stuttg) 8:397–405

    CAS  Google Scholar 

  • Ergun N, Topcuoglu SF, Yildiz A (2002) Auxin (indole-3-acetic acid), gibberellic acid (GA3), abscisic acid (ABA) and cytokinin (zeatin) production by some species of mosses and lichens. Turk J Bot 26:13–18

    Google Scholar 

  • Evans LV, Trewavas AJ (1991) Is algal development controlled by plant growth substances? J Phycol 27:322–326

    CAS  Google Scholar 

  • Forchetti G, Masciarelli O, Alemano S, Alvarez D, Abdala G (2007) Endophytic bacteria in sunflower (Helianthus annuus L.): isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl Microbiol Biotechnol 76:1145–1152

    PubMed  CAS  Google Scholar 

  • Fujita Y, Nakashima K, Yoshida T, Katagiri T, Kidokoro S, Kanamori N, Umezawa T, Fujita M, Maruyama K, Ishiyama K, Kobayashi M, Nakasone S, Yamada K, Ito T, Shinozaki K, Yamaguchi-Shinozaki K (2009) Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis. Plant Cell Physiol 50:2123–2132

    PubMed  CAS  Google Scholar 

  • Gampala SS, Finkelstein RR, Sun SS, Rock CD (2002) ABI5 interacts with abscisic acid signaling effectors in rice protoplasts. J Biol Chem 277:1689–1694

    PubMed  CAS  Google Scholar 

  • Gao Y, Zeng Q, Guo J, Cheng J, Ellis BE, Chen JG (2007) Genetic characterization reveals no role for the reported ABA receptor, GCR2, in ABA control of seed germination and early seedling development in Arabidopsis. Plant J 52:1001–1013

    PubMed  CAS  Google Scholar 

  • Goode JA, Stead AD, Duckett JG (1993) Redifferentiation of moss protonemata: an experimental and immunofluorescence study of brood cell formation. Can J Bot 71:1510–1519

    Google Scholar 

  • Guiltinan MJ, Marcotte WR Jr, Quatrano RS (1990) A plant leucine zipper protein that recognizes an abscisic acid response element. Science 250:267–271

    PubMed  CAS  Google Scholar 

  • Guo J, Zeng Q, Emami M, Ellis BE, Chen JG (2008) The GCR2 gene family is not required for ABA control of seed germination and early seedling development in Arabidopsis. PLoS One 3:e2982

    PubMed  Google Scholar 

  • Hartung W (2010) The evolution of abscisic acid (ABA) and ABA function in lower plants, fungi and lichen. Funct Plant Biol 37:806–812

    CAS  Google Scholar 

  • Hartung W, Gimmler H (1994) A stress physiological role for abscisic acid (ABA) in lower plants. Prog Bot 55:157–173

    CAS  Google Scholar 

  • Hartung W, Weiler EW, Volk OH (1987) Immunochemical evidence that abscisic acid is produced by several species of Anthocerotae and Marchantiales. Bryologist 90:393–400

    CAS  Google Scholar 

  • Hatanaka R, Sugawara Y (2010) Development of desiccation tolerance and vitrification by preculture treatment in suspension-cultured cells of the liverwort Marchantia polymorpha. Planta 231:965–976

    PubMed  CAS  Google Scholar 

  • Hellwege EM, Dietz KJ, Volk OH, Hartung W (1994) Abscisic acid and the induction of desiccation tolerance in the extremely xerophilic liverwort Exormotheca holstii. Planta 194:525–531

    CAS  Google Scholar 

  • Hellwege EM, Dietz KJ, Hartung W (1996) Abscisic acid causes changes in gene expression involved in the induction of the landform of the liverwort Riccia fluitans L. Planta 198:423–432

    PubMed  CAS  Google Scholar 

  • Hickok LG (1983) Abscisic acid blocks antheridiogen-induced antheridium formation in gametophytes of the fern Ceratopteris. Can J Bot 61:888–892

    CAS  Google Scholar 

  • Hirai N, Yoshida R, Todoroki Y, Ohigashi H (2000) Biosynthesis of abscisic acid by the non-mevalonate pathway in plants, and by the mevalonate pathway in fungi. Biosci Biotechnol Biochem 64:1448–1458

    PubMed  CAS  Google Scholar 

  • Hirsch R, Hartung W, Gimmler H (1989) Abscisic acid content of algae under stress. Bot Acta 102:326–334

    CAS  Google Scholar 

  • Hsu TC, Liu HC, Wang JS, Chen RW, Wang YC, Lin BL (2001) Early genes responsive to abscisic acid during heterophyllous induction in Marsilea quadrifolia. Plant Mol Biol 47:703–715

    PubMed  CAS  Google Scholar 

  • Huang CY (1991) Regulation of ionic fluxes and protein-release from Anabena-HA101 by exogenous abscisic acid. Bot Bull Acad Sin 32:265–270

    CAS  Google Scholar 

  • Huddart H, Smith RH, Langton PD, Hetherington AM, Mansfield TA (1986) Is abscisicacid a universally active calcium agonist? New Phytol 104:161–173

    CAS  Google Scholar 

  • Hussain A, Boney AD (1973) Hydrophilic growth inhibitors from Laminaria and Ascophyllum. New Phytol 72:403–410

    CAS  Google Scholar 

  • Inomata M, Hirai N, Yoshida R, Ohigashi H (2004) Biosynthesis of abscisic acid by the direct pathway via ionylideneethane in a fungus, Cercospora cruenta. Biosci Biotechnol Biochem 68:2571–2580

    PubMed  CAS  Google Scholar 

  • Jennings RC (1969) Gibberellin antagonism by material from a brown alga. New Phytol 68:683–688

    CAS  Google Scholar 

  • Kamisugi Y, Cuming AC (2005) The evolution of the abscisic acid-response in land plants: comparative analysis of group 1 LEA gene expression in moss and cereals. Plant Mol Biol 59:723–737

    PubMed  CAS  Google Scholar 

  • Kettner J, Dörffling K (1995) Biosynthesis and metabolism of abscisic acid in tomato leaves infected with Botrytis cinerea. Planta 196:627–634

    CAS  Google Scholar 

  • Khandelwal A, Cho SH, Marella H, Sakata Y, Perroud PF, Pan A, Quatrano RS (2010) Role of ABA and ABI3 in desiccation tolerance. Science 327:546

    PubMed  CAS  Google Scholar 

  • Khraiwesh B, Ossowski S, Weigel D, Reski R, Frank W (2008) Specific gene silencing by artificial MicroRNAs in Physcomitrella patens: an alternative to targeted gene knockouts. Plant Physiol 148:684–693

    PubMed  CAS  Google Scholar 

  • Kingman AR, Moore J (1982) Isolation, purification and quantitation of several growth regulating substances in Ascophyllum nodosum (Phaeophyta). Bot Mar 25:149–154

    CAS  Google Scholar 

  • Knight CD, Sehgal A, Atwal K, Wallace JC, Cove DJ, Coates D, Quatrano RS, Bahadur S, Stockley PG, Cuming AC (1995) Molecular responses to abscisic acid and stress are conserved between moss and cereals. Plant Cell 7:499–506

    PubMed  CAS  Google Scholar 

  • Kobayashi M, Hirai N, Kurimura Y, Ohigashi H, Tsuji Y (1997) Abscisic acid-dependent algal morphogenesis in the unicellular green alga Haematococcus pluvialis. Plant Growth Regul 22:79–85

    CAS  Google Scholar 

  • Komatsu K, Nishikawa Y, Ohtsuka T, Taji T, Quatrano RS, Tanaka S, Sakata Y (2009) Functional analyses of the ABI1-related protein phosphatase type 2C reveal evolutionarily conserved regulation of abscisic acid signaling between Arabidopsis and the moss Physcomitrella patens. Plant Mol Biol 70:327–340

    PubMed  CAS  Google Scholar 

  • Kumra S, Chopra RN (1986) Combined effect of some growth regulators on growth and gametangial formation in the liverwort Riccia gangetica Ahmad. J Exp Bot 37:1552–1557

    CAS  Google Scholar 

  • Le Page-Degivry MT, Bidard JN, Rouvier E, Bulard C, Lazdunski M (1986) Presence of abscisic acid, a phytohormone, in the mammalian brain. Proc Natl Acad Sci USA 83:1155–1158

    PubMed  CAS  Google Scholar 

  • Leung J, Bouvier-Durand M, Morris PC, Guerrier D, Chefdor F, Giraudat J (1994) Arabidopsis ABA response gene ABI1: features of a calcium-modulated protein phosphatase. Science 264:1448–1452

    PubMed  CAS  Google Scholar 

  • Leung J, Merlot S, Giraudat J (1997) The Arabidopsis ABSCISIC ACID-INSENSITIVE2 (ABI2) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. Plant Cell 9:759–771

    PubMed  CAS  Google Scholar 

  • Li X, Syrkin Wurtele E, Lamotte CE (1994) Abscisic acid is present in liverworts. Phytochemistry 37:625–627

    CAS  Google Scholar 

  • Lin BL, Wang HJ, Wang JS, Zaharia LI, Abrams SR (2005) Abscisic acid regulation of heterophylly in Marsilea quadrifolia L.: effects of R-(−) and S-(+) isomers. J Exp Bot 56:2935–2948

    PubMed  CAS  Google Scholar 

  • Liu BLL (1984) Abscisic induces land form characteristics in Marsilea quadrifolia L. Am J Bot 71:638–644

    CAS  Google Scholar 

  • Liu X, Yue Y, Li B, Nie Y, Li W, Wu WH, Ma L (2007) A G protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid. Science 315:1712–1716

    PubMed  CAS  Google Scholar 

  • Liu MS, Chien CT, Lin TP (2008) Constitutive components and induced gene expression are involved in the desiccation tolerance of Selaginella tamariscina. Plant Cell Physiol 49:653–663

    PubMed  CAS  Google Scholar 

  • Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324:1064–1068

    PubMed  CAS  Google Scholar 

  • Magnone M, Bruzzone S, Guida L, Damonte G, Millo E, Scarfi S, Usai C, Sturla L, Palombo D, De Flora A, Zocchi E (2009) Abscisic acid released by human monocytes activates monocytes and vascular smooth muscle cell responses involved in atherogenesis. J Biol Chem 284:17808–17818

    PubMed  CAS  Google Scholar 

  • Marcotte WR Jr, Russell SH, Quatrano RS (1989) Abscisic acid-responsive sequences from the em gene of wheat. Plant Cell 1:969–976

    PubMed  CAS  Google Scholar 

  • Marella HH, Sakata Y, Quatrano RS (2006) Characterization and functional analysis of ABSCISIC ACID INSENSITIVE3-like genes from Physcomitrella patens. Plant J 46:1032–1044

    PubMed  CAS  Google Scholar 

  • Marsalek B, Simek M, Lukesova A (1992a) The effect of abscisic and gibberellic acids on nitrogenase activity and growth of the cyanobacterium Nostoc muscorum Agardh. Archiv Hydrobiologie Supplementband 94:119–127

    CAS  Google Scholar 

  • Marsalek B, Zahradnickova H, Hronkova M (1992b) Extracellular abscisic-acid produced by cyanobacteria under salt stress. J Plant Physiol 139:506–508

    CAS  Google Scholar 

  • Mayaba N, Beckett RP, Csintalan Z, Tuba Z (2001) ABA increases the desiccation tolerance of photosynthesis in the afromontane understorey moss Atrichum androgynum. Ann Bot 88:1093–1100

    CAS  Google Scholar 

  • Menon MKC, Lal M (1974) Morphogenetic role of kinetin and abscisic acid in the moss Physcomitrium. Planta 115:319–328

    CAS  Google Scholar 

  • Meyer K, Leube MP, Grill E (1994) A protein phosphatase 2C involved in ABA signal transduction in Arabidopsis thaliana. Science 264:1452–1455

    PubMed  CAS  Google Scholar 

  • Milborrow BV (1974) The chemistry and physiology of abscisic acid. Annu Rev Plant Physiol 25:259–307

    CAS  Google Scholar 

  • Minami A, Nagao M, Arakawa K, Fujikawa S, Takezawa D (2003) Abscisic acid-induced freezing tolerance in the moss Physcomitrella patens is accompanied by increased expression of stress-related genes. J Plant Physiol 160:475–483

    PubMed  CAS  Google Scholar 

  • Minami A, Nagao M, Ikegami K, Koshiba T, Arakawa K, Fujikawa S, Takezawa D (2005) Cold acclimation in bryophytes: low-temperature-induced freezing tolerance in Physcomitrella patens is associated with increases in expression levels of stress-related genes but not with increase in level of endogenous abscisic acid. Planta 220:414–423

    PubMed  CAS  Google Scholar 

  • Müller M, Deigele C, Ziegler H (1989) Hormonal interactions in the rhizosphere of maize (Zea mays L) and their effects on plant development. Z Pflanzenernahr Bodenkd 152:247–254

    Google Scholar 

  • Nagamune K, Hicks LM, Fux B, Brossier F, Chini EN, Sibley LD (2008a) Abscisic acid controls calcium-dependent egress and development in Toxoplasma gondii. Nature 451:207–210

    PubMed  CAS  Google Scholar 

  • Nagamune K, Xiong L, Chini E, Sibley LD (2008b) Plants, endosymbionts and parasites: abscisic acid and calcium signaling. Commun Integr Biol 1:62–65

    PubMed  CAS  Google Scholar 

  • Nagao M, Minami A, Arakawa K, Fujikawa S, Takezawa D (2005) Rapid degradation of starch in chloroplasts and concomitant accumulation of soluble sugars associated with ABA-induced freezing tolerance in the moss Physcomitrella patens. J Plant Physiol 162:169–180

    PubMed  CAS  Google Scholar 

  • Nagao M, Oku K, Minami A, Mizuno K, Sakurai M, Arakawa K, Fujikawa S, Takezawa D (2006) Accumulation of theanderose in association with development of freezing tolerance in the moss Physcomitrella patens. Phytochemistry 67:702–709

    PubMed  CAS  Google Scholar 

  • Nakayama T, Fukushi Y, Mizutani J, Tahara S (1996) Inhibiting effects of lunularic acid analogs on the growth of liverwort, watercress, and timothy grass. Biosci Biotechnol Biochem 60:862–865

    CAS  Google Scholar 

  • Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185

    PubMed  CAS  Google Scholar 

  • Nimura K, Mizuta H (2002) Inducible effects of abscisic acid on sporophyte discs from Laminaria japonica Areschoug (Laminariales, Phaeophyceae). J Appl Phycol 14:159–163

    CAS  Google Scholar 

  • Oliver MJ, Velten J, Mishler BD (2005) Desiccation tolerance in bryophytes: a reflection of the primitive strategy for plant survival in dehydrating habitats? Integr Comp Biol 45:788–799

    PubMed  Google Scholar 

  • Ord GNSG, Cameron IF, Fenson DS (1977) The effect of pH and ABA on the hydraulic conductivity of Nitella membranes. Can J Bot 55:1–4

    CAS  Google Scholar 

  • Pandey PK, Singh BB, Mishra R, Bisen PS (1996) Ca2+ uptake and its regulation in the cyanobacterium Nostoc MAC. Curr Microbiol 32:332–335

    PubMed  CAS  Google Scholar 

  • Pandey S, Nelson DC, Assmann SM (2009) Two novel GPCR-type G proteins are abscisic acid receptors in Arabidopsis. Cell 136:136–148

    PubMed  CAS  Google Scholar 

  • Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow TF, Alfred SE, Bonetta D, Finkelstein R, Provart NJ, Desveaux D, Rodriguez PL, McCourt P, Zhu JK, Schroeder JI, Volkman BF, Cutler SR (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324:1068–1071

    PubMed  CAS  Google Scholar 

  • Pence VC (1998) Cryopreservation of bryophytes: the effects of abscisic acid and encapsulation dehydration. Bryologist 101:278–281

    CAS  Google Scholar 

  • Pence VC (2000) Cryopreservation of in vitro grown fern gametophytes. Am Fern J 90:16–23

    Google Scholar 

  • Pence VC, Dunford SS, Redella S (2005) Differential effects of abscisic acid on desiccation tolerance and carbohydrates in three species of liverworts. J Plant Physiol 162:1331–1337

    PubMed  CAS  Google Scholar 

  • Pilate G, Sossountzov L, Miginiac E (1989) Hormone levels and apical dominance in the aquatic fern Marsilea drummondii A. BR. Plant Physiol 90:907–912

    PubMed  CAS  Google Scholar 

  • Pouneva ID (2006) Effect of abscisic acid and ontogenic phases of the host alga on the infection process in the pathosystem Seenedesmus acutusPhlyctidium scenenedesmi. Acta Physiol Plant 28:395–400

    CAS  Google Scholar 

  • Pryce RJ (1971) Lunularic acid, a common endogenous growth inhibitor of liverworts. Planta 97:354–357

    CAS  Google Scholar 

  • Pryce RJ (1972) The occurrence of lunularic and abscisic acids in plants. Phytochemistry 11:1759–1761

    CAS  Google Scholar 

  • Puce S, Basile G, Bavestrello G, Bruzzone S, Cerrano C, Giovine M, Arillo A, Zocchi E (2004) Abscisic acid signaling through cyclic ADP-ribose in hydroid regeneration. J Biol Chem 279:39783–39788

    PubMed  CAS  Google Scholar 

  • Reidt W, Wohlfarth T, Ellerstrom M, Czihal A, Tewes A, Ezcurra I, Rask L, Baumlein H (2000) Gene regulation during late embryogenesis: the RY motif of maturation-specific gene promoters is a direct target of the FUS3 gene product. Plant J 21:401–408

    PubMed  CAS  Google Scholar 

  • Rensing SA, Lang D, Zimmer AD, Terry A, Salamov A, Shapiro H, Nishiyama T, Perroud PF, Lindquist EA, Kamisugi Y, Tanahashi T, Sakakibara K, Fujita T, Oishi K, Shin IT, Kuroki Y, Toyoda A, Suzuki Y, Hashimoto S, Yamaguchi K, Sugano S, Kohara Y, Fujiyama A, Anterola A, Aoki S, Ashton N, Barbazuk WB, Barker E, Bennetzen JL, Blankenship R, Cho SH, Dutcher SK, Estelle M, Fawcett JA, Gundlach H, Hanada K, Heyl A, Hicks KA, Hughes J, Lohr M, Mayer K, Melkozernov A, Murata T, Nelson DR, Pils B, Prigge M, Reiss B, Renner T, Rombauts S, Rushton PJ, Sanderfoot A, Schween G, Shiu SH, Stueber K, Theodoulou FL, Tu H, Van de Peer Y, Verrier PJ, Waters E, Wood A, Yang L, Cove D, Cuming AC, Hasebe M, Lucas S, Mishler BD, Reski R, Grigoriev IV, Quatrano RS, Boore JL (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319:64–69

    PubMed  CAS  Google Scholar 

  • Reynolds TL, Bewley JD (1993a) Abscisic acid enhances the ability of the desiccation-tolerant fern Polypodium virginianum to withstand drying. J Exp Bot 44:1771–1779

    CAS  Google Scholar 

  • Reynolds TL, Bewley JD (1993b) Characterization of protein synthetic changes in a desiccation-tolerant fern, Polypodium virginianum. Comparison of the effects of drying, rehydration and abscisic acid. J Exp Bot 44:921–928

    CAS  Google Scholar 

  • Richardt S, Timmerhaus G, Lang D, Qudeimat E, Correa LG, Reski R, Rensing SA, Frank W (2010) Microarray analysis of the moss Physcomitrella patens reveals evolutionarily conserved transcriptional regulation of salt stress and abscisic acid signalling. Plant Mol Biol 72:27–45

    PubMed  CAS  Google Scholar 

  • Rock CD, Sakata Y, Quatrano RS (2010) Stress signaling I: the role of abscisic acid (ABA). Abiotic stress adaptation in plants. Springer, Berlin, pp 33–73

    Google Scholar 

  • Romanel EA, Schrago CG, Counago RM, Russo CA, Alves-Ferreira M (2009) Evolution of the B3 DNA binding superfamily: new insights into REM family gene diversification. PLoS One 4:e5791

    PubMed  Google Scholar 

  • Sabbatini MR, Argüello JA, Fernández OA, Bottini RA (1987) Dormancy and growth-inhibitor levels in oospores of Chara contraria A. Braun ex Kütz. (Charophyta). Aquat Bot 28:189–194

    Google Scholar 

  • Sakata Y, Nakamura I, Taji T, Tanaka S, Quatrano RS (2010) Regulation of the ABA-responsive Em promoter by ABI3 in the moss Physcomitrella patens: role of the ABA response element and the RY element. Plant Signal Behav 5:1061–1066

    PubMed  CAS  Google Scholar 

  • Salerno GL (1985) Measurement of enzymes related to sucrose metabolism in permeabilized Chlorella vulgaris cells. Physiol Plant 64:259–264

    CAS  Google Scholar 

  • Saradhi PP, Suzuki I, Katoh A, Sakamoto A, Sharmila P, Shi DJ, Murata N (2000) Protection against the photo-induced inactivation of the photosystem II complex by abscisic acid. Plant Cell Environ 23:711–718

    CAS  Google Scholar 

  • Scarfi S, Ferraris C, Fruscione F, Fresia C, Guida L, Bruzzone S, Usai C, Parodi A, Millo E, Salis A, Burastero G, De Flora A, Zocchi E (2008) Cyclic ADP-ribose-mediated expansion and stimulation of human mesenchymal stem cells by the plant hormone abscisic acid. Stem Cells 26:2855–2864

    PubMed  CAS  Google Scholar 

  • Scarfi S, Fresia C, Ferraris C, Bruzzone S, Fruscione F, Usai C, Benvenuto F, Magnone M, Podesta M, Sturla L, Guida L, Albanesi E, Damonte G, Salis A, De Flora A, Zocchi E (2009) The plant hormone abscisic acid stimulates the proliferation of human hemopoietic progenitors through the second messenger cyclic ADP-ribose. Stem Cells 27:2469–2477

    PubMed  CAS  Google Scholar 

  • Schaefer DG, Zryd JP (1997) Efficient gene targeting in the moss Physcomitrella patens. Plant J 11:1195–1206

    PubMed  CAS  Google Scholar 

  • Schaffelke B (1995a) Abscisic acid in sporophytes of 3 Laminaria species (Phaeophyta). J Plant Physiol 146:453–458

    Google Scholar 

  • Schaffelke B (1995b) Storage carbohydrates and abscisic acid contents in Laminaria hyperborea are entrained by experimental daylengths. Eur J Phycol 30:313–317

    Google Scholar 

  • Schnepf E, Reinhard C (1997) Brachycytes in Funaria protonemate: induction by abscisic acid and fine structure. J Plant Physiol 151:166–175

    CAS  Google Scholar 

  • Schwabe WW, Valio IFM (1970) Growth and dormancy in Lunularia cruciata (L.) Dum. J Exp Bot 21:122–137

    CAS  Google Scholar 

  • Schwartz SH, Tan BC, Gage DA, Zeevaart JA, McCarty DR (1997) Specific oxidative cleavage of carotenoids by VP14 of maize. Science 276:1872–1874

    PubMed  CAS  Google Scholar 

  • Schweighofer A, Hirt H, Meskiene I (2004) Plant PP2C phosphatases: emerging functions in stress signaling. Trends Plant Sci 9:236

    PubMed  CAS  Google Scholar 

  • Sederias J, Colman B (2007) The interaction of light and low temperature on breaking the dormancy of Chara vulgaris oospores. Aquat Bot 87:229–234

    Google Scholar 

  • Shen Y-Y, Wang X-F, Wu F-Q, Du S-Y, Cao Z, Shang Y, Wang X-L, Peng C-C, Yu X-C, Zhu S-Y, Fan R-C, Xu Y-H, Zhang D-P (2006) The Mg-chelatase H subunit is an abscisic acid receptor. Nature 443:823

    PubMed  CAS  Google Scholar 

  • Shih Md, Hoekstra FA, Hsing YIC (2008) Late embryogenesis abundant proteins. Adv Bot Res 48:211–255

    CAS  Google Scholar 

  • Siewers V, Smedsgaard J, Tudzynski P (2004) The p450 monooxygenase BcABA1 is essential for abscisic acid biosynthesis in Botrytis cinerea. Appl Environ Microbiol 70:3868–3876

    PubMed  CAS  Google Scholar 

  • Siewers V, Kokkelink L, Smedsgaard J, Tudzynski P (2006) Identification of an abscisic acid gene cluster in the grey mold Botrytis cinerea. Appl Environ Microbiol 72:4619–4626

    PubMed  CAS  Google Scholar 

  • Simek M, Marsalek B (1992) Evidence for abscisic acid-caused enhancement of nitrogenase activity in Trichormus variabilis. Archiv Hydrobiologie Supplementband 95:91–102

    CAS  Google Scholar 

  • Smith RJ, Hobson S, Ellis IR (1987) The effect of abscisic acid on calcium-mediated regulation of heterocyst frequency and nitrogenase activity in Nostoc 6720. New Phytol 105:543–549

    CAS  Google Scholar 

  • Stirk WA, Novák O, Hradecká V, Pencik A, Rolcik J, Strnad M, van Staden J (2009) Endogenous cytokinins, auxins and abscisic acid in Ulva fasciata (Chlorophyta) and Dictyota humifusa (Phaeophyta): towards understanding their biosynthesis and homoeostasis. Eur J Phycol 44:231–240

    CAS  Google Scholar 

  • Sturla L, Fresia C, Guida L, Bruzzone S, Scarfi S, Usai C, Fruscione F, Magnone M, Millo E, Basile G, Grozio A, Jacchetti E, Allegretti M, De Flora A, Zocchi E (2009) LANCL2 is necessary for abscisic acid binding and signaling in human granulocytes and in rat insulinoma cells. J Biol Chem 284:28045–28057

    PubMed  CAS  Google Scholar 

  • Suzuki M, Kao CY, McCarty DR (1997) The conserved B3 domain of VIVIPAROUS1 has a cooperative DNA binding activity. Plant Cell 9:799–807

    PubMed  CAS  Google Scholar 

  • Swami P, Raghavan V (1980) Control of morphogenesis in the gametophyte of a fern by light and growth hormones. Can J Bot 58:1464–1473

    CAS  Google Scholar 

  • Takaichi S, Mimuro M (1998) Distribution and geometric isomerism of neoxanthin in oxygenic phototrophs: 9′-cis, a sole molecule form. Plant Cell Physiol 39:968–977

    CAS  Google Scholar 

  • Tietz A, Kasprik W (1986) Identification of abscisic acid in a green algae. Biochemie und Physiologie der Pflanzen 181:269–274

    CAS  Google Scholar 

  • Tietz A, Ruttkowski U, Kohler R, Kasprik W (1989) Further investigations on the occurrence and the effects of abscisic acid in algae. Biochem Physiol Pflanzen 184:259–266

    CAS  Google Scholar 

  • Tillberg JE (1970) Effects of abscisic acid, salicylic acid and trans-cinnamic acid on phosphate uptake, ATP-level and oxygen evolution in Scenedesmus. Physiol Plant 23:647–653

    Google Scholar 

  • Tominaga N, Takahata M, Tominaga H (1993) Effects of NaCl and KNO3 concentrations on the abscisic acid content of Dunaliella sp. (chlorophyta). Hydrobiologia 267:163–168

    CAS  Google Scholar 

  • Torrecilla I, Leganes F, Bonilla I, Fernandez-Pinas E (2001) Calcium transients in response to salinity and osmotic stress in the nitrogen-fixing cyanobacterium Anabaena sp. PCC7120, expressing cytosolic apoaequorin. Plant Cell Environ 24:641–648

    CAS  Google Scholar 

  • Tougane K, Komatsu K, Bhyan SB, Sakata Y, Ishizaki K, Yamato KT, Kohchi T, Takezawa D (2010) Evolutionarily conserved regulatory mechanisms of abscisic acid signaling in land plants: characterization of ABSCISIC ACID INSENSITIVE1-like type 2C protein phosphatase in the liverwort Marchantia polymorpha. Plant Physiol 152:1529–1543

    PubMed  CAS  Google Scholar 

  • Ullrich WR, Kunz G (1984) Effect of abscisic acid on nitrate uptake, respiration and photosynthesis in green algae. Plant Sci Lett 37:9–14

    CAS  Google Scholar 

  • Umezawa T, Sugiyama N, Mizoguchi M, Hayashi S, Myouga F, Yamaguchi-Shinozaki K, Ishihama Y, Hirayama T, Shinozaki K (2009) Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proc Natl Acad Sci USA 106:17588–17593

    PubMed  CAS  Google Scholar 

  • Valadon LRG, Mummery RS (1971) Quantitative relationship between various growth substances and bud production in Funaria hygrometrica. A bioassay for abscisic acid. Physiol Plant 24:232–234

    CAS  Google Scholar 

  • Valio IFM, Schwabe WW (1970) Growth and dormancy in Lunularia cruciata (L.) Dum. J Exp Bot 21:138–150

    CAS  Google Scholar 

  • Valio IFM, Burdon RS, Schwabe WW (1969) New natural growth inhibitor in the liverwort Lunularia cruciata (L.) Dum. Nature 223:1176–1178

    CAS  Google Scholar 

  • Wang X, Kuang T, He Y (2010) Conservation between higher plants and the moss Physcomitrella patens in response to the phytohormone abscisic acid: a proteomics analysis. BMC Plant Biol 10:192

    PubMed  Google Scholar 

  • Wanless IR, Bryniak N, Fenson DS (1973) The effect of some growth-regulating compounds upon electroosmotic measurements, transcellular water flow, and Na, K, and Cl influx in Nitella flexilis. Can J Bot 51:1055–1070

    CAS  Google Scholar 

  • Warne TR, Hickok LG (1991) Control of sexual development in gametophytes of Ceratopteris richardii antheridiogen and abscisic acid. Bot Gaz 152:148–153

    CAS  Google Scholar 

  • Weiler EW (1979) Radioimmunoassay for the determination of free and conjugated abscisic acid. Planta 144:255–263

    CAS  Google Scholar 

  • Werner O, Ros Espín RM, Bopp M, Atzorn R (1991) Abscisic-acid-induced drought tolerance in Funaria hygrometrica Hedw. Planta 186:99

    CAS  Google Scholar 

  • Wu Y, Kuzma J, Marechal E, Graeff R, Lee HC, Foster R, Chua NH (1997) Abscisic acid signaling through cyclic ADP-ribose in plants. Science 278:2126–2130

    PubMed  CAS  Google Scholar 

  • Xue T, Wang D, Zhang S, Ehlting J, Ni F, Jakab S, Zheng C, Zhong Y (2008) Genome-wide and expression analysis of protein phosphatase 2C in rice and Arabidopsis. BMC Genomics 9:550

    PubMed  Google Scholar 

  • Yamane H, Sato Y, Takahashi N, Takeno K, Furuya M (1980) Endogenous inhibitors for spore germination in Lygodium japonicum and their inhibitory effects on pollen germinations in Camellia japonica and Camellia sinensis. Agric Biol Chem 44:1697–1699

    CAS  Google Scholar 

  • Yamane H, Fujioka S, Spray CR, Phinney BO, MacMillan J, Gaskin P, Takahashi N (1988) Endogenous gibberellins from sporophytes of two tree ferns, Cibotium glaucum and Dicksonia antarctica. Plant Physiol 86:857–862

    PubMed  CAS  Google Scholar 

  • Yokoya NS, Stirk WA, Van Staden J, Novák O, Turečková V, Pěnčík A, Strnad M (2010) Endogenous cytokinins, auxins, and abscisic acid in red algae from Brazil. J Phycol 46:1198–1205

    CAS  Google Scholar 

  • Yoshida K, Igarashi E, Mukai M, Hirata K, Miyamoto K (2003) Induction of tolerance to oxidative stress in the green alga, Chlamydomonas reinhardtii, by abscisic acid. Plant Cell Environ 26:451–457

    CAS  Google Scholar 

  • Yoshida K, Igarashi E, Wakatsuki E, Miyamoto K, Hirata K (2004) Mitigation of osmotic and salt stresses by abscisic acid through reduction of stress-derived oxidative damage in Chlamydomonas reinhardtii. Plant Sci 167:1335–1341

    CAS  Google Scholar 

  • Yoshida R, Umezawa T, Mizoguchi T, Takahashi S, Takahashi F, Shinozaki K (2006) The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis. J Biol Chem 281:5310–5318

    PubMed  CAS  Google Scholar 

  • Yoshida T, Fujita Y, Sayama H, Maruyama K, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2009) AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J 61:672–685

    PubMed  Google Scholar 

  • Yoshikawa H, Ichiki Y, Sakakibara K, Tamura H, Suiko M (2002) The biological and structural similarity between lunularic acid and abscisic acid. Biosci Biotechnol Biochem 66:840–846

    PubMed  CAS  Google Scholar 

  • Zahradníčková H, Marsálek B, Polisensk M (1991) High-performance thin-layer chromatographic and high-performance liquid chromatographic determination of abscisic acid produced by cyanobacteria. J Chromatogr A 555:239–245

    Google Scholar 

  • Zhang J, Wang C, Guo S, Chen J, Xiao P (1999) Studies on the plant hormones produced by 5 species of endophytic fungi isolated from medicinal plants (Orchidacea). Zhongguo Yi Xue Ke Xue Yuan Xue Bao 21:460–465

    PubMed  CAS  Google Scholar 

  • Zocchi E, Carpaneto A, Cerrano C, Bavestrello G, Giovine M, Bruzzone S, Guida L, Franco L, Usai C (2001) The temperature-signaling cascade in sponges involves a heat-gated cation channel, abscisic acid, and cyclic ADP-ribose. Proc Natl Acad Sci USA 98:14859–14864

    PubMed  CAS  Google Scholar 

  • Zocchi E, Basile G, Cerrano C, Bavestrello G, Giovine M, Bruzzone S, Guida L, Carpaneto A, Magrassi R, Usai C (2003) ABA- and cADPR-mediated effects on respiration and filtration downstream of the temperature-signaling cascade in sponges. J Cell Sci 116:629–636

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Teruaki Taji for his critical reading of the manuscript and his valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoichi Sakata.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary figure (PPTX 106 kb)

Supplementary table (XLS 35 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takezawa, D., Komatsu, K. & Sakata, Y. ABA in bryophytes: how a universal growth regulator in life became a plant hormone?. J Plant Res 124, 437–453 (2011). https://doi.org/10.1007/s10265-011-0410-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-011-0410-5

Keywords

Navigation