Skip to main content
Log in

Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

This study was designed to isolate and characterize endophytic bacteria from halophyte Prosopis strombulifera grown under extreme salinity and to evaluate in vitro the bacterial mechanisms related to plant growth promotion or stress homeostasis regulation. Isolates obtained from P. strombulifera were compared genotypically by BOX-polymerase chain reaction, grouped according to similarity, and identified by amplification and partial sequences of 16S DNAr. Isolates were grown until exponential growth phase to evaluate the atmospheric nitrogen fixation, phosphate solubilization, siderophores, and phytohormones, such as indole-3-acetic acid, zeatin, gibberellic acid and abscisic acid production, as well as antifungal, protease, and 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. A total of 29 endophytic strains were grouped into seven according to similarity. All bacteria were able to grow and to produce some phytohormone in chemically defined medium with or without addition of a nitrogen source. Only one was able to produce siderophores, and none of them solubilized phosphate. ACC deaminase activity was positive for six strains. Antifungal and protease activity were confirmed for two of them. In this work, we discuss the possible implications of these bacterial mechanisms on the plant growth promotion or homeostasis regulation in natural conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abo-Aba S, Soliman E, Nivien A (2006) Enhanced production of extra cellular alkaline protease in Bacillus circulance through plasmid transfer. Res Agric Biol Sci 2(6):526–530

    Google Scholar 

  • Arkhipova T, Veselov S, Melentiev A, Martynenko E, Kudoyarova G (2005) Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. Plant Soil 272:201–209

    CAS  Google Scholar 

  • Bar-Ness E, Hadar Y, Chen Y, Shanzer A, Libman J (1992) Iron uptake by plants from microbial siderophores. plant Physiol 99:1329–1335

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bashan Y, Holguin G (1998) Proposal for the division of plant growth-promoting rhizobacteria into two classifications: biocontrol-PGPB (plant growth-promoting bacteria) and PGPB. Soil Biol Biochem 30:1225–1228

    CAS  Google Scholar 

  • Bashan Y, Moreno M, Troyo E (2000) Growth promotion of the seawater-irrigated oilseed halophyte Salicornia bigelovii inoculated with mangrove rhizosphere bacteria and halotolerant Azospirillum spp. Biol Fertil Soils 32:265–272

    CAS  Google Scholar 

  • Belimov A, Safronova V, Sergeyeva T, Egorova T, Matveyeva V, Tsyganov V, Borisov A, Tikhonovich I, Kluge C, Preisfeld A, Dietz K, Stepanok V (2001) Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 47(7):642–652

    CAS  PubMed  Google Scholar 

  • Blaha D, Prigent-Combaret C, Sajjad Mirza M, Moënne-Loccoz Y (2005) Phylogeny of the 1-aminocyclopropane-1-carboxylic acid deaminase-encoding gene acdS in phytobeneficial and pathogenic Proteobacteria and relation with strain biogeography. FEMS Microbiol Ecol 56:455–470

    Google Scholar 

  • Blumwald E, Aharon G, Apse M (2000) Sodium transport in plants. Biochim Biophys Acta 1465:140–151

    CAS  PubMed  Google Scholar 

  • Boiero L, Perrig D, Masciarelli O, Penna C, Cassán F, Luna V (2007) Phytohormone production by three strains of Bradyrhizobium japonicum and possible physiological and technological implications. Appl Microbiol Biotechnol 74:874–880

    CAS  PubMed  Google Scholar 

  • Breed R (1953) The Brevibacteriaceae fam. nov of order Eubacteriales. In: Riassunti delle Communicazione VI Congresso Internazionale di Microbiologia. Roma 1:10–15

    Google Scholar 

  • Cassán F, Maiale S, Masciarelli O, Vidal A, Luna V, Ruiz O (2009) Cadaverine production by Azospirillum brasilense and its possible role in plant growth promotion and osmotic stress mitigation. Eur J Soil Biol 45:12–19

    Google Scholar 

  • Cattelan A, Hartel P, Fuhrmann J (1999) Screening for plant growth promoting rhizobacteria to promote early soybean growth. Soil Sci Soc Am J63:1670–1680

    Google Scholar 

  • Cheng Z, Park E, Glick B (2007) 1-Aminocyclopropane-1-carboxylate deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can J Microbiol 53(7):912–918

    CAS  PubMed  Google Scholar 

  • Cohen A, Bottini R, Piccoli P (2008) Azospirillum brasilense Sp 245 produces ABA in chemically defined culture medium and increases ABA content in Arabidopsis plants. Plant Growth Regul 54:97–103

    CAS  Google Scholar 

  • Collins M (2006) The genus Brevibacterium. Prokaryotes 3:1013–1019

    Google Scholar 

  • Cox N, Thomson J, Bailey J (1981) Sampling of broiler carcasses for Salmonella with low volume water rinse. Poult Sci 60:768–770

    CAS  PubMed  Google Scholar 

  • De-Bashan L, Bashan Y (2004) Recent advances in removing phosphorus from wastewater and its future use as fertilizer. Water Res 38:4222–4246

    CAS  PubMed  Google Scholar 

  • Döbereiner J, Baldani V, Baldani J (1995) Como isolar e identificar bactérias diazotróficas de plantas não-leguminosas. Brasilia: EMBRAPA-SPI: Itaguí: EMBRAPA-CNPAB 19-25

  • Dworkin M, Foster J (1958) Experiments with some microorganisms which utilize ethane and hydrogen. J Bacteriol 75:592–601

    CAS  PubMed  PubMed Central  Google Scholar 

  • Egamberdieva D, Kamilova F, Validov S, Gafurova L, Kucharova Z, Lugtenberg B (2008) High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environ Microbiol 10(1):1–9

    CAS  PubMed  Google Scholar 

  • Forchetti G, Masciarelli O, Alemano S, Alvarez D, Abdala G (2007) Endophytic bacteria in sunflower (Helianthus annuus L.) isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl Microbiol Biotechnol 76:1145–1152

    CAS  PubMed  Google Scholar 

  • Glick B, Karaturovíc D, Newell P (1995) A novel procedure for rapid isolation of plant growth-promoting rhizobacteria. Can J Microbiol 41:533–536

    CAS  Google Scholar 

  • Glick B, Penrose D, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68

    CAS  PubMed  Google Scholar 

  • Glick B, Patten C, Holguin G, Penrose D (1999) Biochemical and genetic mechanisms used by plant growth promoting bacteria. Imperial Col, London 267 p

    Google Scholar 

  • Grichko V, Glick B (2001) Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiol Biochem 39:11–17

    CAS  Google Scholar 

  • Gutiérrez-Mañero F, Ramos-Solano B, Probanza A, Mehouachi J, Tadeo F, Talon M (2001) The plant-growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol Plantarum 111:206–211

    Google Scholar 

  • Hall J, Pierson D, Ghosh S, Glick B (1996) Root elongation in various agronomic crops by the plant growth promoting rhizobacterium Pseudomonas putida GR12–2. Isr J Plant Sci 44:37–42

    Google Scholar 

  • Kang B, Yang K, Cho B, Han T, Kim I, Lee M, Anderson A, Kim Y (2006) Production of indole-3-acetic acid in the plant-beneficial strain Pseudomonas chlororaphis O6 is negatively regulated by the global sensor kinase GacS. Curr Microbiol 52:473–476

    CAS  PubMed  Google Scholar 

  • Katznelson H, Bose B (1959) Metabolic activity and phosphate dissolving capability of bacterial isolates from wheat roots, rhizosphere, and non-rhizosphere soil. Can J Microbiol 5:79–85

    CAS  PubMed  Google Scholar 

  • Katznelson H, Sirois J, Cole S (1965) Production of gibberellin-like substance by bacteria and actinomyces. Can J Microbiol 11:733–741

    CAS  PubMed  Google Scholar 

  • Kloepper J, Schroth M (1978) Plant growth-promoting rhizobacteria in radish. In Proceedings of the 4th International Conference on Plant Pathogenic Bacteria. vol 2. INRA, Angers, France, pp 879–882.

  • Kloepper J, Lifshitz K, Schroth M (1988) Pseudomonas inoculants to benefit plant production. ISI Atlas Sci Anim Plant Sci 60-64

  • Kovats E (1958) Gas chromatographische charakteriserung organischer verbindungen I. retentions indices aliphatischer halogenide, alkohole, aldehyde, und ketone. Helv Chim Acta 41:1915–1932

    CAS  Google Scholar 

  • Llanes A, Reinoso H, Luna V (2005) Germination and early growth of Prosopis strombulifera seedlings in different saline solutions. World J Agricultural Sci 1(2):120–128

    Google Scholar 

  • Ma Y, Rajkumar M, Fritas H. (2008) Inoculation of plant growth promoting bacterium Achromobacter xylosoxidans strain Ax10 for the improvement of copper phytoextraction by Brassica juncea. J Environ Manage 90(2):831-837

    PubMed  Google Scholar 

  • Mayak S, Tirosh T, Glick B (1999) Effect of wild-type and mutant plant growth-promoting rhizobacteria on the rooting of mung bean cuttings. J Plant Growth Regul 18:49-53

    CAS  PubMed  Google Scholar 

  • Mayak S, Tirosh T, Glick B (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

    CAS  PubMed  Google Scholar 

  • Mehnaz S, Lazarovits G (2006) Inoculation effects of Pseudomonas putida, Gluconacetobacter azotocaptans and Azospirillum lipoferum on corn plant growth under greenhouse conditions. Microbial Ecol 51:326–335

    Google Scholar 

  • Nieto K, Frankenberger W (1989) Biosynthesis of cytokinins by Azotobacter chroococcum. Soil Biol Biochem 21:967–972

    CAS  Google Scholar 

  • Park M, Kim C, Yang J, Lee H, Shin W, Kim S, Sa T (2005) Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea. Microbiol Res 160(2):127–33

    CAS  PubMed  Google Scholar 

  • Perrig D, Boiero ML, Masciarelli O, Penna C, Ruiz O, Cassán F, Luna V (2007) Plant-growth-promoting compounds produced by two agronomically important strains of Azospirillum brasilense, and implications for inoculant formulation. Appl Microbiol Biotechnol 75:1143–1150

    CAS  PubMed  Google Scholar 

  • Prikyl Z, Vancura V, Wurst M (1985) Auxin formation by rhizosphere bacteria as a factor of root growth. Biol Plant 27:159–163

    Google Scholar 

  • Reinoso H, Sosa L, Ramírez L, Luna V (2004) Salt-induced changes in the vegetative anatomy of Prosopis strombulifera (Leguminosae) Can. J Conditions Bot 82:618–628

    Google Scholar 

  • Rhoades J, Loveday J (1990) Salinity in irrigated agriculture. In: Stewart BA, Nielsen DR (eds) Irrigation of agricultural crops Agronomy Nº 17. Amer. Soc. Agron, Madison, pp 1089–1142

    Google Scholar 

  • Rodríguez H, Fraga R (1999) Phosphate-solubilizing bacteria and their role in plant growth promotion. Biotech y Advances 17:319–339

    Google Scholar 

  • Saravanakumar D, Samiyappan R (2007) ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J Appl Microbiol 102(5):1283-1292

    CAS  PubMed  Google Scholar 

  • Schwyn B, Neilands J (1987) Universal assay for detection and determination of siderophores. Anal Biochem 160:47–56

    CAS  PubMed  Google Scholar 

  • Shah S, Li J, Moffatt B, Glick B (1998) Isolation and characterization of ACC deaminase genes from two different plant growth-promoting rhizobacteria. Can J Microbiol 44:833–843

    CAS  PubMed  Google Scholar 

  • Somasegaran P, Hoben H (1994) Handbook for Rhizobia. Springer, New York

    Google Scholar 

  • Swain M, Naskar S, Ray R (2007) Indole-3-acetic acid production and effect on sprouting of yam (Dioscorea rotundata L.) minisets by Bacillus subtilis isolated from culturable cow dung microflora. Pol J Microbiol 56(2):103-110

    CAS  PubMed  Google Scholar 

  • Tien T, Gaskina M, Hubbell D (1979) Plant growth substances produced by Azospirillum brasilensis and their effect on the growth of pearl millet (Pennisetum Americanum L). Appl Environ Microbiol 37(5):1016-1024

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tilak K, Ranganayaki N, Pal K, De R, Saxena A, Shekhar Nautiyal C, Mittal S, Tripathi A, Johri B (2005) Diversity of plant growth and soil health-supporting bacteria. Curr Sci 89(1):136–150

    CAS  Google Scholar 

  • Versaslovic J, Schneider M, De Bruijn F, Lupski J (1994) Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol Cell Biol 5:25–40

    Google Scholar 

  • Xie G, Cui Z, Yu J, Yan J, Hai W, Steinberger Y (2006) Identification of nif genes in N2-fixing bacterial strains isolated from rice fields along the Yangtze River Plain. J Basic Microbiol 46(1):56–63

    CAS  PubMed  Google Scholar 

  • Young J, Downer H, Eardly B (1991) Phylogeny of the phototrophic Rhizobium strain BTAi1 by polymerase chain reaction-based sequencing of the 16S rRNA gene segment. J Bacteriol 173:2271–2277

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zaidi S, Usmani S, Singh BR, Musarrat J (2006) Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64(6):991–997

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Agencia Nacional de Promoción científica y Tecnológica (ANPCyT), Agencia Córdoba Ciencia (ACC), and Secretaría de Ciencia y Técnica de la Universidad Nacional de Río Cuarto for their support in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virginia Luna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sgroy, V., Cassán, F., Masciarelli, O. et al. Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera . Appl Microbiol Biotechnol 85, 371–381 (2009). https://doi.org/10.1007/s00253-009-2116-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2116-3

Keywords

Navigation