Skip to main content
Log in

Gibberellins and Abscisic Acid Promote Carbon Allocation in Roots and Berries of Grapevines

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Carbon allocation within grapevines may affect berry growth and development. The plant hormones gibberellins (GAs) and abscisic acid (ABA) control various processes across the plant life and both have been involved in assimilate production and transport in different species. Hence, this work examined the distribution of sugars (sucrose, fructose, and glucose) and starch in grapevines at veraison after foliar applications of GA3, ABA, and an inhibitor of GA biosynthesis, paclobutrazol (PBZ). The results demonstrated that GA3 increased total grapevine mass, with carbon allocated to the whole grapevine (as structural and soluble carbohydrates). Both GA3 and ABA increased monosaccharide (glucose and fructose) levels in berries (up to tenfold) and roots (up to threefold). However, GA3 increased the net carbon fixation whereas ABA did not. PBZ diminished most growth parameters except grapevine mass, and allocated more carbohydrates to roots (up to threefold more sucrose and starch). Such results indicate that GAs promote net carbon fixation and transport, whereas ABA as a stress signal only enhances sugar transport; notwithstanding the two hormones promoted carbon allocation toward roots and berries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdul Jaleel C, Manivannan P, Sankar B, Kishorekumar A, Sankari S, Panneerselvam R (2007) Paclobutrazol enhances photosynthesis and ajmalicine production in Catharanthus roseus. Process Biochem 42:1566–1570

    Article  CAS  Google Scholar 

  • Acevedo E, Hsiao T, Henderson D (1971) Immediate and subsequent growth responses of maize leaves to changes in water status. Plant Physiol 48:631–636

    Article  PubMed  CAS  Google Scholar 

  • Antolín MC, Baigorri H, De Luis I, Aguirrezábal F, Gény L, Broquedis M, Sánchez-Díaz M (2003) ABA during reproductive development in non-irrigated grapevines (Vitis vinifera L. cv. Tempranillo). Aust J Grape Wine Res 9:169–176

    Article  Google Scholar 

  • Antolín MC, Ayari M, Sánchez-Díaz M (2006) Effects of partial rootzone drying on yield, ripening and berry ABA in potted Tempranillo grapevines with split roots. Aust J Grape Wine Res 12:13–20

    Article  Google Scholar 

  • Ashraf M, Karim F, Rasul E (2002) Interactive effects of gibberellic acid (GA3) and salt stress on growth, ion accumulation and photosynthetic capacity of two-spring wheat (Triticum aestivum L.) cultivars differing in salt tolerance. Plant Growth Regul 36:49–59

    Article  CAS  Google Scholar 

  • Asin L, Vilardell P (2006) Effect of paclobutrazol and prohexadione-calcium on shoot growth rate and growth control in “Blanquilla” and “Conference” pear. Acta Hortic 727:133–138

    CAS  Google Scholar 

  • Avigad G (1982) Sucrose and other disaccharides. In: Loewus FA, Tanner W (eds) Encyclopedia of plant physiology. Springer-Verlag, New York, pp 216–347

    Google Scholar 

  • Bastián F, Rapparini F, Baraldi R, Piccoli P, Bottini R (1999) Inoculation with Acetobacter diazotrophicus increases glucose and fructose content in shoots of Sorghum bicolor (L.) Moench. Symbiosis 27:147–156

    Google Scholar 

  • Bazzaz FA, Chiariello NR, Coley PD, Pitelka LF (1987) Allocating resources to reproduction and defence. Bioscience 37:58–67

    Article  Google Scholar 

  • Berli F, Moreno D, Piccoli P, Hespanhol-Viana L, Silva MF, Bressan-Smith R, Cavagnaro JB, Bottini R (2010) Abscisic acid is involved in the response of grape (Vitis vinifera L.) cv. Malbec leaf tissues to ultraviolet-B radiation by enhancing ultraviolet-absorbing compounds, antioxidant enzymes and membrane sterols. Plant Cell Environ 33:1–10

    PubMed  CAS  Google Scholar 

  • Bouard DJ (1966) Recherches physiologiques sur la vigne et en particulier sur l’aoûtement des sarments. PhD thesis, Université de Bordeaux, France

  • Brenner M, Cheikh N (1995) The role of hormones in photosynthate partitioning and seed filling. In: Davies PJ (ed) Plant hormones, physiology, biochemistry and molecular biology. Kluwer Academic Publishers, Dordrecht, pp 649–670

    Google Scholar 

  • Buban T (1986) Changes in growth properties of apple trees treated with paclobutrazol, PP333. Acta Hortic 179:549–550

    Google Scholar 

  • Çakir B, Agasse A, Gaillard C, Saumonneau A, Delrot S, Atanassova R (2003) A grape ASR protein involved in sugar and abscisic acid signaling. Plant Cell 15:2165–2180

    Article  PubMed  Google Scholar 

  • Calissi JJ, Eaton GW (1989) Response of rooted grape cuttings to paclobutrazol. Acta Hortic 239:253–256

    Google Scholar 

  • Carreño J, Oncina R, Carreño I, Tornel M (2007) Effect of paclobutrazol on vegetative growth, grape quality and yield of “Napoleon” table grape variety. Acta Hortic 754:179–182

    Google Scholar 

  • Chappelle EW, Kim MS, McMurtrey JE (1992) Ratio analysis of reflectance spectra (RARS): an algorithm for the remote estimation of the concentrations of chlorophyll A, chlorophyll B, and carotenoids in soybean leaves. Remote Sens Environ 39:239–247

    Article  Google Scholar 

  • Christov C, Tsvetkov I, Kovachev V (1995) Use of paclobutrazol to control vegetative growth and improve fruiting efficiency of grapevines (Vitis vinifera L.). Bulg J Plant Physiol 21:64–71

    CAS  Google Scholar 

  • Cohen AC, Travaglia CN, Bottini R, Piccoli PN (2009) Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany 87:455–462

    Article  CAS  Google Scholar 

  • Conde C, Agasse A, Glissant D, Tavares R, Geros H, Delrot S (2006) Pathways of glucose regulation of monosaccharide transport in grape cells. Plant Physiol 141:1563–1577

    Article  PubMed  CAS  Google Scholar 

  • Coombe BG (1995) Growth stages of the grapevine: adoption of a system for identifying grapevine growth stages. Aust J Grape Wine Res 1:104–110

    Article  Google Scholar 

  • Crozier A, Kamiya Y, Bishop G, Yokota T (2000) Biosynthesis of hormones and elicitors molecules. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 850–929

    Google Scholar 

  • Daie J (1985) Carbohydrate partitioning and metabolism in crops. Hortic Rev 7:69–108

    Google Scholar 

  • Daie J (1987) Interaction of cell turgor and hormones on sucrose uptake in isolated phloem of celery. Plant Physiol 84:1033–1037

    Article  PubMed  CAS  Google Scholar 

  • Davies PJ (2005) Plant hormones: biosynthesis, signal transduction, action! Kluwer Academics Publishers, Dordrecht, 750 pp

    Google Scholar 

  • Davis TD, Steffens GL, Sankhla N (1988) Triazole plant growth regulators. Hortic Rev 10:63–105

    CAS  Google Scholar 

  • de Bruijn SM, Vreugdenhil D (1993) Abscisic acid and assimilate partitioning to developing seeds. II. Does abscisic acid influence the sink strength of Arabidopsis seeds? Physiol Plant 88:583–589

    Article  Google Scholar 

  • Deluc LG, Grimplet J, Wheatley MD, Tillett RL, Quilici DR, Osborne C, Schooley DA, Schlauch KA, Cushman JC, Cramer GR (2007) Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development. BMC Genomics 8:429

    Article  PubMed  Google Scholar 

  • Deytieux-Belleau C, Gagné S, L’hyvernay A, Donèche B, Gény L (2007) Possible roles of both abscisic acid and indol-acetic acid in controlling grape berry ripening process. J Int Sci Vigne Vin 41:141–148

    CAS  Google Scholar 

  • Dood IC, Davies WJ (2005) Hormones and the regulation of the water balance. In: Davies PJ (ed) Plant hormones: biosynthesis, signal transduction, action! Kluwer Academic Publishers, Dordrecht, pp 493–512

    Google Scholar 

  • El Hodairi MH, Canham AE (1990) The effect of paclobutrazol on the growth and movement of 14C labeled assimilate in red delicious apple seedlings. Acta Hortic 279:347–356

    Google Scholar 

  • Fidan Y, Çelik S, Tamer MS (1981) Effect of gibberellic acid and of ringing on the accumulation of cellulose in the pedicel and stem of table grape varieties. Vignevini 8:35–39

    CAS  Google Scholar 

  • Gagné S, Estève K, Deytieux C, Saucier C, Gény L (2006) Influence of abscisic acid in triggering “véraison” in grape berry skins of Vitis vinifera L. cv. Cabernet Sauvignon. J Int Sci Vigne Vin 40:7–14

    Google Scholar 

  • Gazzarini S, McCourt P (2003) Cross-talk in plant hormone signalling: what Arabidopsis mutants are telling us. Ann Bot 91:605–612

    Article  Google Scholar 

  • Hayes MA, Feechan A, Dry IB (2010) Involvement of abscisic acid in the coordinated regulation of a stress-inducible hexose transporter (VvHT5) and a cell wall invertase in grapevine in response to biotrophic fungal infection. Plant Physiol 153:211–221

    Article  PubMed  CAS  Google Scholar 

  • Hedden P, Graebe JE (1985) Inhibition of gibberellin biosynthesis by paclobutrazol in cell-free homogenates of Cucurbita maxima endosperm an Malus pumila embryos. J Plant Growth Regul 4:111–122

    Article  CAS  Google Scholar 

  • Hornsey IS (2007) Chemistry and biology of winemaking. The Royal Society of Chemistry, Cambridge, 479 pp

    Google Scholar 

  • Hunter D, Proctor J (1990) Paclobutrazol bioassay using the axillary growth of a grape shoot. Hortscience 25:309–310

    CAS  Google Scholar 

  • Intrieri C, Silvestroni O, Poni S (1986) Preliminary experiments on paclobutrazol effects on potted grapevines (V. vinifera cv. “Trebbiano”). Acta Hortic 179:219–222

    Google Scholar 

  • Kaitaniemi P, Honkanen T (1996) Simulating source-sink control of carbon and nutrient translocation in a modular plant. Ecol Model 88:227–240

    Article  CAS  Google Scholar 

  • Kinet JM (1993) Environmental, chemical and genetic control of flowering. Hortic Rev 15:279–334

    Google Scholar 

  • Koyama K, Sadamatsu K, Goto-Yamamoto N (2010) Abscisic acid stimulated ripening and gene expression in berry skins of the Cabernet Sauvignon grape. Funct Integr Genomics 10:367–381

    Article  PubMed  CAS  Google Scholar 

  • Kühn C, Barker L, Bürkle L, Frommer WB (1999) Update on sucrose transport in higher plants. J Exp Bot 50:935–953

    Article  Google Scholar 

  • Métraux JP (1988) Gibberellins and plant cell elongation. In: Davies PJ (ed) Plant hormones and their role in plant growth and development. Kluwer Academic Publishers, Dordrecht, pp 296–317

    Google Scholar 

  • Mostafa EAM, Saleh MMS (2006) Influence of spraying with gibberellic acid on behaviour of Anna apple trees. J Appl Sci Res 2:477–483

    Google Scholar 

  • Nakamura M, Hori Y (1985) Postharvest berry drop of seedless berries produced by GA treatment in grape cultivar “Kyoho” II. Relationship between rachis hard-ness and differentiation of rachis xylem. Tohoku J Agric Res 33:101–110

    Google Scholar 

  • Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185

    Article  PubMed  CAS  Google Scholar 

  • Nickell LG (1988) Plant growth regulator use in cane and sugar production. Update. Sugar J 50:7–11

    Google Scholar 

  • Pan QH, Li MJ, Peng CC, Zhang N, Zou X, Zou KQ, Wang XL, Yu XC, Wang XF, Zhang DP (2005) Abscisic acid activates acid invertases in developing grape berry. Physiol Plant 125:157–170

    Article  CAS  Google Scholar 

  • Pires EJP, Botelho RV (2002) Emprego de reguladores de crescimento na viticultura. In: Albuquerque RM (ed) Viticultura e enologia: atualizando conceitos. EPAMIG-FECD, Andradas, pp 59–81

    Google Scholar 

  • Quiroga AM, Berli FJ, Moreno D, Cavagnaro JB, Bottini R (2009) Abscisic acid sprays significantly increase yield per plant in vineyard-grown wine grape (Vitis vinifera L.) cv. Cabernet Sauvignon through increased berry set with no negative effects on anthocyanin content and total polyphenol index of both juice and wine. J Plant Growth Regul 28:28–35

    Article  CAS  Google Scholar 

  • Reynolds AG, Wardle DA (1990) Vegetative growth suppression by paclobutrazol in greenhouse-grown “Pinot noir” grapevines. Hortscience 25:1250–1254

    CAS  Google Scholar 

  • Reynolds AG, Wardle DA, Cottell AC, Gaunce AP (1992) Advancement of “Riesling” fruit maturity by paclobutrazol-induced reduction of lateral shoot growth. J Am Soc Hortic Sci (USA) 117:430–435

    Google Scholar 

  • Sansberro P, Mroginski L, Bottini R (2004) Abscisic acid promotes growth of Ilex paraguariensis plants by alleviating diurnal water stress. Plant Growth Regul 42:105–111

    Article  CAS  Google Scholar 

  • Sawada S, Kuninaka M, Watanabe K, Sato A, Kawamura H, Komine K, Sakamoto T, Kasai M (2001) The mechanism to suppress photosynthesis through end-product inhibition in single-rooted soybean leaves during acclimation to CO2 enrichment. Plant Cell Physiol 42:1093–1102

    Article  PubMed  CAS  Google Scholar 

  • Schussler JR, Brenner ML, Brun WA (1991) Relationship of endogenous abscisic acid to sucrose level and seed growth rate of soybeans. Plant Physiol 96:1308–1313

    Article  PubMed  CAS  Google Scholar 

  • Sharp RE, LeNoble ME (2002) ABA, ethylene and the control of shoot and root growth under water stress. J Exp Bot 53:33–37

    Article  PubMed  CAS  Google Scholar 

  • Steffens GL, Byun JK, Wang SY (2006) Controlling plant growth via the gibberellin biosynthesis system—I. Growth parameter alterations in apple seedlings. Physiol Plant 63:163–168

    Article  Google Scholar 

  • Subrahmanyam D, Rathore VS (1992) Plant growth regulators influence 14CO2 assimilation and translocation of assimilates in Indian mustard. J Agron Crop Sci 168:145–152

    Article  CAS  Google Scholar 

  • Thompson AJ, Andrews J, Mulholland BJ, McKee JMT, Hilton HW, Horridge JS, Farquhar GD, Smeeton RC, Smillie IRA, Black CR, Taylor IB (2007) Overproduction of abscisic acid in tomato increases transpiration efficiency and root hydraulic conductivity and influences leaf expansion. Plant Physiol 143:1905–1917

    Article  PubMed  CAS  Google Scholar 

  • Todic S, Tesic D, Beslic Z (2005) The effect of certain exogenous growth regulators on quality of grafted grapevine rootlings. Plant Growth Regul 45:121–126

    Article  CAS  Google Scholar 

  • Travaglia C, Cohen A, Reinoso H, Castillo C, Bottini R (2007) Exogenous abscisic acid increases carbohydrate accumulation and redistribution to the grains in wheat grown under field conditions of soil water restriction. J Plant Growth Regul 26:285–289

    Article  CAS  Google Scholar 

  • Travaglia C, Reinoso H, Bottini R (2009) Application of abscisic acid promotes yield in field-cultured soybean by enhancing production of carbohydrates and their allocation in seed. Crop Pasture Sci 60:1131–1136

    Article  CAS  Google Scholar 

  • Wample RL, Schnabel B, Ahmedullah M (1987) Leaf area and conductance, internode length, and root structure of five cultivars of Vitis vinifera treated with paclobutrazol. Am J Enol Vitic 38:255–259

    CAS  Google Scholar 

  • Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313

    CAS  Google Scholar 

  • Wheeler S, Loveys B, Ford C, Davies C (2009) The relationship between the expression of abscisic acid biosynthesis genes, accumulation of abscisic acid and the promotion of Vitis vinifera L. berry ripening by abscisic acid. Aust J Grape Wine Res 15:195–204

    Article  CAS  Google Scholar 

  • Williams MW, Edgerton LJ (1983) Vegetative growth control of apple and pear trees with ICI PP333 (paclobutrazol) a chemical analog of bayleton. Acta Hortic 137:111–116

    Google Scholar 

  • Woodger F, Jacobsen JV, Gubler F (2004) Gibberellin action in germinating cereal grains. In: Davies PJ (ed) Plant hormones: biosynthesis, signal transduction, action! Kluwer Academic Publishers, Dordrecht, pp 221–240

    Google Scholar 

  • Yang J, Zhang J (2006) Grain filling of cereals under soil drying. New Phytol 169:223–236

    Article  PubMed  CAS  Google Scholar 

  • Zapata C, Deléens E, Chaillou S, Magné C (2004) Partitioning and mobilization of starch and N reserves in grapevine (Vitis vinifera L.). J Plant Physiol 161:1031–1040

    Article  PubMed  CAS  Google Scholar 

  • Zhang XY, Wang XL, Wang XF, Xia GH, Pan QH, Fan RC, Wu FQ, Yu XC, Zhang DP (2006) A shift of phloem unloading from symplasmic to apoplasmic pathway is involved in developmental onset of ripening in grape berry. Plant Physiol 142:220–232

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by Agencia Nacional de Promoción Científica y Técnica through PICT 08-12398 and PICT 20-20093 to RB, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) PIP 5028 to RB, and Secretaría de Ciencia y Técnica de la Universidad Nacional de Cuyo Subsidio 2005-2007 to RB. P. Piccoli and R. Bottini are fellows of CONICET, and D. Moreno and F. Berli are recipients of doctoral scholarships from the same institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rubén Bottini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreno, D., Berli, F.J., Piccoli, P.N. et al. Gibberellins and Abscisic Acid Promote Carbon Allocation in Roots and Berries of Grapevines. J Plant Growth Regul 30, 220–228 (2011). https://doi.org/10.1007/s00344-010-9186-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-010-9186-4

Keywords

Navigation