Skip to main content

Clinical Aspects of Gout and Associated Disease States

  • Chapter
  • First Online:
Gout
  • 2405 Accesses

Abstract

The presentation of gout and its various stages from acute to chronic is reviewed in detail. Associated dietary and genetic factors and their presentation are reviewed. This chapter forms the basis for the diagnosis and management of gout that are discussed in subsequent chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hausch R, Wilkerson M, Singh E, Reyes C, Harrington T. Tophaceous gout of the thoracic spine presenting as back pain and fever. J Clin Rheumatol. 1999;6:335–41.

    Article  Google Scholar 

  2. Marsaudon E, Bouchard C, Languard D. Compression radiculaire par un tophus goutteux vertebral: a propos d’un cas et revue de la literature. Rev Med Interne. 1999;20:253–7.

    Article  PubMed  CAS  Google Scholar 

  3. Kao MC, Huang SC, Chiu CT, Yao YT. Thoracic cord compression due to gout: a case report and literature review. J Formos Med Assoc. 2000;98:572–5.

    Google Scholar 

  4. Mekelburg K, Rahimi AR. Gouty arthritis of the spine: clinical presentation and effective treatments. Geriatrics. 2000;55:71–4.

    PubMed  CAS  Google Scholar 

  5. Paquette S, Lach B, Guiot B. Lumbar radiculopathy secondary to gouty tophi in the filum terminale in a patient with systemic gout: case report. Neurosurgery. 2000;46:986–8.

    PubMed  CAS  Google Scholar 

  6. Gines R, Bates DJ. Tophaceous lumbar gout mimicking an epidural abscess. Am J Emerg Med. 1998;16:216.

    Article  PubMed  CAS  Google Scholar 

  7. Vargo J, Giampaolo C, Goldenberg DC. Tophaceous gout of the spine in a patient with no peripheral tophi: case report. Arthritis Rheum. 1985;28:1312–5.

    Article  Google Scholar 

  8. Pascual E. The diagnosis of gout and CPPD crystal arthropathy. Br J Rheumatol. 1996;35:306–8.

    Article  PubMed  CAS  Google Scholar 

  9. Wolfe F, Cathey MA. The misdiagnosis of gout and hyperuricemia. J Rheumatol. 1991;18:1232–4.

    PubMed  CAS  Google Scholar 

  10. Pascual E, Batele-Gualda E, Martinez A, Rosas J, Vela P. Synovial fluid analysis for diagnosis of intercritical gout. Ann Intern Med. 1999;131:756–9.

    PubMed  CAS  Google Scholar 

  11. Weinberger A, Schumacher HR, Agudelo CA. Urate crystals in asymptomatic metatarsophalangeal joints. Ann Intern Med. 1991;91:56–7.

    Google Scholar 

  12. Ronault T, Caldwell DS, Holmes EW. Aspiration of the asymptomatic metatarsophalangeal joints in gout patients and hyperuricemic controls. Arthritis Rheum. 1982;25:209–12.

    Article  Google Scholar 

  13. Pascual E. Persistence of monosodium urate crystals and low-grade inflammation in the synovial fluid of untreated gout. Arthritis Rheum. 1991;34:141–5.

    Article  PubMed  CAS  Google Scholar 

  14. Chopra KF, Schneiderman P, Grossman ME. Finger pad tophi. Cutis. 1999;64:233–6.

    PubMed  CAS  Google Scholar 

  15. Marcen R, Gallego N, Orofino L, et al. Impairment of tubular secretion of urate in renal transplant patients on cyclosporine. Nephron. 1995;70:307–13.

    Article  PubMed  CAS  Google Scholar 

  16. Lin HY, Rocher LL, McQuilan MA, et al. Cyclosporine-induced hyperuricemia and gout. N Engl J Med. 1989;321:287–92.

    Article  PubMed  CAS  Google Scholar 

  17. Baethge BA, Work J, Landreneau MD, McDonald JC. Tophaceous gout in patients with renal transplants treated with cyclosporine A. J Rheumatol. 1993;20:2171.

    Google Scholar 

  18. Chaoui A, Garcia J, Kurt AM. Gouty tophus simulating soft tissue tumor in a heart transplant recipient. Skeletal Radiol. 1997;26:626–8.

    Article  PubMed  CAS  Google Scholar 

  19. Kennedy DT, Hayney MS, Lake KD. Azathioprine and allopurinol: the price of an avoidable drug interaction. Ann Pharmacother. 1996;30:951–3.

    PubMed  CAS  Google Scholar 

  20. Jagose JT, Bailey RR. Muscle weakness due to colchicine in a renal transplant recipient. N Z Med J. 1997;110:343.

    PubMed  CAS  Google Scholar 

  21. Tapal MF. Colchicine myopathy. Scand J Rheumatol. 1996;25:105.

    Article  PubMed  CAS  Google Scholar 

  22. Gruberg L, Har-Zahav Y, Agranat O, Freimark D. Acute myopathy induced by colchicine treated heart transplant recipient: possible role of the multidrug resistance transporter. Transplant Proc. 1999;31:2157–8.

    Article  PubMed  CAS  Google Scholar 

  23. Zurcher RM, Bock HA, Thiel G. Excellent uricosuric efficacy of benzbromarone in cyclosporine-A treated renal transplant patients: a prospective study. Nephrol Dial Transplant. 1994;9:549–51.

    Google Scholar 

  24. Loeb JN. The influence of temperature of the solubility of monosodium urate. Arthritis Rheum. 1972;15:189.

    Article  PubMed  CAS  Google Scholar 

  25. Kelley WN. Approach to the patient with hyperuricemia. In: Kelley WN, Harris Jr ED, Ruddy S, Sledge CB, editors. Textbook of rheumatology. Philadelphia: WB Saunders; 1981. p. 494.

    Google Scholar 

  26. Adler R, Robinson R, Pazdral P, Grushkin C. Hyperuricemia in diarrheal dehydration. Am J Dis Child. 1969;136:564.

    Google Scholar 

  27. Faller J, Fox IH. Ethanol-induced hyperuricemia. Evidence for increased urate production by activation of adenine nucleotide turnover. N Engl J Med. 1980;307:1598.

    Article  Google Scholar 

  28. Weinberger A, Schumacher HR, Schimmer BM, et al. Arthritis in acute leukemia. Clinical and histopathological observations. Arch Intern Med. 1981;141:1183.

    Article  PubMed  CAS  Google Scholar 

  29. Dosman JA, Crawhall JC, Klassen GA. Uric acid kinetic studies in the immediate post-myocardial infarction period. Metabolism. 1975;24:473.

    Article  PubMed  CAS  Google Scholar 

  30. Levine SA, Gordon B, Derick CL. Some changes in the chemical constituents of the blood following a marathon race. JAMA. 1924;82:1778.

    Article  CAS  Google Scholar 

  31. Schrier RW, Haus J, Keller HI, et al. Renal, metabolic and circulatory responses to heat and exercise. Ann Intern Med. 1970;73:213.

    PubMed  CAS  Google Scholar 

  32. Knochel JP, Dotin LN, Hamburger RJ. Heat stress, exercise, and muscle injury: effects on urate metabolism and renal function. Ann Intern Med. 1974;81:321.

    PubMed  CAS  Google Scholar 

  33. Quick AJ. The effect of exercise on excretion of uric acid. J Biol Chem. 1935;110:107.

    CAS  Google Scholar 

  34. Castenfors J. Renal function during exercise. Acta Physiol Scand Suppl. 1967;70:7.

    Google Scholar 

  35. Knochel JP. Biochemical, electrolyte, and acid–base disturbances in acute renal failure. In: Brenner BM, Lazarus JM, editors. Acute renal failure. New York: Churchill Livingstone; 1988. p. 682–3.

    Google Scholar 

  36. Lacocq FR, McPhaul JJ. Effects of starvation, high fat diets and ketone infusions on uric acid balance. Metabolism. 1965;14:186.

    Article  Google Scholar 

  37. Ravioko KO. Neonatal hyperuricemia. J Pediatr. 1976;88:625.

    Article  Google Scholar 

  38. Valat JP, Lamisse F, LeChevallier PL, et al. Les variations de l’uricemie au cours de’ compensations respiratories aigues des bronchopathies chroniques. Rev Rhum Mal Osteoartic. 1974;41:179.

    PubMed  CAS  Google Scholar 

  39. Bergeaux G, Klein RC. Hyperuricemia following smoke inhalation. Am Rev Respir Dis. 1974;109:145.

    PubMed  CAS  Google Scholar 

  40. Oliva PB. Lactic acidosis. Am J Med. 1970;48:209.

    Article  PubMed  CAS  Google Scholar 

  41. Saker BM, Tofler OB, Burvill MJ, Reilly KA. Alcohol consumption and gout. Med J Aust. 1967;1:1213.

    PubMed  CAS  Google Scholar 

  42. Pell S, D’Alonzo CA. The prevalence of chronic disease among problem drinkers. Arch Environ Health. 1968;16:679.

    PubMed  CAS  Google Scholar 

  43. Beck LH. Clinical disorders of uric acid metabolism. Med Clin North Am. 1981;65:401.

    PubMed  CAS  Google Scholar 

  44. Puig JG, Fox IH. Ethanol-induced activation of adenine nucleotide turnover. Evidence for a role of acetate. J Clin Invest. 1984;74:936.

    Article  PubMed  CAS  Google Scholar 

  45. Shergy WJ, Gilkeson GS, German DC. Acute gouty arthritis and intravenous nitroglycerin. Arch Intern Med. 1988;148:2505.

    Article  PubMed  CAS  Google Scholar 

  46. Daly RJ, Camann WR, Dawley D, O’Rourke ME. “Cocktail”-coronary care. N Engl J Med. 1984;310:1123.

    PubMed  CAS  Google Scholar 

  47. Google Scholar 

  48. Dylewski JS, Gerson M. Hyperuricemia in patients with infectious mononucleosis. Can Med Assoc J. 1985;132:1169.

    PubMed  CAS  Google Scholar 

  49. Byrd L, Sherman RL. Radiocontrast-induced acute renal failure: a clinical and pathophysiologic review. Medicine. 1979;58:270.

    Article  PubMed  CAS  Google Scholar 

  50. Alexander RD, Barkes SL, Abuelo G. Contrast media-induced oliguric renal failure. Arch Intern Med. 1978;138:381.

    Article  PubMed  CAS  Google Scholar 

  51. Krumlovsky FA, Simon N, Santhanam S, et al. Acute renal failure associated with administration of radiographic contrast material. JAMA. 1978;239:125.

    Article  PubMed  CAS  Google Scholar 

  52. Fang LS, Sirota RA, Ebert TH, Lichenstein NS. Low fractional excretion of sodium with contrast media-induced acute renal failure. Arch Intern Med. 1980;140:531.

    Article  PubMed  CAS  Google Scholar 

  53. Shafi T, Chou S-Y, Porush JS, Shapiro WB. Infusion intravenous pyelography and renal function. Effects in patients with chronic renal insufficiency. Arch Intern Med. 1978;138:1218.

    Article  PubMed  CAS  Google Scholar 

  54. Older RA, Korobkin M, Cleeve DM, et al. Contrast-induced acute renal failure. Persistent nephrogram as a clue to early detection. AJR Am J Roentgenol. 1980;134:339.

    PubMed  CAS  Google Scholar 

  55. Lesch M, Nyhan WL. A familial disorder of uric acid metabolism and central nervous system function. Am J Med. 1964;36:561.

    Article  PubMed  CAS  Google Scholar 

  56. Hoefnagel D, Andrew ED, Mireault NG, Berndt WO. Hereditary choreoathetosis, self-mutilation, and hyperuricemia in young males. N Engl J Med. 1965;273:130.

    Article  PubMed  CAS  Google Scholar 

  57. Michener WM. Hyperuricemia and mental retardation with athetosis and self-mutilation. Am J Dis Child. 1967;113:195.

    PubMed  CAS  Google Scholar 

  58. Dreifuss FE, Newcombe DS, Shapiro SL, Sheppard GL. X-linked primary hyperuricemia (hypoxanthine-guanine phosphoribosyltransferase deficiency encephalopathy). J Ment Defic Res. 1968;12:100.

    PubMed  CAS  Google Scholar 

  59. Munsat TL, Klinenberg J, Carrel RE, Menkes J. Defects in purine metabolism and neurologic disease. Bull Los Angeles Neurol Soc. 1968;33:101.

    PubMed  CAS  Google Scholar 

  60. Berman PH, Balis ME, Dancis J. Congenital hyperuricemia, an inborn error of purine metabolism associated with psychomotor retardation, athetosis, and self-mutilation. Arch Neurol. 1969;20:44.

    Article  PubMed  CAS  Google Scholar 

  61. Rosenberg D, Monnet P, Mamelle JL, Colonbel M, et al. Encephalopathie avec troubles due metabolisme des purines. Presse Med. 1968;76:2333.

    Google Scholar 

  62. Riley JD. Gout and cerebral palsy in a three-year-old boy. Arch Dis Child. 1960;35:293.

    Article  PubMed  CAS  Google Scholar 

  63. Partington MW, Hennen BKE. The Lesch-Nyhan syndrome: self-destructive biting, mental retardation, neurological disorder and hyperuricemia. Dev Med Child Neurol. 1967;9:563.

    Article  PubMed  CAS  Google Scholar 

  64. Scherzer AL, Ilson JB. Normal intelligence in the Lesch-Nyhan syndrome. Pediatrics. 1969;44:116.

    PubMed  CAS  Google Scholar 

  65. Buitelaar JK. Self-injurious behavior in retarded children: clinical phenomena and biological mechanisms. Acta Paedopsychiatr. 1993;56:105–11.

    PubMed  CAS  Google Scholar 

  66. Wong DF, Harris JC, Naidu S, et al. Dopamine transporters are markedly reduced in Lesch-Nyhan disease in vivo. Proc Natl Acad Sci USA. 1996;93:5539–43.

    Article  PubMed  CAS  Google Scholar 

  67. Harris JC, Lee RR, Jinnah HA, et al. Craniocerebral magnetic resonance imaging measurement and findings in Lesch-Nyhan syndrome. Arch Neurol. 1998;55:547–53.

    Article  PubMed  CAS  Google Scholar 

  68. Visser JE, Bar PR, Jinnah H. Lesch-Nyhan disease and the basal ganglia. Brain Res Brain Res Rev. 2000;32:449–75.

    Article  PubMed  CAS  Google Scholar 

  69. Roach ES, Delgado M, Anderson L, et al. Carbama­zepine trial for Lesch-Nyhan self-mutilation. J Child Neurol. 1996;11:476–8.

    Article  PubMed  CAS  Google Scholar 

  70. Hernandez-Nieto L, Brito-Barraso ML, Nyhan WL. Megaloblastic anemia in Lesch-Nyhan disease. Sangre. 1984;29:476.

    PubMed  CAS  Google Scholar 

  71. Van der Zee SPM, Monnens LAH, Schretlen EDAM. Hereditary disorder of purine metabolism with cerebral affection and megaloblastic anemia. Ned Tijdschr Geneeskd. 1968;112:1475.

    PubMed  Google Scholar 

  72. Kelley WN, Greene ML, Rosenbloom FM, et al. Hypoxanthine-guanine phosphoribosyltransferase in gout. Ann Intern Med. 1969;70:155.

    PubMed  CAS  Google Scholar 

  73. Schneider W. The Lesch-Nyhan syndrome as a rare cause of hemolytic anemia. Acta Med Austriaca. 1979;6:202.

    PubMed  CAS  Google Scholar 

  74. Van der Zee SPM, Schretlen EDAM, Monnens LAH. Megaloblastic anemia in the Lesch-Nyhan syndrome. Lancet. 1968;1:1427.

    PubMed  Google Scholar 

  75. Zoref-Shani E, Feinstein S, Frishberg Y, et al. Kelley-Seegmiller syndrome due to a unique variant of hypoxanthine-guanine phosphoribosyltransferase: reduced affinity for 5-phosphoribosyl-1-pyrophosphate manifested only at low, physiological substrate concentrations. Biochim Biophys Acta. 2000;1500:197–203.

    Article  PubMed  CAS  Google Scholar 

  76. Wingen RM, Loffler W, Waldherr R, Scharer K. Acute renal failure in an infant with partial deficiency of hypoxanthine-guanine phosphoribosyltransferase. Proc Eur Dial Transplant Assoc Eur Ren Assoc. 1985;21:751–5.

    PubMed  CAS  Google Scholar 

  77. Sperling O, Boer P, Persky-Brosh S, et al. Altered kinetic property of erythrocyte phosphoribosyl-pyrophosphate synthetase in excessive purine production. Rev Eur Etud Clin Biol. 1972;17:703.

    PubMed  CAS  Google Scholar 

  78. Becker MA, Losman MJ, Kim M. Mechanisms of accelerated purine nucleotide synthesis in human fibroblasts with superactive phosphoribosylpyrophosphate synthetases. J Biol Chem. 1987;262:5596.

    PubMed  CAS  Google Scholar 

  79. Zoref E, de Vries A, Sperling O. Mutant feedback-resistant phosphoribosylpyrophosphate synthetase with purine overproduction and gout. Phosphoribosylpyrophosphate and purine metabolism in cultured fibroblasts. J Clin Invest. 1975;56:1093.

    Article  PubMed  CAS  Google Scholar 

  80. Ahmed M, Taylor W, Smith PR, Becker MA. Accelerated transcription of PRS1 in x-linked overactivity of normal human phosphoribosylpyrophosphate synthetase. J Biol Chem. 1999;274:7482.

    Article  PubMed  CAS  Google Scholar 

  81. Becker MA, Puig JG, Mateos FA, et al. Inherited superactivity of phosphoribosylpyrophosphate synthetase: association of uric acid overproduction and sensorineural deafness. Am J Med. 1988;85:393.

    Google Scholar 

  82. Becker MA, Raivio KO, Bakay B, et al. Variant human phosphoribosylpyrophosphate synthetase altered in regulatory and catalytic functions. J Clin Invest. 1980;65:109.

    Article  PubMed  CAS  Google Scholar 

  83. Simmonds HA, Webster DR, Lingham S, Wilson J. An inborn error of purine metabolism, deafness and neurodevelopmental abnormality. Neuropediatrics. 1985;16:106.

    Article  PubMed  CAS  Google Scholar 

  84. Becker MA, Smith PR, Taylor W, et al. The genetic and functional basis of purine nucleotide feedback resistant phosphoribosylpyrophosphate synthetase superactivity. J Clin Invest. 1995;96:2133.

    Article  PubMed  CAS  Google Scholar 

  85. Zoref E, de Vries A, Sperling O. Metabolic cooperation between human fibroblasts with normal and with mutant superactive phosphoribosylpyrophosphate synthetase. Nature. 1976;260:787.

    Article  PubMed  CAS  Google Scholar 

  86. Yen RCK, Adams WB, Lazar C, Becker MA. Evidence for x-linkage of human phosphoribosyl-pyrophosphate synthetase. Proc Natl Acad Sci USA. 1978;75:482.

    Article  PubMed  CAS  Google Scholar 

  87. Simmonds HA, Webster DR, Wilson J, Lingham S. An X-linked syndrome characterized by hyperuricaemia, deafness, and neurodevelopmental abnormalities. Lancet. 1982;2:68.

    Article  PubMed  CAS  Google Scholar 

  88. Henderson JF, Caldwell IC, Patterson ARP. Decreased feedback inhibition in a 6-methylmercaptopurine ribonucleoside-resistant tumor. Cancer Res. 1967;27:1773.

    PubMed  CAS  Google Scholar 

  89. Nagy M. Regulation of the biosynthesis of purine nucleotides in Schizosaccharomyces pombe. I. Properties of the phosphoribosylpyrophosphate: glutamine amidotransferase of the wild strain and of a mutant desensitized towards feedback modifiers. Biochim Biophys Acta (Amst). 1971;198:471.

    Article  Google Scholar 

  90. Fox IH. Metabolic basis for disorders of purine nucleotide degradation. Metabolism. 1981;30:616.

    Article  PubMed  CAS  Google Scholar 

  91. Fox IH, Palella TD, Kelley WN. Hyperuricemia: a marker for cell energy crisis. N Engl J Med. 1987;317:111.

    Article  PubMed  CAS  Google Scholar 

  92. Fox IH. Adenosine triphosphate degradation in specific disease. J Lab Clin Med. 1985;106:101.

    PubMed  CAS  Google Scholar 

  93. Alexander D, Assaf M, Khudr A, et al. Fructose-1,6-diphosphatase deficiency: diagnosis using leukocytes and detection of heterozygotes with radiochemical and spectrophotometric methods. J Inherit Metab Dis. 1985;8:147.

    Article  Google Scholar 

  94. Gitzelmann R, Steinmann B, Van den Berghe G. Disorders of fructose metabolism. In: Scriver CR, Beaudet AL, Sly WS, Valle D, editors. The metabolic and molecular bases of inherited disease. New York: McGraw-Hill, Inc; 1995. p. 905–34.

    Google Scholar 

  95. Melancon SB, Khachadurian AK, Nadler HL, Brown BI. Metabolic and biochemical studies in fructose-1,6-diphosphatase deficiency. J Pediatr. 1973;82:650.

    Article  PubMed  CAS  Google Scholar 

  96. Baerlocher K, Gitzelmann R, Nassli R, Dumermuth G. Infantile lactic acidosis due to hereditary fructose-1,6-diphosphatase deficiency. Helv Paediatr Acta. 1971;26:489.

    PubMed  CAS  Google Scholar 

  97. Hopwood NJ, Holzman I, Drash AL. Fructose-1,6-diphosphatase deficiency. Am J Dis Child. 1977;131:418.

    PubMed  CAS  Google Scholar 

  98. Corbell L, Eggermont E, Eeckels R, et al. Recurrent attacks of ketotic acidosis associated with fructose-1,6-diphosphatase deficiency. Acta Paediatr Belg. 1976;29:29.

    Google Scholar 

  99. Corbell LM, Eggermont E, Bettens W, et al. Fructose intolerance with normal liver aldolase. Helv Paediatr Acta. 1970;25:626.

    Google Scholar 

  100. Steinmann B, Gitzelmann R. Fruktose und sorbitol infusions flussigkeiten sind nicht immer hamlos. Int J Vitam Nutr Res Suppl. 1976;15:239.

    Google Scholar 

  101. Woolliscroft JO, Colfer H, Fox IH. Hyperuricemia in acute illness: a poor prognostic sign. Am J Med. 1982;72:58.

    Article  PubMed  CAS  Google Scholar 

  102. Woolliscroft JO, Fox IH. Increased body fluid purines during hypotensive events: evidence for ATP degradation. Am J Med. 1986;81:472.

    Article  PubMed  CAS  Google Scholar 

  103. Grum CM, Simon RH, Dantzker DR, Fox IH. Biochemical indicators of cellular hypoxia in critically ill patients: evidence for ATP degradation. Chest. 1985;88:763.

    Article  PubMed  CAS  Google Scholar 

  104. Braunwald E, Kloner RA. Myocardial reperfusion: a double-edged sword? J Clin Invest. 1985;76:1713.

    Article  PubMed  CAS  Google Scholar 

  105. Christensen EF, Jacobsen J, Anker-Moller E, et al. Increased urinary loss of uric acid in adults with acute respiratory failure requiring mechanical ventilation. Chest. 1992;102:556.

    Article  PubMed  CAS  Google Scholar 

  106. Braghiroli A, Sacco C, Erbetta M, et al. Overnight urinary uric acid: creatinine ration for detection of sleep hypoxemia. Validation study in chronic obstructive pulmonary disease and obstructive sleep apnea before and after treatment with nasal continuous positive airway pressure. Am Rev Respir Dis. 1993;148:173.

    PubMed  CAS  Google Scholar 

  107. Mateos AF, Puig JG, Gomez Fernandez P, et al. Degradation of purine nucleotides in patients with chronic obstructive airflow. Med Clin (Barc). 1989;92:328.

    Google Scholar 

  108. Karlsson J, Willerson JT, Leshin SJ, et al. Skeletal muscle metabolites in patients with cardiogenic shock or severe congestive heart failure. Scand J Clin Lab Invest. 1975;35:73.

    Article  PubMed  CAS  Google Scholar 

  109. Buhl L, Vilhelmsen KN, Nielsen JR. Oxypurine release in cardiac disease. Acta Med Scand. 1981;209:83.

    Article  PubMed  CAS  Google Scholar 

  110. Sangstad OD. Hypoxanthine as a measurement of hypoxia. Pediatr Res. 1975;9:158.

    Article  Google Scholar 

  111. Harkness RA, Simmonds RJ, Coade SB, Lawrence CR. Ratio of the concentration of hypoxanthine to creatinine in urine from newborn infants: a possible indicator for the metabolic damage due to hypoxia. Br J Obstet Gynaecol. 1983;90:447.

    Article  PubMed  CAS  Google Scholar 

  112. Harkness RA, Whitelow AGL, Simmonds RJ. Intrapartum hypoxia: the association between neurological assessment of damage and abnormal excretion of ATP metabolites. J Clin Pathol. 1982;35:999.

    Article  PubMed  CAS  Google Scholar 

  113. Manzke H, Dorner K, Grunitz J. Urinary hypoxanthine, xanthine and uric acid excretion in newborn infants with perinatal complications. Acta Paediatr Scand. 1977;66:713.

    Article  PubMed  CAS  Google Scholar 

  114. Jensen MH, Brinklov MM, Lillquist K. Urinary loss of oxypurines in hypoxic premature neonates. Biol Neonate. 1980;38:40.

    Article  PubMed  CAS  Google Scholar 

  115. Raivio KO. Neonatal hyperuricemia. J Pediatr. 1976;88:625.

    Article  PubMed  CAS  Google Scholar 

  116. Swanstrom S, Bratteby L. Hypoxanthine as a test of perinatal hypoxia as compared to lactate, base deficit, and pH. Pediatr Res. 1982;16:156.

    Article  PubMed  CAS  Google Scholar 

  117. Thiringer K. Cord plasma hypoxanthine as a measure of foetal asphyxia. Acta Paediatr Scand. 1983;72:231.

    Article  PubMed  CAS  Google Scholar 

  118. Fruhmann G, Fritz H, Bergstermann H. Homozygous inherited alpha1-antitrypsin deficiency with emphysema of the lung, cor pulmonale, and gout. Klin Wochenschr. 1974;52:80.

    Article  PubMed  CAS  Google Scholar 

  119. Kohkhar N. Hyperuricemia and gout in secondary polycythemia due to chronic obstructive pulmonary disease. J Rheumatol. 1980;7:114.

    PubMed  CAS  Google Scholar 

  120. Ball GV, Sorensen LB. Pathogenesis of hyperuricemia and gout in sickle cell anemia. Arthritis Rheum. 1970;13:846.

    Article  PubMed  CAS  Google Scholar 

  121. March HW, Schylen SM, Schwartz SE. Mediterranean hemopathic syndromes (Cooley’s anemia) in adults: study of a family with unusual complications. Am J Med. 1952;13:46.

    Article  PubMed  CAS  Google Scholar 

  122. Paik CH, Alavi I, Dunea G, Weiner L. Thalassemia and gouty arthritis. JAMA. 1970;213:296.

    Article  PubMed  CAS  Google Scholar 

  123. Hickling RA. Gout, leukemia, and polycythaemia. Lancet. 1953;1:57.

    Article  PubMed  CAS  Google Scholar 

  124. Talbott JH. Gout. New York: Grune & Stratton; 1957.

    Google Scholar 

  125. Yu TF. Secondary gout associated with myeloproliferative disease. Arthritis Rheum. 1965;8:765.

    Article  PubMed  CAS  Google Scholar 

  126. Bronsky D, Bernstein A. Acute gout secondary to multiple myeloma: a case report. Ann Intern Med. 1954;41:820.

    PubMed  CAS  Google Scholar 

  127. Somerville J. Gout in cyanotic congenital heart disease. Br Heart Med. 1961;23:31.

    Article  CAS  Google Scholar 

  128. Zimmer JG, Demus DJ. Associations between gout, psoriasis and sarcoidosis: with consideration of their pathologic significance. Ann Intern Med. 1966;64:786.

    Google Scholar 

  129. Van den Berghe G, Hers HG. Abnormal AMP deaminase in primary gout. Lancet. 1980;2:1090.

    PubMed  Google Scholar 

  130. Hers HG, Van den Berghe G. Enzyme defect in primary gout. Lancet. 1979;1:585.

    Article  PubMed  CAS  Google Scholar 

  131. DiMauro S, Miranda AF, Hays AP, et al. Myoadenylate deaminase deficiency – muscle biopsy and muscle culture in a patient with gout. J Neurol Sci. 1980;47:191–202.

    Article  PubMed  CAS  Google Scholar 

  132. Sabina RL, Swain JL, Olanow CW, et al. Myoadenylate deaminase deficiency. Functional and metabolic abnormalities associated with disruption of the purine nucleotide cycle. J Clin Invest. 1984;73:720. 30.

    Article  PubMed  CAS  Google Scholar 

  133. Sabina RL, Holmes EW. Myoadenylate deaminase deficiency. In: Scriver CR, Beaudet AL, Sly WS, Valle D, editors. The metabolic and molecular bases of inherited disease. New York: McGraw-Hill, Inc; 1995. p. 1769–80.

    Google Scholar 

  134. Talente GM, Coleman RA, Alter C, et al. Glycogen storage disease in adults. Ann Intern Med. 1994;120:218.

    PubMed  CAS  Google Scholar 

  135. Abarbanel JM, Potashnik R, Frisher S, et al. Myophosphorylase deficiency: the course of an unusual congenital myopathy. Neurology. 1987;37:316.

    Article  PubMed  CAS  Google Scholar 

  136. Zanella A, Mariani M, Meola G, Fagnani G, Sirchia G. Phosphofructokinase (PFK) deficiency due to a catalytically inactive mutant M-type subunit. Am J Hematol. 1982;12:215–25.

    Article  Google Scholar 

  137. Tarui S, Okuno G, Ikura Y, et al. Phosphofructokinase deficiency in skeletal muscle: a new type of glycogenosis. Biochem Biophys Res Commun. 1963;19:517–23.

    Article  Google Scholar 

  138. Ambrose DR, McCabe ER, Anderson D, Beaudet A, et al. Infections and bleeding complications in patients with glycogenosis Ib. Am J Dis Child. 1985;139:691–7.

    Google Scholar 

  139. Soejimak K, Landing BH, Roe TF, Swanson VL. Pathologic studies of the osteoporosis of Von Gierke’s disease (glycogenosis Ia). Pediatr Pathol. 1985;3:307–19.

    Article  Google Scholar 

  140. De Parscau L, Guiband P, Labrime P, Odievre M. Long-term course of hepatic glycogenosis. A retrospective study of 76 cases. Arch Fr Pediatr. 1988;45:641–5.

    PubMed  Google Scholar 

  141. Chen YT, Coleman RA, Scheinman JI, Kolbeck PC, Sidbury JB. Renal disease in type I glycogen storage disease. N Engl J Med. 1988;318:7–11.

    Article  PubMed  CAS  Google Scholar 

  142. Baker L, Dahlem S, Goldfarb S, et al. Hyperfiltration and renal disease in glycogen storage disease, type I. Kidney Int. 1989;5:1345–50.

    Article  Google Scholar 

  143. Restaino I, Kaplan BS, Stanley C, et al. Nephrolithiasis, hypocitraturia, and a distal renal tubular acidification defect in type 1 glycogen storage disease. J Pediatr. 1993;122:392.

    Article  PubMed  CAS  Google Scholar 

  144. Matsuo N, Tsuchiya Y, Cho H, et al. Proximal renal tubular acidosis in a child with type 1 glycogen storage disease. Acta Paediatr Scand. 1986;75:332.

    Article  PubMed  CAS  Google Scholar 

  145. Chen YT, Scheinman JI, Park HK, et al. Amelioration of proximal renal tubular dysfunction in type 1 glycogen storage disease with dietary therapy. N Engl J Med. 1990;323:590.

    Article  PubMed  CAS  Google Scholar 

  146. Howell RR, Stevenson RE, Ben-Menachem Y, Phyliky RL, Berry DH. Hepatic adenomata with type I glycogen storage disease. JAMA. 1976;236:1481.

    Article  PubMed  CAS  Google Scholar 

  147. Limmer J, Fleig WE, Leupold D, et al. Hepatocellular carcinoma in type I glycogen storage disease. Hepatology. 1988;8:531.

    Article  PubMed  CAS  Google Scholar 

  148. Fink AS, Appelman HD, Thompson NW. Hemorrhage into a hepatic adenoma and type Ia glycogen storage disease: a case report and review of the literature. Surgery. 1985;97:117.

    PubMed  CAS  Google Scholar 

  149. Levy E, Thibault LA, Roy CC, et al. Circulating lipids and lipoproteins in glycogen storage disease type I with nocturnal intragastric feeding. J Lipid Res. 1988;29:215.

    PubMed  CAS  Google Scholar 

  150. Beaudet AL, Anderson DC, Michelis VV, Arion WJ, Lange AJ. Neutropenia and impaired neutrophil migration in type Ib glycogen storage disease. J Pediatr. 1980;97:906.

    Article  PubMed  CAS  Google Scholar 

  151. Bartram CR, Przyrembel H, Wendel U, et al. Glycogenosis type Ib complicated by severe granulocytopenia resembling inherited neutropenia. Eur J Pediatr. 1981;137:81.

    Article  PubMed  CAS  Google Scholar 

  152. Murase T, Ikeda H, Muro T, Nakao K, Sugita H. Myopathy associated with type III glycogenosis. J Neurol Sci. 1973;20:287.

    Article  PubMed  CAS  Google Scholar 

  153. Brunberg JA, McCormick WF, Schochet SS. Type III glycogenosis. An adult with diffuse weakness and muscle wasting. Arch Neurol. 1971;25:171.

    Article  PubMed  CAS  Google Scholar 

  154. Moses SW, Gadoth N, Bashan N, et al. Neuromuscular involvement in glycogen storage disease type III. Acta Paediatr Scand. 1986;75:289.

    Article  PubMed  CAS  Google Scholar 

  155. Moses SW, Wanderman KL, Myroz A, Frydman M. Cardiac involvement in glycogen storage disease type III. Eur J Pediatr. 1989;148:764.

    Article  PubMed  CAS  Google Scholar 

  156. Coleman RA, Winter HA, Wolf B, et al. Glycogen storage disease type III (glycogen debranching enzyme deficiency): correlation of biochemical defects with myopathy and cardiomyopathy. Ann Intern Med. 1992;116:896.

    PubMed  CAS  Google Scholar 

  157. DiMauro S, Hartwig GB, Hays A, et al. Debrancher deficiency: neuromuscular disorder in 5 adults. Ann Neurol. 1979;5:422.

    Article  PubMed  CAS  Google Scholar 

  158. Cornelio F, Bresolin N, Singer PA, et al. Clinical varieties of neuromuscular disease in debrancher deficiency. Arch Neurol. 1971;25:171.

    Article  Google Scholar 

  159. Labrime PL, Huguet P, Odievre M. Cardiomyopathy in glycogen-storage disease type III: clinical and echocardiographic study of 18 patients. Pediatr Cardiol. 1991;12:161.

    Article  Google Scholar 

  160. Olson LJ, Reeder GS, Noller KL, et al. Cardiac involvement in glycogen storage disease III: morphologic and biochemical characterization with endomyocardial biopsy. Am J Cardiol. 1984; 53:980.

    Article  PubMed  CAS  Google Scholar 

  161. Miller CG, Alleyne GA, Brooks SEH. Gross cardiac involvement in glycogen storage disease type III. Br Heart J. 1972;34:862.

    Article  PubMed  CAS  Google Scholar 

  162. van Crevold S. The Blackader lecture, 1961: the clinical course of glycogen disease. Can Med Assoc J. 1963;88:1–15.

    Google Scholar 

  163. Mineo I, Kono N, Hara N, et al. Myogenic hyperuricemia. A common pathologic feature of glycogenosis type III, V and VII. N Engl J Med. 1987;317: 75–80.

    Article  PubMed  CAS  Google Scholar 

  164. Puig JG, de Miguel E, Mateos FA, et al. McArdle’s disease and gout. Muscle Nerve. 1992;15:822–8.

    Article  PubMed  CAS  Google Scholar 

  165. Hardiman O, Farrell M, McElvaney G, et al. Hyperuricemia in type V glycogenosis. Neurology. 1987;37:728–9.

    Article  PubMed  CAS  Google Scholar 

  166. Servidei S, DiMauro S. Disorders of glycogen metabolism of muscle. Neurol Clin. 1989;7:159–78.

    PubMed  CAS  Google Scholar 

  167. Moses SW. Muscle glycogenosis. J Inherit Metab Dis. 1990;13:452.

    Article  PubMed  CAS  Google Scholar 

  168. Pourmand R, Sanders DB, Corwin HM. Late-onset McArdle’s disease with unusual electromyographic findings. Arch Neurol. 1983;40:374.

    Article  PubMed  CAS  Google Scholar 

  169. Hewlett RH, Gardner-Thorpe C. McArdle’s Disease – what limit to the age of onset? S Afr Med J. 1978;53:60.

    PubMed  CAS  Google Scholar 

  170. Mineo I, Kono N, Shimizu T, et al. Excess purine degradation in exercising muscles of patients with glycogen storage disease types V and VII. J Clin Invest. 1985;76:556–60.

    Article  PubMed  CAS  Google Scholar 

  171. Jinnai K, Kono N, Yamamoto Y, et al. Glycogenosis type V (McArdle’s disease) with hyperuricemia. Eur Neurol. 1993;33:204–7.

    Article  PubMed  CAS  Google Scholar 

  172. Higgs JB, Blaivas M, Albers JW. McArdle’s disease presenting as treatment resistant polymyositis. J Rheumatol. 1989;16:1588.

    PubMed  CAS  Google Scholar 

  173. Vora S, Davidson M, Seaman C, et al. Heterogeneity of the molecular lesions in inherited phosphofructokinase deficiency. J Clin Invest. 1983;72: 1995–2006.

    Article  PubMed  CAS  Google Scholar 

  174. Hays AP, Hallet M, Delfs J, et al. Muscle phosphofructokinase deficiency: abnormal polysaccharide in a case of late-onset myopathy. Neurology (NY). 1981;31:1077–86.

    Article  CAS  Google Scholar 

  175. Agamanolis DP, Askari AD, DiMauro S, et al. Muscle phosphofructokinase deficiency: two cases with unusual polysaccharide accumulation and immunologically active enzyme protein. Muscle Nerve. 1980;3:456–67.

    Article  PubMed  CAS  Google Scholar 

  176. Zanella A, Mariani M, Meola G, et al. Phosphofructokinase (PFK) deficiency due to a catalytically inactive mutant M-type subunit. Am J Hematol. 1982;12:215–25.

    Article  Google Scholar 

  177. Nakagawa C, Mineo I, Kaido M, et al. A new variant case of muscle phosphofructokinase deficiency, coexisting with gastric ulcer, gouty arthritis, and increased hemolysis. Muscle Nerve. 1995;3:539–44.

    Google Scholar 

  178. Danon MJ, Servidei S, DiMauro S, Vora S. Late-onset muscle phosphofructokinase deficiency. Neurology. 1988;38:956.

    Article  PubMed  CAS  Google Scholar 

  179. Serratrice G, Monges A, Roux H, et al. Forme myopathique du deficit en phosphofructokinase. Rev Neurol. 1969;120:271.

    PubMed  CAS  Google Scholar 

  180. Servidei S, Bonilla E, Diedrick RG, et al. Fatal infantile form of muscle phosphofructokinase deficiency. Neurology. 1986;36:1465.

    Article  PubMed  CAS  Google Scholar 

  181. Danon MJ, Carpenter S, Manaligod JR, Schlisefeld LH. Fatal infantile glycogen storage disease: deficiency of phosphofructokinase and phosphorylase b kinase. Neurology. 1981;31:1303.

    Article  PubMed  CAS  Google Scholar 

  182. Vora S, Corash L, Engel WK, et al. The molecular mechanism of the inherited phosphofructokinase deficiency associated with hemolysis and myopathy. Blood. 1980;55:629–35.

    PubMed  CAS  Google Scholar 

  183. Shimizu T, Kono N, Kiyokawa H, et al. Erythrocyte glycolysis and its marked alterations by muscular exercise in type VII glycogenosis. Blood. 1988;71:1130.

    PubMed  CAS  Google Scholar 

  184. Haller RG, Lewis SF. Glucose-induced exertional fatigue in muscle phosphofructokinase deficiency. N Engl J Med. 1991;324:364.

    Article  PubMed  CAS  Google Scholar 

  185. Tarui S, Kono N, Kuwajima M, Ikura Y. Type VII glycogenosis (muscle and erythrocyte phosphofructokinase deficiency). Monogr Hum Genet. 1978;9:42–7.

    PubMed  CAS  Google Scholar 

  186. Tarui S, Kono N, Nasu T, Nishikawa M. Enzymatic basis for the coexistence of myopathy and hemolytic disease in inherited phosphofructokinase deficiency. Biochem Biophys Res Commun. 1969;34:77–83.

    Article  PubMed  CAS  Google Scholar 

  187. Tem I. Metabolic myopathies. Pediatr Neurol. 1996;3:53–98.

    Article  Google Scholar 

  188. DiMauro S, Miranda AF, Khan S, et al. Human ­muscle phosphoglycerate mutase deficiency and myoadenylate deaminase deficiency. Science. 1981;212:1277–9.

    Article  PubMed  CAS  Google Scholar 

  189. Bertorini TE, Shively V, Taylor B, et al. ATP degradation products after ischemic exercise: hereditary lack of phosphorylase or carnitine palmitoyltransferase. Neurology. 1985;35:1355–7.

    Article  PubMed  CAS  Google Scholar 

  190. Abaranel JM, Bashan N, Potashnik R, et al. Adult phosphorylase b kinase deficiency. Neurology. 1986;36:560.

    Article  Google Scholar 

  191. Servidei S, Metlay LA, Booth FA, et al. Clinical and biochemical heterogeneity of phosphorylase kinase deficiency. Neurology. 1987;37 Suppl 1:139.

    Google Scholar 

  192. Clemens PR, Yamamoto M, Engel AG. Adult phosphorylase b kinase deficiency. Ann Neurol. 1990;28:529.

    Article  PubMed  CAS  Google Scholar 

  193. Laforet P, Eymard B, Lombes A, et al. Intolerance a l’effort par deficit en phosphorylase b kinase musculaire. Apport des investigations metaboliques in vivo. Rev Neurol (Paris). 1996;152:458–64.

    CAS  Google Scholar 

  194. Fukuda T, Sugie H, Sugie Y, et al. Five cases of phosphorylase b kinase deficiency affecting muscle or liver: clinical symptoms and diagnosis. No To Hattatsu. 1994;26:493–7.

    PubMed  CAS  Google Scholar 

  195. Wilkinson DA, Tonin P, Shanske S, et al. Clinical and biochemical features of 10 adult patients with muscle phosphorylase kinase deficiency. Neurology. 1994;44:461–6.

    Article  PubMed  CAS  Google Scholar 

  196. Carrier H, Maire I, Vial C, et al. Myopathic evolution of an exertional muscle pain syndrome with phosphorylase b kinase deficiency. Acta Neuropathol (Berlin). 1990;81:84–8.

    Article  CAS  Google Scholar 

  197. Van den Berg IF, Berger R. Phosphorylase b kinase deficiency in man: a review. J Inherit Metab Dis. 1990;13:442–51.

    Article  PubMed  Google Scholar 

  198. Madloni M, Berley GT, Cohen PT, Marrian VJ. Phosphorylase b kinase deficiency in a boy with glycogenosis affecting both liver and muscle. Eur J Pediatr. 1989;149:52–3.

    Article  Google Scholar 

  199. Keating JP, Brown BI, White NH, DiMauro S. X-linked glycogen storage disease. A cause of hypotonia, hyperuricemia, and growth retardation. Am J Dis Child. 1985;139:609–13.

    PubMed  CAS  Google Scholar 

  200. Sugie H, Sugie Y, Nishida M, et al. Recurrent myoglobinuria in a child with mental retardation: phosphoglycerate kinase deficiency. J Child Neurol. 1989;4:95–9.

    Article  PubMed  CAS  Google Scholar 

  201. Tonin P, Shanske S, Miranda AF, et al. Phosphogly­cerate kinase deficiency: biochemical and molecular genetic studies in a new myopathic variant (PGK Alberta). Neurology. 1993;43:387–91.

    Article  PubMed  CAS  Google Scholar 

  202. Rosa R, George C, Fardeau M, et al. A new case of phosphoglycerate kinase deficiency: PGK Creteil associated with rhabdomyolysis and lacking hemolytic anemia. Blood. 1982;60:84–91.

    PubMed  CAS  Google Scholar 

  203. Tsujino S, Shanske S, DiMauro S. Molecular genetic heterogeneity of phosphoglycerate kinase (PGK) deficiency. Muscle Nerve. 1995;8:545–9.

    Google Scholar 

  204. DiMauro S, Dalakas M, Miranda AF. Phosphoglycerate kinase deficiency: another cause of recurrent myoglobinuria. Ann Neurol. 1983;13:11–9.

    Article  PubMed  CAS  Google Scholar 

  205. Fujii H, Miwa S. Other erythrocyte enzyme deficiencies associated with non-haematological symptoms: phosphoglycerate kinase and phosphofructokinase deficiency. Baillieres Best Pract Res Clin Haematol. 2000;13:141–8.

    Article  PubMed  CAS  Google Scholar 

  206. Aasly J, van Diggelen OP, Boer AM, Bronstad G. Phosphoglycerate kinase deficiency in two brothers with McArdle-like clinical symptoms. Eur J Neurol. 2000;7:111–3.

    Article  PubMed  CAS  Google Scholar 

  207. Toscano A, Tsujino S, Vita G, et al. Molecular basis of muscle phosphoglycerate mutase (PGAM-M) deficiency in an Italian kindred. Muscle Nerve. 1996;19:1134–7.

    Article  PubMed  CAS  Google Scholar 

  208. Bresolin N, Ro Y, Reyes M, et al. Muscle phosphoglycerate mutase (PGAM) deficiency: a second case. Neurology. 1983;33:1049–53.

    Article  PubMed  CAS  Google Scholar 

  209. Tsujino S, Shanske S, Sakoda S, et al. The molecular genetic basis of muscle phosphoglycerate mutase (PGAM) deficiency. Am J Hum Genet. 1993;52:472–7.

    PubMed  CAS  Google Scholar 

  210. Poulton KR, Khan AA, Rossi ML, Riddoch D. Muscle phosphoglycerate mutase deficiency: a study of a family with metabolic myopathy. Funct Neurol. 1994;9:47–58.

    PubMed  CAS  Google Scholar 

  211. DiMauro S, Miranda AF, Olarte M, et al. Muscle phosphoglycerate mutase deficiency. Neurology. 1982;32:584–91.

    Article  PubMed  CAS  Google Scholar 

  212. Tsujino S, Shanske S, Sakoda S, et al. Molecular genetic studies in muscle phosphoglycerate mutase (PGAM-M) deficiency. Muscle Nerve. 1995;3:S50–3.

    Article  PubMed  CAS  Google Scholar 

  213. DiMauro S, Miranda AF, Khan S, et al. Human muscle phosphoglycerate mutase deficiency: newly discovered metabolic myopathy. Science. 1981;212:1277–9.

    Article  PubMed  CAS  Google Scholar 

  214. Kanno T, Sudo K, Takeuchi I, et al. Hereditary deficiency of lactate dehydrogenase M-subunit. Clin Chim Acta. 1980;108:267–76.

    Article  PubMed  CAS  Google Scholar 

  215. Miyajima H, Shimizu T, Kaneko E. Gene expression in lactate dehydrogenase-A subunit deficiency. Rinsho Shinkeigaku. 1992;32:1087–92.

    PubMed  CAS  Google Scholar 

  216. Miyajima H, Takahashi Y, Suzuki M, et al. Molecular characterization of gene expression in human lactate dehydrogenase-A deficiency. Neurology. 1993;43:1414–9.

    Article  PubMed  CAS  Google Scholar 

  217. Miyajima H, Takahashi Y, Kaneko E. Characterization of the oxidative metabolism in lactate dehydrogenase A deficiency. Intern Med. 1995;34:502–6.

    Article  PubMed  CAS  Google Scholar 

  218. Miyajima H, Takahashi Y, Kaneko E. Characterization of the glycolysis in lactate dehydrogenase-A deficiency. Muscle Nerve. 1995;18:874–8.

    Article  PubMed  CAS  Google Scholar 

  219. Takahashi Y, Miyajima H, Kaneko E. Genetic analysis of a family of lactate dehydrogenase-A subunit deficiency. Intern Med. 1995;34:326–9.

    Article  PubMed  CAS  Google Scholar 

  220. Takahashi Y, Fujiwara S, Waki T. Hereditary lactate dehydrogenase M-subunit deficiency: lactate dehydrogenase activity in skin lesions and in hair follicles. J Am Acad Dermatol. 1991;24:339–42.

    Article  Google Scholar 

  221. Yoshikuni K, Tagami H, Yamada M, et al. Erythematosquamous skin lesions in hereditary lactate dehydrogenase M-subunit deficiency. Arch Dermatol. 1986;122:1420–4.

    Article  PubMed  CAS  Google Scholar 

  222. Kanno T, Maekawa M. Lactate dehydrogenase M-subunit deficiencies: clinical features, metabolic background, and genetic heterogeneities. Muscle Nerve. 1995;3:S54–60.

    Article  PubMed  CAS  Google Scholar 

  223. DiMauro S, DiMauro PMM. Muscle carnitine palmitoyltransferase deficiency and myoglobinuria. Science. 1973;182:929.

    Article  PubMed  CAS  Google Scholar 

  224. Demaugre F, Bonnefont JP, Colonna M, et al. Infantile form of carnitine palmitoyltransferase II deficiency with hepatomuscular symptoms and sudden death Physiopathological approach to carnitine palmitoyltransferase II deficiency. J Clin Invest. 1991;87:859.

    Article  PubMed  CAS  Google Scholar 

  225. Hug G, Bove KE, Soukup S. Lethal neonatal multiorgan deficiency of carnitine palmitoyltransferase II. N Engl J Med. 1991;325:1862.

    Article  PubMed  CAS  Google Scholar 

  226. Zinn AB, Zurcher VL, Krans F, et al. Carnitine palmitoyltransferase B (CPT B) deficiency: a heritable cause of neonatal cardiomyopathy and dysgenesis of the kidney. Pediatr Res. 1991;29:73A.

    Google Scholar 

  227. Katzir Z, Hookman B, Biro A, et al. Carnitine palmitoyltransferase deficiency: an underdiagnosed condition. Am J Nephrol. 1996;16:162–6.

    Article  PubMed  CAS  Google Scholar 

  228. Faigel HC. Carnitine palmitoyltransferase deficiency in a college athlete: a case report and literature review. J Am Coll Health. 1995;44:51–4.

    Article  PubMed  CAS  Google Scholar 

  229. Stavem K, Bjerke G, Skullerud K, Bohmer T. Rhabdomyolysis in carnitine palmitoyltransferase deficiency. Tidsskr Nor Laegeforen. 1994;114:2398–9.

    PubMed  CAS  Google Scholar 

  230. Kiechl S, Kohlendorfer U, Paetzke I, et al. Myoglobinuria and palmitoyltransferase deficiency. Diagnostic procedure and differential diagnosis. Wien Klin Wochenschr. 1994;106:174–7.

    PubMed  CAS  Google Scholar 

  231. Werneck LC, Boer CA, Papadimitriou A, DiMauro S. Myopathy due to carnitine palmitoyltransferase deficiency. Report of 2 cases with enzymatic analyses on muscle tissue. Arq Neuropsiquiatr. 1983;41:377–84.

    Article  PubMed  CAS  Google Scholar 

  232. Herman J, Nadler HL. Recurrent myoglobinuria and muscle carnitine palmitoyltransferase deficiency. J Pediatr. 1977;91:247–50.

    Article  PubMed  CAS  Google Scholar 

  233. Kieval RI, Sotrel A, Weinblatt ME. Chronic myopathy with a partial deficiency of the carnitine palmitoyltransferase enzyme. Arch Neurol. 1990;46:575–6.

    Article  Google Scholar 

  234. Carroll JE, Brooke MH, DeVivo DC, et al. Biochemical and physiologic consequences of carnitine palmitoyltransferase deficiency. Muscle Nerve. 1978;1:103–10.

    Article  PubMed  CAS  Google Scholar 

  235. Layzer RB, Havel RJ, McIlroy MB. Partial deficiency of carnitine palmitoyltransferase: physiologic and biochemical consequences. Neurology. 1980;30:627–33.

    Article  PubMed  CAS  Google Scholar 

  236. Gieron MA, Karthais JK. Carnitine palmitoyltransferase deficiency with permanent weakness. Pediatr Neurol. 1987;3:51–3.

    Article  PubMed  CAS  Google Scholar 

  237. Wyngaarden JB, Kelley WN. Gout and hyperuricemia. New York: Grune & Stratton, Inc.; 1976. p. 111–7.

    Google Scholar 

  238. Sorensen LB. The pathogenesis of gout. Arch Intern Med. 1962;109:379.

    Article  PubMed  CAS  Google Scholar 

  239. Steele TH, Boner G. Origins of the uricosuric response. J Clin Invest. 1973;52:168.

    Article  Google Scholar 

  240. Diamond HS, Paolino JS. Evidence for a post-secretory reabsorptive site for uric acid in man. J Clin Invest. 1973;52:1491.

    Article  PubMed  CAS  Google Scholar 

  241. Steele TH. Urate secretion in man: the pyrazinamide suppression test. Ann Intern Med. 1973;79:734.

    PubMed  CAS  Google Scholar 

  242. Rieselbach RE, Steele TH. Influence of the kidney upon urate homeostasis in health and disease. Am J Med. 1974;56:665.

    Article  PubMed  CAS  Google Scholar 

  243. de Rougement D, Henchoz M, Roch-Rumel F. Renal urate excretion at various plasma concentrations in the rat: a free-flow micropuncture study. Am J Physiol. 1976;231:387.

    Google Scholar 

  244. Weinman EJ, Senekjian HO, Sansom SC, et al. Evidence for active and passive urate transport in the rat proximal tubule. Am J Physiol. 1981;240:F90.

    PubMed  CAS  Google Scholar 

  245. Sorensen LB, Levinson DJ. Isolated defect in postsecretory reabsorption of uric acid. Ann Rheum Dis. 1980;39:180.

    Article  PubMed  CAS  Google Scholar 

  246. Gibson T, Sims HP, Jiminez SA. Hypouricemia and increased renal urate clearance associated with hyperparathyroidism. Ann Rheum Dis. 1976;35:372.

    Article  PubMed  CAS  Google Scholar 

  247. Wyngaarden JB, Kelley WN. Gout. In: Stanbury JB, Wyngaarden JB, Fredrickson DS, Goldstein JL, Brown MS, editors. The metabolic basis of inherited disease. 5th ed. New York: McGraw-Hill, Inc; 1983. p. 1043–5.

    Google Scholar 

  248. Gutman AB, Yu TF. Renal function in gout: with a commentary on the renal regulation of urate excretion and the role of the kidney in the pathogenesis of gout. Am J Med. 1957;23:600.

    Article  PubMed  CAS  Google Scholar 

  249. Simkin PA. Uric acid excretion in patients with gout. Arthritis Rheum. 1979;22:98.

    Article  PubMed  CAS  Google Scholar 

  250. Nugent CA, MacDiarmid WD, Tyler FH. Renal excretion of urate in patients with gout. Arch Intern Med. 1964;113:115.

    Article  PubMed  CAS  Google Scholar 

  251. Houpt JB, Ogryzlo MA. Persistence of impaired uric acid excretion in gout during reduced synthesis with allopurinol. Arthritis Rheum. 1964;7:316.

    Google Scholar 

  252. Snaith ML, Scott JT. Uric acid clearance in patients with gout and normal subjects. Ann Rheum Dis. 1971;30:285.

    Article  PubMed  CAS  Google Scholar 

  253. Seegmiller JE, Grayzel AI, Howell RR, Plato C. The renal excretion of uric acid in gout. J Clin Invest. 1962;41:1094.

    Article  PubMed  CAS  Google Scholar 

  254. Lathem W, Rodnan GP. Impairment of uric acid excretion in gout. J Clin Invest. 1962;41:1955.

    Article  PubMed  CAS  Google Scholar 

  255. Wyngaarden JB. Gout. Adv Metab Disord. 1965;2:2.

    Google Scholar 

  256. Simkin PA. Urate excretion in normal and gouty men. In: Miller MM, Kaiser E, Seegmiller JE, editors. Purine metabolism in man II. New York: Plenum; 1977. p. 41.

    Chapter  Google Scholar 

  257. Yu TF, Berger L, Stone DJ, et al. Effects of pyrazinamide and pyrazinoic acid on urate clearance and other discrete renal functions. Proc Soc Exp Biol Med. 1957;96:264.

    PubMed  CAS  Google Scholar 

  258. Steele TH, Reiselbach RE. The contribution of residual nephrons within the chronically diseased kidney to urate homeostasis in man. Am J Med. 1967;43:876.

    Article  PubMed  CAS  Google Scholar 

  259. Steele TH. Evidence for altered renal urate reabsorption during changes in volume of the extracellular fluid. J Lab Clin Med. 1969;74:228.

    Google Scholar 

  260. Suki WN, Eknoyan G, Martinez-Maldonado M. Tubular sites and mechanisms of diuretic action. Annu Rev Pharmacol. 1973;13:91.

    Article  PubMed  CAS  Google Scholar 

  261. Steele TH, Oppenheimer S. Factors affecting urate excretion following diuretic administration in man. Am J Med. 1969;47:564.

    Article  PubMed  CAS  Google Scholar 

  262. Yu TF, Gutman AB. Study of the paradoxical effects of salicylate in low, intermediate and high dosage on the renal mechanisms for excretion of urate in man. J Clin Invest. 1959;38:1298.

    Article  PubMed  CAS  Google Scholar 

  263. Goldfinger S, Klinenberg JR, Seegmiller JE. Renal retention of uric acid induced by infusion of beta-hydroxybutyrate and acetoacetate. N Engl J Med. 1965;272:351.

    Article  PubMed  CAS  Google Scholar 

  264. Schulman JD, Lustberg TJ, Kennedy JL, et al. A new variant of maple syrup urine disease (branched chain ketoaciduria). Clinical and biochemical evaluation. Am J Med. 1970;49:118.

    Article  PubMed  CAS  Google Scholar 

  265. Yu TF, Sirota JH, Berger L, et al. Effect of sodium lactate infusion on urate clearance in man. Proc Soc Exp Biol Med. 1957;96:809.

    PubMed  CAS  Google Scholar 

  266. Talbott JH, Terplan KL. The kidney in gout. Medicine. 1960;39:405–62.

    Article  PubMed  CAS  Google Scholar 

  267. Beck LH. Requiem for gouty nephropathy. Kidney Int. 1986;30:280.

    Article  PubMed  CAS  Google Scholar 

  268. Foley RJ, Weinman EJ. Review: urate nephropathy. Am J Med Sci. 1984;288:208.

    Article  PubMed  CAS  Google Scholar 

  269. Gudzent F. Gicht and rheumatismus. Berlin: Springer; 1928.

    Book  Google Scholar 

  270. Mayne JG. Pathological study of the renal lesion found in 27 patients with gout. Ann Rheum Dis. 1955;15:61.

    Google Scholar 

  271. Yu TF, Berger L, Dorph DJ. Renal function in gout. V. Factors influencing renal hemodynamics. Am J Med. 1979;67:766.

    Article  PubMed  CAS  Google Scholar 

  272. Yu TF, Berger L. Renal function in gout. Its association with hypertensive vascular disease and intrinsic renal disease. Am J Med. 1982;72:95.

    Article  PubMed  CAS  Google Scholar 

  273. Campbell BC, Moore MR, Goldberg A. Subclinical lead exposure: a possible cause of gout. Br Med J. 1978;2:1403.

    Article  PubMed  CAS  Google Scholar 

  274. Batuman V, Maesaka JK, Haddad B, et al. The role of lead in gout nephropathy. N Engl J Med. 1981;304:520.

    Article  PubMed  CAS  Google Scholar 

  275. Hall AP, Barry DP, Dawber TR, McNamara PM. Epidemiology of gout and hyperuricemia; a long-term population study. Am J Med. 1967;42:27.

    Article  PubMed  CAS  Google Scholar 

  276. Fessel WJ. Renal outcomes in gout and hyperuricemia. Am J Med. 1979;67:74.

    Article  PubMed  CAS  Google Scholar 

  277. Fessel WJ, Barr GD. Uric acid, lean body weight, and creatinine interactions. Results from regression analyses of 78 variables. Semin Arthritis Rheum. 1970;7:115.

    Article  Google Scholar 

  278. Campion EW, Glynn RJ, DeLabry LO. Asymptomatic hyperuricemia. Risks and consequences in the Normative Aging Study. Am J Med. 1987;82:421.

    Article  PubMed  CAS  Google Scholar 

  279. Berger L, Yu TF. Renal function in gout. IV. An analysis of 524 gouty subjects including long-term follow-up studies. Am J Med. 1975;59:605.

    Article  PubMed  CAS  Google Scholar 

  280. Palella TD, Fox IH. Hyperuricemia and gout. In: Scriver CR, Beaudet AL, Sly WS, Valle D, editors. The metabolic basis of inherited disease. New York: McGraw-Hill, Inc.; 1989. p. 971.

    Google Scholar 

  281. Heptinstall RH. Pathology of the kidney. Boston: Little, Brown; 1966.

    Google Scholar 

  282. Seegmiller JE, Frazier PD. Biochemical considerations of the renal damage of gout. Ann Rheum Dis (Suppl). 1966;25:668–72.

    CAS  Google Scholar 

  283. Gonick HC, Rubini ME, Gleason IO, Sommers SC. The renal lesion in gout. Ann Intern Med. 1965;62:667.

    PubMed  CAS  Google Scholar 

  284. Pardo V, Perez-Stable E, Fisher ER. Ultrastructure studies in hypertension. III. Gouty nephropathy. Lab Invest. 1968;18:143.

    PubMed  CAS  Google Scholar 

  285. Verger D, Leroux-Robert GP, Richet G. Depots d’urate intrarenaux chez les insuffisants renaux chroniques hyperuricemiques. Urol Nephrol. 1967;73:314.

    CAS  Google Scholar 

  286. Linnane JW, Burry AF, Emmerson BT. Urate deposits in the renal medulla: prevalence and associations. Nephron. 1981;27:216–22.

    Article  Google Scholar 

  287. Mukarami T, Kawakami H, Nakatsuda K, et al. Underexcretory-type hyperuricemia, disproportionate to the reduced glomerular filtration rate, in two boys with mild proteinuria. Nephron. 1990;56:439–42.

    Article  Google Scholar 

  288. Farebrother DA, Pincott JR, Simmonds HA, et al. Uric acid crystal-induced nephropathy: evidence for a specific renal lesion in a gouty family. J Pathol. 1981;135:159–68.

    Article  PubMed  CAS  Google Scholar 

  289. Iwata J. Hyperuricemia in hematological disorders. Nippon Rinsho. 1996;54:3349–53.

    PubMed  CAS  Google Scholar 

  290. Agha-Razii M, Amyot SL, Pichette V, et al. Continuous veno-venous hemodiafiltration for the treatment of spontaneous tumor lysis syndrome complicated by acute renal failure and severe hyperuricemia. Clin Nephrol. 2000;54:59–63.

    PubMed  CAS  Google Scholar 

  291. Cohen LF, Balow JE, Magrath IT, et al. Acute tumor lysis syndrome. A review of 37 patients with Burkitt’s lymphoma. Am J Med. 1980;68:486–91.

    Article  PubMed  CAS  Google Scholar 

  292. Dubovsky D, Jacobs P. Acute uric acid nephropathy in thalessaemia. S Afr Med J. 1975;49:243–4.

    PubMed  CAS  Google Scholar 

  293. Conger JD. Acute uric acid nephropathy. Med Clin North Am. 1990;74:859–71.

    PubMed  CAS  Google Scholar 

  294. Barton JC. Tumor lysis syndrome in nonhematopoietic neoplasms. Cancer. 1989;64:738–40.

    Article  PubMed  CAS  Google Scholar 

  295. Hande KR, Garrow GC. Acute tumor lysis syndrome in patients with high grade non-Hodgkin’s lymphoma. Am J Med. 1993;94:133–8.

    Article  PubMed  CAS  Google Scholar 

  296. Kjellstrand CM, Campbell DC, von Hartikch B, Buselmeier TJ. Hyperuricemic acute renal failure. Arch Intern Med. 1974;133:349.

    Article  PubMed  CAS  Google Scholar 

  297. Chastyl RC, Liu-Yin JA. Acute tumor lysis syndrome. Br J Hosp Med. 1993;49:488–92.

    Google Scholar 

  298. Warren DJ, Leitch AG, Leggett RJE. Hyperuricaemic acute renal failure after epileptic seizures. Lancet. 1975;2:385–7.

    Article  PubMed  CAS  Google Scholar 

  299. Hess B, Binswanger U. Acute uric acid nephropathy in two gouty patients with moderate hyperuricemia and high urine acidity. Klin Wochenschr. 1990;68: 874–9.

    Article  PubMed  CAS  Google Scholar 

  300. Alexopoulos E, Tampakoudis P, Bili H, Mantalenakis S. Acute uric acid nephropathy in pregnancy. Obstet Gynecol. 1992;80:488–9.

    PubMed  CAS  Google Scholar 

  301. Tomlinson GC, Solberg Jr LA. Acute tumor lysis syndrome with metastatic medulloblastoma. A case report. Cancer. 1984;53:1783.

    Article  PubMed  CAS  Google Scholar 

  302. Andreoli SP, Clark JH, McGuire WA, Bergstein JM. Purine excretion during turnover lysis in children with acute lymphocytic leukemia receiving Allopurinol: relationship to acute renal failure. J Pediatr. 1986;109:292.

    Article  PubMed  CAS  Google Scholar 

  303. Albertazzi A, Cappelli P, Paolo B. Nonsteroidal anti-inflammatory drugs as risk factor for renal failure from acute uric acid nephropathy. Nephron. 1987; 46:98.

    Article  PubMed  CAS  Google Scholar 

  304. Kelton J, Kelley WN, Holmes EW. A rapid method for the diagnosis of acute uric acid nephropathy. Arch Intern Med. 1978;138:612–5.

    Article  PubMed  CAS  Google Scholar 

  305. Gabow PA. Definition and history of polycystic kidney disease. In: Watson ML, Torres VE, editors. Polycystic kidney disease. Oxford: Oxford University Press; 1996. p. 333–55.

    Google Scholar 

  306. Parfrey PS, Bear JC, Morgan J, et al. The diagnosis and prognosis of autosomal dominant polycystic kidney disease. N Engl J Med. 1990;323:1085–90.

    Article  PubMed  CAS  Google Scholar 

  307. Newcombe DS. Gouty arthritis and polycystic kidney disease. Ann Intern Med. 1973;79:605–6.

    PubMed  CAS  Google Scholar 

  308. Martinez-Maldonado M. Polycystic kidney disease and hyperuricemia. Ann Intern Med. 1974;80:116.

    PubMed  CAS  Google Scholar 

  309. Torres VE, Wilson DM, Hattery RR, Segura JW. Renal stone disease in autosomal dominant polycystic kidney disease. Am J Kidney Dis. 1993;22:513.

    PubMed  CAS  Google Scholar 

  310. Torres VE, Erickson SB, Smith LH, et al. The association of nephrolithiasis and autosomal dominant polycystic kidney disease. Am J Kidney Dis. 1988;11:318.

    PubMed  CAS  Google Scholar 

  311. Martinez-Maldonado M, Yium JJ, Eknovan G, Suki WN. Adult polycystic kidney disease: studies of the defect in urine concentration. Kidney Int. 1972;2:107.

    Article  PubMed  CAS  Google Scholar 

  312. Gabow PA, Kaehny WB, Johnson AM, et al. The clinical utility of renal concentrating capacity in polycystic kidney disease. Kidney Int. 1989;35:675–80.

    Article  PubMed  CAS  Google Scholar 

  313. Elzinga LW, Barry JM, Torres VE, et al. Cyst decompression for autosomal dominant polycystic kidney disease. J Am Soc Nephrol. 1992;2:1219.

    PubMed  CAS  Google Scholar 

  314. Schwab SJ, Bander SJ, Klahr S. Renal infection in autosomal dominant polycystic kidney disease. Am J Med. 1987;82:714–8.

    Article  PubMed  CAS  Google Scholar 

  315. Everson GT. Hepatic cysts in autosomal dominant polycystic kidney disease. Am J Kidney Dis. 1993;22:250.

    Google Scholar 

  316. Sherstha R, McKinley C, Russ P, et al. Post menopausal estrogen therapy selectively stimulates hepatic enlargement in women with autosomal dominant polycystic kidney disease. Hepatology. 1997; 26:1282–6.

    PubMed  CAS  Google Scholar 

  317. Torres VE, Rastogi S, King BF, et al. Hepatic venous outflow obstruction in autosomal dominant polycystic kidney disease. J Am Soc Nephrol. 1994;5:1186–92.

    PubMed  CAS  Google Scholar 

  318. Everson GT, Scherzinger A, Berger-Leff N, et al. Polycystic liver disease: quantitation of parenchymal and cyst volume from computed tomography and clinical correlates of hepatic cysts. Hepatology. 1988;8:1627.

    Article  PubMed  CAS  Google Scholar 

  319. Que F, Nagorney DM, Gross JB, Torres VE. Liver resection and cyst fenestration in the treatment of severe polycystic liver disease. Gastroenterology. 1995;108:487–94.

    Article  PubMed  CAS  Google Scholar 

  320. Scheff RT, Zuckerman G, Harter H, et al. Diverticular disease in patients with chronic renal failure due to polycystic kidney disease. Ann Intern Med. 1980;92:202.

    PubMed  CAS  Google Scholar 

  321. Dominguez Fernandez E, Albrecht KH, Heeman U, et al. Prevalence of diverticulosis and incidence of bowel perforation after kidney transplantation in patients with polycystic kidney disease. Transpl Int. 1998;11:28–31.

    Article  PubMed  CAS  Google Scholar 

  322. Gabow PA, Johnson AM, Kaehny WD, et al. Factors affecting the progression of renal disease in autosomal dominant polycystic kidney disease. Kidney Int. 1992;41:1311.

    Article  PubMed  CAS  Google Scholar 

  323. Johnson AM, Gabow PA. Identification of patients with autosomal dominant polycystic disease at highest risk for end-stage renal disease. J Am Soc Nephrol. 1997;8:1560–7.

    PubMed  CAS  Google Scholar 

  324. Reeders ST, Breuning MH, Davies ICE, et al. A highly polymorphic marker linked to adult polycystic kidney disease on chromosome 16. Nature. 1985;317:542–4.

    Article  PubMed  CAS  Google Scholar 

  325. Gretz N, Zeier M, Geberth S, et al. Is gender a determinant for evaluation of renal failure? A study of autosomal dominant polycystic kidney disease. Am J Kidney Dis. 1989;14:178.

    PubMed  CAS  Google Scholar 

  326. Leier CV, Baker PB, Kelman JW, Wooley CF. Cardiovascular abnormalities associated with autosomal dominant polycystic kidney disease (ADPKD). Kidney Int. 1987;31:203.

    Google Scholar 

  327. Hadimeri H, Lamm C, Nyberg G. Coronary aneurysms in patients with autosomal dominant polycystic kidney disease. J Am Soc Nephrol. 1998;9:8370841.

    Google Scholar 

  328. Chapman JR, Hilson AJW. Polycystic kidneys and abdominal aortic aneurysms. Lancet. 1980;1:646.

    Article  PubMed  CAS  Google Scholar 

  329. Montolini J, Torras A, Revert L. Polycystic kidneys and abdominal aortic aneurysms. Lancet. 1982;1:1133.

    Google Scholar 

  330. Torra R, Nicolau C, Badenas C, et al. Abdominal aortic aneurysms and autosomal dominant polycystic kidney disease. J Am Soc Nephrol. 1996;7:2483–6.

    PubMed  CAS  Google Scholar 

  331. Hossock KF, Leddy CL, Schrier RW, Gabow PA. Incidence of cardiac abnormalities associated with autosomal dominant polycystic kidney disease (ADPKD). Kidney Int. 1987;31:203.

    Google Scholar 

  332. Chapman AB, Johnson AM, Gabow PA. Intracranial aneurysms in patients with autosomal dominant polycystic kidney disease: how to diagnose and who to screen. Am J Kidney Dis. 1993;22:256.

    Google Scholar 

  333. Chapman AB, Rubinstein D, Hughes R, et al. Intracranial aneurysms in autosomal dominant polycystic kidney disease. N Engl J Med. 1992;327:916.

    Article  PubMed  CAS  Google Scholar 

  334. Levey AS, Pauker SG, Kassirer JP. Occult intracranial aneurysms in polycystic kidney disease. N Engl J Med. 1983;308:986.

    Article  PubMed  CAS  Google Scholar 

  335. Torres VE, Wiebers DO, Forbes GS. Cranial computed tomography and magnetic resonance imaging in autosomal dominant polycystic kidney disease. J Am Soc Nephrol. 1990;1:84.

    PubMed  CAS  Google Scholar 

  336. Blyth H, Ockenden BG. Polycystic disease of kidneys and liver presenting in childhood. J Med Genet. 1971;8:257.

    Article  PubMed  CAS  Google Scholar 

  337. Cole BR, Conley SB, Stapleton FB. Polycystic kidney disease in the first year of life. J Pediatr. 1987;111:693.

    Article  PubMed  CAS  Google Scholar 

  338. Maatoo TK, Griefer I, Geva P, Spitzer A. Acquired renal cystic disease in children and young adults on maintenance dialysis. Pediatr Nephrol. 1997;11:447–50.

    Article  Google Scholar 

  339. Ishikawa I. Acquired cystic disease: mechanisms and manifestations. Semin Nephrol. 1991;11:671.

    PubMed  CAS  Google Scholar 

  340. Gabow PA, Kimberling WJ, Strain JD, et al. Utility of ultrasonography in the diagnosis of autosomal dominant polycystic kidney disease in children. J Am Soc Nephrol. 1997;8:105–10.

    PubMed  CAS  Google Scholar 

  341. Ravine D, Gibson R, Walker R, et al. Evaluation of ultrasonographic diagnostic criteria for autosomal dominant polycystic kidney disease. Lancet. 1994;343:824–7.

    Article  PubMed  CAS  Google Scholar 

  342. Matsubara K, Susuki K, Lin YW, et al. Familial juvenile nephronophthisis in two siblings: histological findings in an early stage. Acta Paediatr Jpn. 1991;33:482.

    Article  PubMed  CAS  Google Scholar 

  343. Sherman FE, Studnicki FM, Fetterman GH. Renal lesions of familial juvenile nephronophthisis examined by microdissection. Am J Clin Pathol. 1971;55:391.

    PubMed  CAS  Google Scholar 

  344. Pascal RR. Medullary cystic disease of the kidney: study of a case with scanning and transmission electron microscopy. Am J Clin Pathol. 1973;59:659.

    PubMed  CAS  Google Scholar 

  345. Zollinger HU, Mihatsch MJ, Edfonti A, et al. Nephronophthisis (medullary cystic disease of the kidney): a study using electron microscopy, immunofluorescence, and a review of the morphological findings. Helv Paediatr Acta. 1980;35:509.

    PubMed  CAS  Google Scholar 

  346. Sarre H, Mertz DP. Gout secondary to renal insufficiency. Klin Wochenschr. 1965;43:1134–40.

    Article  PubMed  CAS  Google Scholar 

  347. Richet G, Mignon F, Ardaillon R. Gout secondary to chronic renal disease. Presse Med. 1965;73:633–8.

    PubMed  CAS  Google Scholar 

  348. Calabrese G, Simmonds HA, Cameron JS, Davies PM. Precocious familial gout with reduced fractional excretion of urate and normal purine enzymes. Q J Med. 1990;75:441–50.

    PubMed  CAS  Google Scholar 

  349. Yokota N, Yamanaka H, Fujimoto S, et al. Autosomal dominant transmission of gouty arthritis with renal disease in a large Japanese family. Ann Rheum Dis. 1991;50:108–11.

    Article  PubMed  CAS  Google Scholar 

  350. Duncan H, Dixon StJ. Gout, familial hyperuricaemia, and renal disease. Q J Med. 1960;29:127–36.

    PubMed  CAS  Google Scholar 

  351. Rosenbloom FM, Kelley WN, Carr AA, Seegmiller JE. Familial nephropathy and gout in a kindred. Clin Res. 1967;15:270.

    Google Scholar 

  352. Treadwell BLJ. Juvenile gout. Ann Rheum Dis. 1971;30:279–84.

    Article  PubMed  CAS  Google Scholar 

  353. Bennett RM, Chait A, Lewis B. Familial hyperuricaemia and hypertriglyceridaemia. Ann Rheum Dis. 1973;32:497–500.

    Article  PubMed  CAS  Google Scholar 

  354. Fessel WJ. Renal outcomes of gout and hyperuricemia. Am J Med. 1979;67:74–82.

    Article  PubMed  CAS  Google Scholar 

  355. Thompson GR, Weiss JJ, Goldman RT, Rigg GA. Familial occurrence of hyperuricemia, gout and medullary cystic disease. Arch Intern Med. 1978;138:1614–7.

    Article  PubMed  CAS  Google Scholar 

  356. Van Goor W, Kooiker CJ, Dorhout Mees EJ. An unusual form of renal disease associated with gout and hypertension. J Clin Pathol. 1971;24:354–9.

    Article  PubMed  Google Scholar 

  357. Simmonds HA, Warren DJ, Cameron JS, et al. Familial gout and renal failure in young women. Clin Nephrol. 1980;14:176–82.

    PubMed  CAS  Google Scholar 

  358. Cameron JS, Moro F, Simmonds HA. Gout, uric acid and purine metabolism in paediatric nephrology. Pediatr Nephrol. 1993;7:105–18.

    Article  PubMed  CAS  Google Scholar 

  359. Simmonds HA, Cameron JS, Potter CF, et al. Renal failure in young subjects with familial gout. Adv Exp Med Biol. 1980;122A:15–20.

    Article  PubMed  CAS  Google Scholar 

  360. Massari PU, Hsu CH, Barnes RV, et al. Familial hyperuricemia and renal disease. Arch Intern Med. 1980;140:680–4.

    Article  PubMed  CAS  Google Scholar 

  361. Richmond JM, Kincaid-Smith P, Whitworth JA, Becker GJ. Familial urate nephropathy. Clin Nephrol. 1981;16:163–8.

    PubMed  CAS  Google Scholar 

  362. Leumann EP, Wegmann W. Familial nephropathy with hyperuricemia and gout. Nephron. 1983;34:51–7.

    Article  PubMed  CAS  Google Scholar 

  363. Hollingworth P, Scott JT. Familial gout, hyperuricemia and renal impairment. Ann Rheum Dis. 1983;42 Suppl 1:87–8.

    Article  Google Scholar 

  364. Yarom A, Rennebohm RM, Strife F, Levinson JE. Juvenile gouty arthritis. Am J Dis Child. 1984;138:955–7.

    PubMed  CAS  Google Scholar 

  365. Foreman JW, Yudkoff M. Familial hyperuricemia and renal insufficiency. Child Nephrol Urol. 1990;10:115–8.

    PubMed  CAS  Google Scholar 

  366. Puig JG, Miranda ME, Mateos ML, et al. Familial nephropathy and gout: which comes first? Adv Exp Med Biol. 1991;309A:195–8.

    PubMed  CAS  Google Scholar 

  367. Moro F, Ogg CS, Simmonds HA, et al. Familial juvenile gouty nephropathy with renal urate hypoexcretion preceding renal disease. Clin Nephrol. 1991;35:263–9.

    PubMed  CAS  Google Scholar 

  368. McBride MB, Raman V, Ogg CS, et al. A new kindred with familial juvenile gouty nephropathy. Adv Exp Med Biol. 1991;309A:191–4.

    PubMed  CAS  Google Scholar 

  369. Saeki A, Hosoya T, Okabe H, et al. Newly discovered familial juvenile gouty nephropathy in a Japanese family. Nephron. 1995;70:359–66.

    Article  PubMed  CAS  Google Scholar 

  370. Cameron JS, Moro F, Simmonds HA. What is the pathogenesis of familial juvenile gouty nephropathy. Adv Exp Med Biol. 1991;309A:185–91.

    PubMed  CAS  Google Scholar 

  371. Puig JG, Miranda ME, Mateos FA, et al. Hereditary nephropathy associated with hyperuricemia and gout. Arch Intern Med. 1993;153:357–65.

    Article  PubMed  CAS  Google Scholar 

  372. Knorr BA, Lipkowitz MS, Potter BJ. Isolation and immunolocalization of a rat renal cortical membrane urate transporter. J Biol Chem. 1994;269:6759.

    PubMed  CAS  Google Scholar 

  373. Leal-Pinto E, London RD, Knorr BA, Abramson RG. Reconstitution of hepatic uricase in planar lipid bilayer reveals a functional organic anion channel. J Membr Biol. 1995;146:123.

    PubMed  CAS  Google Scholar 

  374. Leal-Pinto E, Tao W, Rappaport J, et al. Molecular cloning and functional reconstitution of a urate transporter channel. J Biol Chem. 1997;272:617.

    Article  PubMed  CAS  Google Scholar 

  375. Isomaki H, Kreus KE. Serum and urinary uric acid in respiratory acidosis. Acta Med Scand. 1968;184:293.

    Article  PubMed  CAS  Google Scholar 

  376. Padova J, Bendersky G. Hyperuricemia in diabetic ketoacidosis. N Engl J Med. 1962;267:530.

    Article  PubMed  CAS  Google Scholar 

  377. Manual MA, Steele TH. Changes in renal urate handling after prolonged thiazide treatment. Am J Med. 1974;57:741.

    Article  Google Scholar 

  378. Demartini FE. Hyperuricemia induced by drugs. Arthritis Rheum. 1965;8:823.

    Article  PubMed  CAS  Google Scholar 

  379. Stewart RJ, Chonko AM. Pharmacologic inhibition of urate transport across perfused and non-perfused rabbit proximal straight tubules. Kidney Int. 1981;19:258.

    Google Scholar 

  380. Cutler RE, Kleeman CR, Maxwell MH, et al. Physiologic studies in nephrogenic diabetes insipidus. J Clin Endocrinol Metab. 1962;22:827–38.

    Article  PubMed  CAS  Google Scholar 

  381. Gorden P, Robertson GL, Seegmiller JE. Hyperuri­cemia, a concomitant of congenital vasopressin-resistant diabetes insipidus in the adult. Studies of uric acid metabolism and plasma vasopressin. N Engl J Med. 1971;284:1057–60.

    Article  PubMed  CAS  Google Scholar 

  382. Mizuno O. Transient nephrogenic diabetes insipidus associated with acute hepatic failure in pregnancy. Endocrinol Jpn. 1987;34:449–55.

    Article  PubMed  CAS  Google Scholar 

  383. Harper M, Hatjis CG, Appel RG, Austin WE. Vasopressin-resistant diabetes insipidus, liver dysfunction, hyperuricemia and decreased renal function. A case report. J Reprod Med. 1987;32:862–5.

    PubMed  CAS  Google Scholar 

  384. Yokoyoshi Y, Saito S. Abnormal serum uric acid level in endocrine disorders. Nippon Rinsho. 1996;54:3360–3.

    Google Scholar 

  385. Decaux G, Prospert F, Namias B, Soupart A. Hyperuricemia as a clue for central diabetes insipidus (lack of V1 effect) in the differential diagnosis of polydipsia. Am J Med. 1997;103:376–82.

    Article  PubMed  CAS  Google Scholar 

  386. Robertson GL. Diabetes insipidus. Endocrinol Metab Clin North Am. 1995;24:549–72.

    PubMed  CAS  Google Scholar 

  387. van Lieburg AF, Knoers NV, Monnens LA. Clinical presentations and follow-up of 30 patients with congenital diabetes insipidus. J Am Soc Nephrol. 1999;10:1958–64.

    PubMed  Google Scholar 

  388. Uribarri J, Kaskas M. Hereditary nephrogenic diabetes insipidus and bilateral nonobstructive hydronephrosis. Nephron. 1993;65:346–9.

    Article  PubMed  CAS  Google Scholar 

  389. Carter C, Simpkiss M. The “carrier” state in nephrogenic diabetes insipidus. Lancet. 1956;2:1069–73.

    Article  Google Scholar 

  390. van Lieburg AF, Verrdijk MA, Schoute F, et al. Clinical phenotype of nephrogenic diabetes insipidus in females heterogeneous for a vasopressin type 2 receptor mutation. Hum Genet. 1995;96:70–8.

    Article  PubMed  Google Scholar 

  391. Nicholas HO. Urinary calculi. III. Further observations on calculi from patients in the southeast Texas area. Clin Chem. 1961;7:175–7.

    PubMed  CAS  Google Scholar 

  392. Leonard RH. Quantitative composition of kidney stones. Clin Chem. 1961;7:546–51.

    PubMed  CAS  Google Scholar 

  393. Hughes J, Coppridge WM, Roberts LC, Mann VI. Oxalate urinary tract stones. JAMA. 1960;172:774–6.

    Article  CAS  Google Scholar 

  394. Prien EL. Crystallographic analysis of urinary calculi; a 25 year survey study. J Urol. 1963;89:917–24.

    PubMed  CAS  Google Scholar 

  395. Melick RA, Henneman PH. Clinical and laboratory studies of 207 consecutive patients in a kidney stone clinic. N Engl J Med. 1958;259:307–14.

    Article  PubMed  CAS  Google Scholar 

  396. Herring LC. Observations on the analysis of 10,000 urinary calculi. J Urol. 1962;88:545–62.

    PubMed  CAS  Google Scholar 

  397. Yu TF. Uric acid nephrolithiasis. Handb Exp Pharmacol. 1978;51:397–422.

    Article  CAS  Google Scholar 

  398. Halabe A, Sperling O. Uric acid nephrolithiasis. Miner Electrolyte Metab. 1994;20:424–31.

    PubMed  CAS  Google Scholar 

  399. Harrache D, Mesai A, Addou A, et al. Urolithiasis in children in West Algeria. Ann Urol (Paris). 1997;31:84.

    CAS  Google Scholar 

  400. Borghi L, Meschi T, Amato F, et al. Hot occupation and nephrolithiasis. J Urol. 1993;150:1757.

    PubMed  CAS  Google Scholar 

  401. Gutman AB, Yu TF. Urinary ammonium excretion in primary gout. J Clin Invest. 1965;44:1474–81.

    Article  PubMed  CAS  Google Scholar 

  402. Henneman PH, Wallach S, Dempsey EF. The metabolic defect responsible for uric acid stone formation. J Clin Invest. 1962;41:537–42.

    Article  PubMed  CAS  Google Scholar 

  403. Woeber KA, Ricca L, Hills AG. Pathogenesis of uric acid urolithiasis. Clin Res. 1962;10:45.

    Google Scholar 

  404. Gutman AB, Yu TF. An abnormality of glutamine metabolism in primary gout. Am J Med. 1963;35:820–31.

    Article  PubMed  CAS  Google Scholar 

  405. Clarke AM, McKenzie RG. Ileostomy and the risk of urinary uric acid stones. Lancet. 1969;2:395–7.

    Article  PubMed  CAS  Google Scholar 

  406. Gigax JH, Leach JR. Uric acid calculi associated with ileostomy for ulcerative colitis. J Urol. 1971;105:797–9.

    Google Scholar 

  407. Yu TF, Gutman AB. Uric acid nephrolithiasis in gout. Predisposing factors. Ann Intern Med. 1967;67:1133–48.

    PubMed  CAS  Google Scholar 

  408. Sperling O, Eilam G, Persky-Brosh S, DeVries A. Accelerated erythrocyte 5-phosphoribosyl-1-pyrophosphate synthesis: a familial abnormality associated with excessive uric acid production and gout. Biochem Med. 1972;6:310.

    Article  PubMed  CAS  Google Scholar 

  409. DeVries A, Sperling O. Familial gouty malignant uric acid lithiasis due to mutant phosphoribosylpyrophosphate synthetase. Urologie A. 1973;12:153.

    CAS  Google Scholar 

  410. Kelley WN, Wyngaarden JB. Clinical syndromes associated with hypoxanthine-guanine phosphoribosyltransferase deficiency. In: Stanbury JB, Wyngaarden JB, Fredrickson DS, Goldstein JL, Brown MS, editors. The metabolic basis of inherited diseases. New York: McGraw-Hill, Inc.; 1983. p. 1115.

    Google Scholar 

  411. Michener WM. Hyperuricemia and mental retardation with athetosis and self-mutilation. Am J Dis Child. 1967;113:155.

    Google Scholar 

  412. Nyhan WL. The Lesch-Nyhan syndrome. Annu Rev Med. 1973;24:41.

    Article  PubMed  CAS  Google Scholar 

  413. Cameron JS, Simmonds HA, Webster DR, et al. Problems of diagnosis in an adolescent with hypoxanthine guanine phosphoribosyltransferase deficiency. Adv Exp Med Biol. 1984;165A:7–13.

    Article  Google Scholar 

  414. Stone TW, Simmonds HA. Purines: basic and clinical aspects. London: Kluwer; 1991.

    Book  Google Scholar 

  415. Brock WA, Golden J, Kaplan GW. Xanthine calculi in the Lesch-Nyhan syndrome. J Urol. 1983;130:157–9.

    PubMed  CAS  Google Scholar 

  416. Kenney IJ. Renal sonography in long standing Lesch-Nyhan syndrome. Clin Radiol. 1991;43:39–41.

    Article  PubMed  CAS  Google Scholar 

  417. Grampsas SA, Chandhoke PS, Fan J, et al. Anatomic and metabolic risk factors for nephrolithiasis in patients with autosomal dominant polycystic kidney disease. Am J Kidney Dis. 2000;36:53.

    Article  PubMed  CAS  Google Scholar 

  418. Dimitrakov D, Simeonov S. Studies on nephrolithiasis in patients with autosomal dominant polycystic kidney disease. Folia Med (Plovdiv). 1994;36:27.

    CAS  Google Scholar 

  419. Ng CS, Yost A, Streem SB. Nephrolithiasis with autosomal dominant polycystic kidney disease: contemporary urological management. J Urol. 2000;163:726.

    Article  PubMed  CAS  Google Scholar 

  420. Steg A, Aboulker P, Reziciner S, Bernard E. The association of polycystic kidney and uric acid lithiasis. Ann Med Intern (Paris). 1970;121:431.

    CAS  Google Scholar 

  421. Chen YT. Type I glycogen storage disease: kidney involvement, pathogenesis and its treatment. Pediatr Nephrol. 1991;5:71–6.

    Article  PubMed  CAS  Google Scholar 

  422. Chen YT, Van Hove JL. Renal involvement in type I glycogen storage disease. Adv Nephrol Necker Hosp. 1995;24:357–65.

    PubMed  CAS  Google Scholar 

  423. Howell RR. The interrelationship of glycogen storage disease and gout. Arthritis Rheum. 1965;8:780.

    Article  PubMed  CAS  Google Scholar 

  424. Howell RR, Ashton DM, Wyngaarden JB. Glucose-6-phosphatase deficiency glycogen storage disease. Studies on the interrelationship of carbohydrate, lipid and purine abnormalities. Pediatrics. 1982;29:553.

    Google Scholar 

  425. Kelley WM, Rosenbloom FM, Seegmiller JE, Howell RR. Excessive production of uric acid in type I glycogen storage disease. J Pediatr. 1968;72:488.

    Article  PubMed  CAS  Google Scholar 

  426. Evans WP, Resnick MJ, Boyce WH. Homozygous cystinuria – evaluation of 35 patients. J Urol. 1982;127:707.

    PubMed  CAS  Google Scholar 

  427. Resnick MJ, Goodman HO, Boyce WH. Heterozygous cystinuria and calcium oxalate nephrolithiasis. J Urol. 1979;122:52.

    PubMed  CAS  Google Scholar 

  428. King Jr JS, Wainer A. Cystinuria with hyperuricemia and methioninuria. Biochemical study of a case. Am J Med. 1967;43:125–30.

    Article  PubMed  CAS  Google Scholar 

  429. Krizek V. Uricemia in cystinuria. Horm Metab Res. 1972;4:51–8.

    Article  PubMed  CAS  Google Scholar 

  430. Meloni CR, Canary JJ. Cystinuria with hyperuricemia. JAMA. 1967;200:257–9.

    Article  PubMed  CAS  Google Scholar 

  431. Vergis JG, Walker AR. Cystinuria, hyperuricemia and uric acid nephrolithiasis: case report. Nephron. 1970;7:577–9.

    Article  PubMed  CAS  Google Scholar 

  432. Gutman AB, Yu TF. Uric acid nephrolithiasis. Am J Med. 1968;45:756–79.

    Article  PubMed  CAS  Google Scholar 

  433. Wells RG, Hediger MA. Cloning of a rat kidney cDNA that stimulates dibasic acid neutral amino acid transport and has sequence similarity to glucosidases. Proc Natl Acad Sci USA. 1992;89:5596–600.

    Article  PubMed  CAS  Google Scholar 

  434. Lee WS, Wells RG, Subbog RV, et al. Cloning and chromosomal localization of a human kidney cDNA involved in cystine, dibasic, and neutral amino acid transport. J Clin Invest. 1993;91:1959–63.

    Article  PubMed  CAS  Google Scholar 

  435. Pras E, Arber N, Aksentijevich I, et al. Localization of a gene causing cystinuria to chromosome 2p. Nat Genet. 1995;56:1297–303.

    CAS  Google Scholar 

  436. Wartenfeld R, Golomb E, Katz G, et al. Molecular analysis of cystinuria in Libyan Jews: exclusion of the SLC3A1 gene and mapping of a new locus on 19q. Am J Hum Genet. 1997;60:617–24.

    PubMed  CAS  Google Scholar 

  437. Bisceglia L, Calonge MJ, Totaro A, et al. Localization, by linkage analysis, of the cystinuria type III gene to chromosome 19q13.1. Am J Hum Genet. 1997;60:611–6.

    PubMed  CAS  Google Scholar 

  438. Sakhaee K, Poindexter JR, Pak CYC. The spectrum of metabolic abnormalities in patients with cystine nephrolithiasis. J Urol. 1989;141:819–21.

    PubMed  CAS  Google Scholar 

  439. de Vries A, Frank M, Atsmon A. Inherited uric acid lithiasis. Am J Med. 1962;33:880–92.

    Article  PubMed  Google Scholar 

  440. Greene ML, Marcus R, Aurbach GD, et al. Hypouricemia due to isolated renal tubular defect. Am J Med. 1972;53:361.

    Article  PubMed  CAS  Google Scholar 

  441. Benjamin D, Sperling O, Weinberger A, et al. Familial hypouricemia due to isolated renal tubular defect. Nephron. 1977;18:220.

    Article  PubMed  CAS  Google Scholar 

  442. Tachibana S, Wakatsuki A, Kamei O, et al. A case of idiopathic hypouricemia with recurrent renal stones. Nish J Urol. 1982;44:795.

    Google Scholar 

  443. Hedley JM, Phillips PJ. Familial hypouricemia and uric acid calculi. Case report. J Clin Pathol. 1980;33:971.

    Article  PubMed  CAS  Google Scholar 

  444. Frank M, Many M, Sperling O. Familial renal hypouricemia: two additional cases with uric acid lithiasis. Br J Urol. 1979;51:88.

    Article  PubMed  CAS  Google Scholar 

  445. Gaspar GA, Puig TG, Mateos FA, et al. Hypouricemia due to renal urate wasting: different types of tubular transport defects. Adv Exp Med Biol. 1986;195A:357.

    Article  Google Scholar 

  446. Pak CYC, Kaplan RA, Bone H, et al. A simple test for the diagnosis of absorptive, resorptive and renal hypercalciuria. N Engl J Med. 1975;292:497–500.

    Article  PubMed  CAS  Google Scholar 

  447. Sperling O, Weinberger A, Oliver I, et al. Hypouricemia, hypercalciuria and decreased bone density: a hereditary syndrome. Ann Intern Med. 1974;80:482.

    PubMed  CAS  Google Scholar 

  448. Weitz R, Sperling O. Hereditary renal hypouricemia: Isolated tubular defect of urate reabsorption. J Pediatr. 1980;96:850.

    Article  PubMed  CAS  Google Scholar 

  449. Takeda E, Kuroda T, Ito M, et al. Hereditary renal hypouricemia in children. J Pediatr. 1985;107:71.

    Article  PubMed  CAS  Google Scholar 

  450. Ishikawa I, Sakurai Y, Maasuzaki S, et al. Exercise-induced acute renal failure in 3 patients with renal hypouricemia. Jpn J Nephrol. 1990;32:923.

    CAS  Google Scholar 

  451. Erley CMM, Hirschberg RR, Hoefer W, Schaefer K. Acute renal failure due to uric acid nephropathy in a patient with renal hypouricemia. Klin Wochenschr. 1989;67:308.

    Article  PubMed  CAS  Google Scholar 

  452. Dwash IL, Roncari DAK, Marliss E, Fox IH. Hypouricemia in disease: a study of different mechanisms. J Lab Clin Med. 1977;90:153.

    Google Scholar 

  453. Ramsdell C, Kelley WN. The clinical significance of hypouricemia. Ann Intern Med. 1973;78:239–42.

    PubMed  CAS  Google Scholar 

  454. Wyngaarden JB. The use and interpretation of laboratory derived data. In: Beeson PB, McDermott W, editors. Textbook of medicine. Philadelphia: Saunders; 1975. p. 1880.

    Google Scholar 

  455. Mikkelsen WM, Dodge HJ, Valkenburg H. The distribution of serum uric acid values in a population unselected as to gout or hyperuricemia: Tecumseh, Michigan, 1959–1960. Am J Med. 1965;39:242–51.

    Article  PubMed  CAS  Google Scholar 

  456. Tofuku Y, Ito M, Takasaki H, et al. A case of familial renal hypouricemia associated with acute renal failure. Purine Pyrimidine Metab (Jpn). 1990;14:8.

    Google Scholar 

  457. Gafter U, Zuta A, Frydman M, et al. Hypouricemia due to familial isolated renal tubular uricosuria – evaluation with combined pyrazinamide-probenecid test. Miner Electrolyte Metab. 1989;15:309.

    PubMed  CAS  Google Scholar 

  458. Histome I, Ogino K, Saito M, et al. Renal hypouricemia due to an isolated renal defect of urate transport. Nephron. 1988;49:81.

    Article  Google Scholar 

  459. Matsuda O, Shiigai T, Ito Y, et al. A case of familial renal hypouricemia associated with increased secretion of PAH and idiopathic edema. Nephron. 1982;30:178.

    Article  PubMed  CAS  Google Scholar 

  460. Fujiwara J, Takamitsue J, Ueda N, et al. Hypouricemia due to an isolated defect in renal tubular urate reabsorption. Clin Nephrol. 1980;13:44.

    PubMed  CAS  Google Scholar 

  461. Delexelle F, Trombert JC, Bouvier MF, Canarelli G. Idiopathic renal hypouricemia I. Observation. Presse Med. 1980;35:2578.

    Google Scholar 

  462. Akaoka I, Nishizawa T, Yano E, et al. Renal urate excretion in five cases of hypouricemia with an isolated renal defect of urate transport. J Rheumatol. 1977;4:86.

    PubMed  CAS  Google Scholar 

  463. Shichiri M, Iwamoto H, Maeda M, et al. Hypouricemia due to subtotal defect in the urate transport. Clin Nephrol. 1987;28:300.

    PubMed  CAS  Google Scholar 

  464. Nakajima H, Gomi M, Iida S, et al. Familial renal hypouricemia with intact reabsorption of uric acid. Nephron. 1987;45:40.

    Article  PubMed  CAS  Google Scholar 

  465. Gutman AB, Yu TF. A three-component system for regulations of renal excretion of uric acid in man. Trans Assoc Am Physicians. 1961;74:353.

    PubMed  CAS  Google Scholar 

  466. Mudge GH. Uricosuric action of cholecystographic agents. N Engl J Med. 1971;284:929–33.

    Article  PubMed  CAS  Google Scholar 

  467. Postlethwaite AE, Kelley WN. Uricosuric effect of radiocontrast agents. Ann Intern Med. 1971;74:845–52.

    PubMed  CAS  Google Scholar 

  468. Ramsdell CM, Postlethwaite AE, Kelley WN. Uricosuric effect of glyceryl guaiacolate. J Rheum. 1974;1:114–6.

    PubMed  CAS  Google Scholar 

  469. Gross JM. Fanconi syndrome (adult type) developing secondary to the ingestion of outdated tetracycline. Ann Intern Med. 1963;48:523.

    Google Scholar 

  470. Nakashima M, Uematsu T, Kosuge K, Kanamaru M. Pilot study of the uricosuric effect of uP-753, a new angiotensin II receptor antagonist, in healthy subjects. Eur J Clin Pharmacol. 1992;42:333.

    Article  PubMed  CAS  Google Scholar 

  471. Roch-Ramel F, Guisan B. Effect of uricosuric drugs and pyrazinoate on urate uptake by human brush-border membrane vesicles. Eperientia. 1995;51:A93.

    Google Scholar 

  472. Roch-Ramel F, Werner D, Guisan B. Urate transport in brush-border membrane of human kidney. Am J Physiol. 1994;266:F797.

    PubMed  CAS  Google Scholar 

  473. Burnier M, Rutshmann B, Nussberger J, et al. Salt-dependent renal effects of an angiotensin II antagonist in healthy subjects. Hypertension. 1993;22:339.

    Article  PubMed  CAS  Google Scholar 

  474. Sweet CS, Bradstreet DC, Berman RS, et al. Pharmacodynamic activity of intravenous E-3174, an angiotensin II antagonist, in patients with essential hypertension. Am J Hypertens. 1994;7:1035.

    PubMed  CAS  Google Scholar 

  475. Dickinson CJ, Smellie JM. Xanthinuria. Br Med J. 1959;2:1217.

    Article  PubMed  CAS  Google Scholar 

  476. Srivastava RN, Hussainy MAA, Goel RO, Rose GA. Bladder stone disease in children in Afghanistan. Br J Urol. 1986;58:374.

    Article  PubMed  CAS  Google Scholar 

  477. Kenawi MM. Xanthinuria and xanthine calculous pyonephrosis. J R Coll Surg Edinb. 1976;21:95.

    PubMed  CAS  Google Scholar 

  478. De Vries A, Sperling O. Implications of purine metabolism for the kidney and urinary tract. Ciba Found Symp. 1977;48:179.

    PubMed  Google Scholar 

  479. Carpenter TO, Lebowitz RL, Nelson D, Bauer S. Hereditary xanthinuria presenting in infancy with nephrolithiasis. J Pediatr. 1986;109:307.

    Article  PubMed  CAS  Google Scholar 

  480. Henderson MJ, Bradbury M, Brocklebank JT, Simmonds HA. Xanthinuria: presentation with acute renal failure in a nine month old girl. J Inherit Metab Dis. 1992;15:302.

    Google Scholar 

  481. Maynard J, Benson P. Hereditary xanthinuria in 2 Pakistani sisters: asymptomatic in one with β-thalassemia but causing xanthine stone, obstructive uropathy and hypertension in the other. J Urol. 1988;139:338.

    PubMed  CAS  Google Scholar 

  482. Fildes RD. Hereditary xanthinuria with severe urolithiasis occurring in infancy as renal tubular acidosis and hypercalciuria. J Pediatr. 1989;115:277.

    Article  PubMed  CAS  Google Scholar 

  483. Dent CE, Philpot GR. Xanthinuria, an inborn error (or deviation) of metabolism. Lancet. 1954;1:182.

    Article  Google Scholar 

  484. Salti IS, Mouradian M, Frayha RA. Hereditary xanthinuria. Arab J Med. 1982;1:5.

    Google Scholar 

  485. Simmonds HA, Stutchbury JH, Webster DR, et al. Pregnancy in xanthinuria: demonstration of fetal uric acid production? J Inherit Metab Dis. 1984;7:77.

    Article  PubMed  CAS  Google Scholar 

  486. Dwosh IL, Roncari DAK, Marliss E, Fox IH. Hypouricemia in disease: a study of different mechanisms. J Lab Clin Med. 1977;90:153.

    PubMed  CAS  Google Scholar 

  487. Frezal J, Malassenet R, Cartier P, et al. Sur un cas de xanthinurie. Arch Fr Pediatr. 1967;24:129.

    PubMed  CAS  Google Scholar 

  488. Cifuentes-Delatte L, Castro-Mendoza HJ. Xanthinuria familiar. Rev Clin Esp. 1967;107:244.

    PubMed  CAS  Google Scholar 

  489. Kennedy JH, Semmence AM. Xanthinuria: a new case. Clin Chem. 1980;26:1758.

    PubMed  CAS  Google Scholar 

  490. Rodriguez GF, Servan PR, Rodriguez JP. Un nuevo caso de xanthinuria. Asociacion con SIDA. Ann Intern Med (Madrid). 1989;6:219.

    Google Scholar 

  491. Delbarre F, Weissenbach R, Auscher C, De Gery A. Acess de gout chez xanthinurique. Nouv Presse Med. 1973;2:2465.

    PubMed  CAS  Google Scholar 

  492. Wilson DM, Topia HR. Xanthinuria in a large kindred. Adv Exp Med Biol. 1974;41A:343.

    Article  CAS  Google Scholar 

  493. Isaacs H, Heffron JJA, Berman L, et al. Xanthine, hypoxanthine and muscle pain. Histochemical and biochemical observations. S Afr Med J. 1975;49:1035.

    PubMed  CAS  Google Scholar 

  494. De Vooght HJ, Von de Kamp JJP, Van Gerderen HH, et al. Een xanthinsteen by een kind met xanthinuie: Enkele beschonasingen over een Zeldaure “inborn error of metabolism”. Ned Tijdschr Geneeskd. 1973;117:976.

    Google Scholar 

  495. Engleman K, Watts RWE, Klinenberg JR, et al. Clinical, physiological and biochemical studies of a patient with xanthinuria and pheochromocytoma. Am J Med. 1964;37:839–61.

    Article  CAS  Google Scholar 

  496. Parker R, Snedden W, Watts RWE. The quantitative determination of hypoxanthine and xanthine (“oxypurines”) in skeletal muscle from two patients with congenital xanthine oxidase deficiency (xanthinuria). Biochem J. 1970;116:317.

    PubMed  CAS  Google Scholar 

  497. Chalmers RA, Johnson M, Pallis C, Watts RWE. Xanthinuria with myopathy (with some observations on the renal handling of oxypurines in the disease). Q J Med. 1969;38:493.

    PubMed  CAS  Google Scholar 

  498. Simmonds HA, Cameron JS, Barrat TM, et al. Purine enzyme defects as a cause of acute renal failure in childhood. Pediatr Nephrol. 1989;3:433.

    Article  PubMed  CAS  Google Scholar 

  499. Wada Y, Nishimura Y, Tanabu M, et al. Hypouricemic, mentally retarded infant with a defect of 5-phosphoribosyl-1-pyrophosphate synthetase of erythrocytes. Tohoku J Exp Med. 1974;113:149–57.

    Article  PubMed  CAS  Google Scholar 

  500. Inuma K, Wada Y, Onuma A, Tanabu M. Electroencephalographic study of an infant with phosphoribosylpyrophosphate synthetase deficiency. Tohoku J Exp Med. 1975;116:53–5.

    Article  PubMed  CAS  Google Scholar 

  501. Imaeda H, Wada Y. PRPP synthetase deficiency. Ryoikibetsu Shokogun Shirizu. 1998;18:435–7.

    PubMed  Google Scholar 

  502. Wilson DB, Goldstein NP. Renal urate excretion in patients with Wilson’s disease. Kidney Int. 1973;4:331.

    Article  PubMed  CAS  Google Scholar 

  503. Leu MI, Strickland GT, Gutman AB. Renal function in Wilson’s disease: response to penicillamine therapy. Am J Med Sci. 1970;250:381.

    Article  Google Scholar 

  504. Morgan HG, Steewart WK, Lowe KG, et al. Wilson’s disease and the Fanconi syndrome. Q J Med. 1962;31:361.

    PubMed  CAS  Google Scholar 

  505. Elsas LJ, Hayslett JP, Spargo BH, et al. Wilson’s disease with reversible renal tubular function. Ann Intern Med. 1971;75:127.

    Google Scholar 

  506. Cusworth DC, Dent CE, Flynn FV. The amino-aciduria in galactosaemia. Arch Dis Child. 1955;30:150.

    Article  PubMed  CAS  Google Scholar 

  507. Lamiere N, Mussche M, Baele G, et al. Hereditary fructose intolerance: a difficult diagnosis in the adult. Am J Med. 1978;65:416.

    Article  Google Scholar 

  508. Schneider JA, Schulman JD, Seegmiller JE. Cystinosis and the Fanconi syndrome. In: Stanbury JB, Wyngaarden JB, Fredrickson DS, editors. The metabolic basis of inherited disease. 4th ed. New York: McGraw-Hill, Inc; 1978. p. 1660.

    Google Scholar 

  509. Levy HL. Hartnup disorder. In: Scriver CR, Beaudet AL, Sly WS, Valle D, editors. The metabolic and molecular bases of inherited disease. New York: McGraw-Hill, Inc.; 1995. p. 3629.

    Google Scholar 

  510. Bennett JS, Bond J, Singer I, Gottlieb AJ. Hypouricemia in Hodgkin’s disease. Ann Intern Med. 1972;76:751.

    PubMed  CAS  Google Scholar 

  511. Tykarski A. Mechanism of hypouricemia in Hodgkin’s disease. Isolated defect in postsecretory reabsorption of uric acid. Nephron. 1988;50:217.

    Article  PubMed  CAS  Google Scholar 

  512. Weinstein B, Irreverre F, Watkins DM. Lung carcinoma, hypouricemia and aminoaciduria. Am J Med. 1965;39:520.

    Article  PubMed  CAS  Google Scholar 

  513. Gorshein D, Asbell S. Ectopic production of hormones in tumors. JAMA. 1976;235:2716.

    Article  PubMed  CAS  Google Scholar 

  514. Cooper DS. Oat-cell carcinoma and severe hypouricemia. N Engl J Med. 1973;288:321.

    Article  PubMed  CAS  Google Scholar 

  515. Smithline N, Kassirer JP, Cohen JJ. Light-chain nephropathy. N Engl J Med. 1976;294:71.

    Article  PubMed  CAS  Google Scholar 

  516. Beck IH. Hypouricemia in the syndrome of inappropriate secretion of antidiuretic hormone. N Engl J Med. 1979;301:528.

    Article  PubMed  CAS  Google Scholar 

  517. Weinberger A, Santo M, Shalit M, et al. Abnormality in renal urate handling in the syndrome of inappropriate secretion of antidiuretic hormone. Isr J Med Sci. 1982;18:711.

    PubMed  CAS  Google Scholar 

  518. Osterlind K, Hansen M, Dombernowsky P. Hypouricemia and inappropriate secretion of antidiuretic hormone in small cell bronchogenic carcinoma. Acta Med Scand. 1981;209:289.

    Article  PubMed  CAS  Google Scholar 

  519. Kay NE, Gottlieb AJ. Hypouricemia in Hodgkin’s disease. Cancer. 1973;32:1508–11.

    Article  PubMed  CAS  Google Scholar 

  520. Chisholm Jr JJ, Harrison HC, Everlein WR, Harrison HE. Amino-aciduria, hypophosphatemia and rickets in lead poisoning. Am J Dis Child. 1955;89:159.

    Google Scholar 

  521. Clarkson TW, Keneh JE. Urinary excretion of amino acids by men absorbing heavy metals. Biochem J. 1965;62:361.

    Google Scholar 

  522. Michelis MF, Warms PC, Fusco RD, Davis BB. Hypouricemia and hyperuricosuria in Laennec cirrhosis. Arch Intern Med. 1974;134:681.

    Article  PubMed  CAS  Google Scholar 

  523. Schlosstein L, Kippen I, Bluestone R, et al. Association between hypouricemia and jaundice. Ann Rheum Dis. 1974;33:308.

    Article  PubMed  CAS  Google Scholar 

  524. Pui CH, Roy 3rd S, Noe HN. Urolithiasis in childhood acute leukemia and non-Hodgkin’s lymphoma. J Urol. 1986;136:1052.

    PubMed  CAS  Google Scholar 

  525. Pochedly C. Hyperuricemia in leukemia and lymphoma. I. Clinical findings and pathophysiology. N Y State J Med. 1973;73:1085.

    PubMed  CAS  Google Scholar 

  526. Moe PJ. Formation of urinary calculi and uric acid findings in children with leukemia. Tidsskr Nor Laegeforen. 1970;90:1201.

    PubMed  CAS  Google Scholar 

  527. Teluk J, Reiszkowski J. Case of chronic myeloid leukemia complicated by nephrolithiasis. Wiad Lek. 1976;29:1577.

    PubMed  CAS  Google Scholar 

  528. Hsu AC, Kooh SW, Izukawa T, Fox IH. Uric acid lithiasis in an infant with cyanotic congenital heart disease. J Pediatr. 1977;91:1021.

    Article  PubMed  CAS  Google Scholar 

  529. Yu TF. Review article. Urolithiasis in hyperuricemia and gout. J Urol. 1981;126:424.

    PubMed  CAS  Google Scholar 

  530. Lynch EC. Uric acid metabolism in proliferative ­diseases of the marrow. Arch Intern Med. 1962;109:639.

    Article  PubMed  CAS  Google Scholar 

  531. Lancina Martin JA, Garcia Buitron JM, Diaz Bermudez J, et al. Urinary lithiasis in transplanted kidney. Arch Esp Urol. 1997;50:141.

    PubMed  CAS  Google Scholar 

  532. Norlen BJ, Hellstrom M, Nisa M, Robertson WG. Uric acid stone formation in a patient after kidney transplantation – metabolic and therapeutic considerations. Scand J Urol Nephrol. 1995;29:335.

    Article  PubMed  CAS  Google Scholar 

  533. Cantarell MC, Capdevila L, Morlens M, Piera L. Uric acid calculus in renal transplant patients treated with cyclosporine. Clin Nephrol. 1991;35:288.

    PubMed  CAS  Google Scholar 

  534. Harper JM, Samuell CT, Hallson PC, et al. Risk factors for calculus formation in patients with renal transplants. Br J Urol. 1994;74:147.

    Article  PubMed  CAS  Google Scholar 

  535. Glicklich D, Gruber HE, Matas AJ, et al. 2,8-Dihydroxyadenine urolithiasis: report of a case first diagnosed after renal transplant. Q J Med. 1988;68:785.

    PubMed  CAS  Google Scholar 

  536. Adam O, Goebel FD. Secondary gout and pseudo-Bartter syndrome in females with laxative abuse. Klin Wochenschr. 1987;65:833.

    Article  PubMed  CAS  Google Scholar 

  537. Dick WH, Lingeman JE, Preminger JE, et al. Laxative abuse as a cause for ammonium urate calculi. J Urol. 1990;143:244.

    PubMed  CAS  Google Scholar 

  538. Asanuma H, Nagatsuma K, Baba S, Murai M. A case of Prader-Willi syndrome accompanied with a renal stone. Hinyokika Kiyo. 1998;44:37.

    PubMed  CAS  Google Scholar 

  539. Cassidy SB. Prader-Willi syndrome. Curr Probl Pediatr. 1984;14:1.

    PubMed  CAS  Google Scholar 

  540. Holm VJ, Cassidy SB, Butler MG, et al. Prader-Willi syndrome: consensus diagnostic criteria. Pediatrics. 1993;912:398.

    Google Scholar 

  541. Butler MG. Prader-Willi syndrome: current understanding of cause and diagnosis. Am J Med Genet. 1990;35:319.

    Article  PubMed  CAS  Google Scholar 

  542. Leistenschneider W, Nagel R. Experiences with lavage cytology from renal pelvis and ureter. Urologe A. 1977;16:230.

    PubMed  CAS  Google Scholar 

  543. Dean TE, Harrison NW, Bishop NL. CT scanning in the diagnosis and management of radiolucent urinary calculi. Br J Urol. 1988;62:405.

    Article  PubMed  CAS  Google Scholar 

  544. Nakada SY, Hoff DG, Attai S, et al. Determination of stone composition by noncontrast spiral computed tomography in the clinical setting. Urology. 2000;55:816.

    Article  PubMed  CAS  Google Scholar 

  545. Band PR, Silverberg DS, Henderson JF. Xanthine nephropathy in a patient with lymphosarcoma treated with allopurinol. N Engl J Med. 1970;283:354–7.

    Article  PubMed  CAS  Google Scholar 

  546. Ogawa A, Watanabe K, Minejima N. Renal xanthine stones in Lesch-Nyhan syndrome treated with allopurinol. Urology. 1985;26:56.

    Article  PubMed  CAS  Google Scholar 

  547. Stevens SK, Parker BR. Renal oxypurine deposition in Lesch-Nyhan syndrome: sonographic evaluation. Pediatr Radiol. 1989;19:479.

    Article  PubMed  CAS  Google Scholar 

  548. Ablin A, Stephens BG, Hirata T, et al. Nephropathy, xanthinuria, and orotic aciduria complicating Burkitt’s lymphoma treated with chemotherapy and allopurinol. Metabolism. 1972;21:771–8.

    Article  PubMed  CAS  Google Scholar 

  549. Klinenberg JR, Goldfinger S, Miller J, et al. The effectiveness of a xanthine oxidase inhibitor in the treatment of gout. Arthritis Rheum. 1963;6:779–80.

    Google Scholar 

  550. Klinenberg JR, Goldfinger SF, Seegmiller JE. The effectiveness of xanthine oxidase inhibitor allopurinol in the treatment of gout. Ann Intern Med. 1965;62:639–47.

    PubMed  CAS  Google Scholar 

  551. Sorensen LB. Seminars on the Lesch-Nyhan syndrome: management and treatment. Discussion. Fed Proc. 1968;27:1097.

    Google Scholar 

  552. Greene ML, Fujimoto WY, Seegmiller JE. Urinary xanthine stones – a rare complication of allopurinol therapy. N Engl J Med. 1969;280:426.

    Article  PubMed  CAS  Google Scholar 

  553. Mizuno T, Segawa M, Kurumada T. Clinical and therapeutic aspects of the Lesch-Nyhan syndrome in Japanese children. Neuropaediatrie. 1970;2:38.

    Article  CAS  Google Scholar 

  554. Manzke H. Xanthine stone formation subsequent to allopurinol therapy. Dtsch Med Wochenschr. 1974;99:918.

    Google Scholar 

  555. Wyngaarden JB. Allopurinol and xanthine nephropathy. N Engl J Med. 1970;283:371–2.

    Article  PubMed  CAS  Google Scholar 

  556. Sperling O, Brosh S, Boer P, et al. Urinary xanthine stones in an allopurinol treated gouty patient with partial deficiency of hypoxanthine-guanine phosphoribosyltransferase. Israel J Med Sci. 1978;14:288.

    PubMed  CAS  Google Scholar 

  557. Rundles RW, Wyngaarden JB, Hitchings G, et al. Effects of xanthine oxidase inhibitor on thiopurine metabolism, hyperuricemia and gout. Trans Assoc Am Physicians. 1963;76:126–40.

    CAS  Google Scholar 

  558. Yu TF, Gutman AB. Effect of allopurinol (4-hydroxypyrazolo (3,4-d)-pyrimidine) on serum and urinary uric acid in primary and secondary gout. Am J Med. 1964;37:885–98.

    Article  CAS  Google Scholar 

  559. Segal S, Wyngaarden JB. Plasma glutamine and oxypurine content in patients with gout. Proc Soc Exp Biol Med. 1955;88:342–5.

    PubMed  CAS  Google Scholar 

  560. Jorgensen S. Hypoxanthine and xanthine accumulated in stored human blood: determination of relative amounts by spectrophotometry. Acta Pharmacol Toxicol. 1955;11:265–76.

    Article  CAS  Google Scholar 

  561. Elion GB. Allopurinol and other inhibitors of urate synthesis. Handb Exp Pharmacol. 1978;51:485–514.

    Article  CAS  Google Scholar 

  562. Farebrother DA, Hatfield P, Simmonds HA, et al. Experimental crystal nephropathy (one year study in the pig). Clin Nephrol. 1975;4:243–50.

    Google Scholar 

  563. Reiter S, Simmonds HA, Zollner N, et al. Demonstration of a combined deficiency of xanthine oxidase and aldehyde oxidase in xanthinuric patients not forming oxipurinol. Clin Chim Acta. 1990;187:221.

    Article  PubMed  CAS  Google Scholar 

  564. Van Gennip AH, van Noordenburg Huistra D, de Bree PK, Wadman SK. Two-dimensional thin layer chromatography for the screening of disorders of purine and pyrimidine metabolism. Clin Chim Acta. 1978;96:7.

    Article  Google Scholar 

  565. Simmonds HA, Duley JA, Davies PM. Analyses of purines and pyrimidines in blood, urine, and other physiological fluids. In: Hommes F, editor. Techniques in diagnostic human biochemical genetics. A Laboratory Manual. New York: Wiley-Liss; 1991. p. 397.

    Google Scholar 

  566. Bennett MJ, Carpenter KH, Hill PG. Asymptomatic xanthinuria detected as a result of routine analysis of serum for urate. Clin Chem. 1985;31:492.

    PubMed  CAS  Google Scholar 

  567. Boulieu R, Bory C, Baltassat P, Divry P. Hypoxanthine and xanthine concentrations determined by high performance liquid chromatography in biological fluids from patients with xanthinuria. Clin Chim Acta. 1984;142:83.

    Article  PubMed  CAS  Google Scholar 

  568. Harkness RA, Coade SB, Walton KR, Wright D. Xanthine oxidase deficiency and “Dalmation” hypouricemia: Incidence and effect of exercise. J Inherit Metab Dis. 1983;6:114.

    Article  PubMed  CAS  Google Scholar 

  569. Costello J, Al-Dabagh E. A new rapid spectrophotometric method for the detection of xanthinuria. In: Schwille PO, Smith LH, Robertson WG, Vahlensieck W, editors. Urolithiasis and related clinical research. New York: Plenum; 1985. p. 681.

    Chapter  Google Scholar 

  570. Holmes EW, Wyngaarden JB. Hereditary xanthinuria. In: Scriver CR, Beaudet AL, Sly WS, Valle D, editors. The metabolic basis of inherited disease. New York: McGraw-Hill, Inc; 1989. p. 1090.

    Google Scholar 

  571. Simmonds HA, Levin B, Cameron JS. Variations in allopurinol metabolism by xanthinuric subjects. Clin Sci Mol Med. 1974;47:173.

    PubMed  CAS  Google Scholar 

  572. Yamamoto T, Higashino K, Kono N, et al. Metabolism of pyrazinamide and allopurinol in hereditary xanthine oxidase deficiency. Clin Chim Acta. 1989;180:169.

    Article  PubMed  CAS  Google Scholar 

  573. Auscher C, Pasquier C, Pehuet P, Delbarre F. Study of urinary pyrazinamide metabolites and their action on renal excretion of xanthine and hypoxanthine in a xanthinuric patient. Biomedicine. 1978;28:129.

    PubMed  CAS  Google Scholar 

  574. Holmes EW, Mason DH, Goldstein LI, et al. Xanthine oxidase deficiency: studies of a previously unreported case. Clin Chem. 1974;20:1076.

    PubMed  Google Scholar 

  575. Auscher C, Pasquier C, Amory N, et al. The effect of weight reduction on plasma and urinary levels of oxypurines in an obese xanthinuric patient. Adv Exp Med Biol. 1980;122A:241.

    Article  PubMed  CAS  Google Scholar 

  576. Kojima T, Nishina T, Kitamura M, et al. Biochemical studies on the purine metabolism of four cases with hereditary xanthinuria. Clin Chim Acta. 1984;137:189.

    Article  PubMed  CAS  Google Scholar 

  577. Hillebrand G, Reiter S. Hypourikamie – ein differentialdiagnostisches problem. Internist. 1991;32:226.

    PubMed  CAS  Google Scholar 

  578. Reiter S, Simmonds HA, Zollner N, et al. Demonstration of a combined deficiency of xanthine oxidase and aldehyde oxidase forming oxipurinol. Clin Chim Acta. 1990;187:221.

    Article  PubMed  CAS  Google Scholar 

  579. Laudaas S, Borch K, Aagaard E. A new case with hereditary xanthinuria: response to exercise. Clin Chim Acta. 1989;181:119.

    Article  Google Scholar 

  580. Engelman K, Watts RWE, Klinenberg JR, et al. Clinical, physiological and biochemical studies of a patient with xanthinuria and pheochromocytoma. Am J Med. 1964;37:839.

    Article  PubMed  CAS  Google Scholar 

  581. Chalmers RA, Watts RWE, Pallis C, et al. Crystalline deposits in striped muscle in xanthinuria. Nature. 1969;221:170–1.

    Article  PubMed  CAS  Google Scholar 

  582. Parker R, Snedden W, Watts RWE. The mass spectrophotometric identification of hypoxanthine and xanthine (“oxypurines”) in skeletal muscle from two patients with congenital xanthine oxidase deficiency (xanthinuria). Biochem J. 1969;115:103–8.

    CAS  Google Scholar 

  583. Crawhall JC, Itiaba K, Katz S. Separation and quantitation of oxypurines by isocratic high pressure liquid chromatography: application to xanthinuria and the Lesch-Nyhan syndrome. Biochem Med. 1983;30:261.

    Article  PubMed  CAS  Google Scholar 

  584. Kawachi M, Kono N, Mineo I, et al. Decreased xanthine oxidase activities and increased urinary oxypurines in heterozygotes for hereditary xanthinuria. Clin Chim Acta. 1990;88:137.

    Article  Google Scholar 

  585. Castro-Liendoza HJ, Cifuentes-Delatte LC, Rapudo A. Una nueva observacion de xanthinuria familiar. Rev Clin Esp. 1972;124:341.

    Google Scholar 

  586. Kutter D, Humbel R, Bisdorff J. Biochemische untersuchungen bei einem typischen Fall von xanthinurie. Dtsch Med Wochenschr. 1970;95:1269.

    Article  PubMed  CAS  Google Scholar 

  587. Simmonds HA, Reiter S, Nishino T. Hereditary xanthinuria. In: Scriver CR, Beaudet AL, Sly WS, Valle D, editors. The metabolic and molecular bases of inherited disease. New York: McGraw-Hill, Inc.; 1995. p. 1789.

    Google Scholar 

  588. Ullmann H. Zur frage der harnsaureausscheidung in urin bei ikteruskranken. Klin Wochenschr. 1923;2:2174–5.

    Article  Google Scholar 

  589. Matz R, Christodoulou J, Vianna N, et al. Renal tubular dysfunction associated with alcoholism and liver disease. N Y State J Med. 1969;69:1312–4.

    PubMed  CAS  Google Scholar 

  590. Passero G, Masini G. L’ipouricemia negli itteri colurici. Minerva Med. 1958;49:3155–8.

    Google Scholar 

  591. Van Peenen HJ. Causes of hyperuricemia. Ann Intern Med. 1973;78:977–8.

    PubMed  Google Scholar 

  592. Casas E, Serrano C, Daimiel E, et al. Prevalence, physiopathology and processes associated with hypouricemia in a hospitalized population: analysis of 27,987 analytic determinations. Rev Clin Esp. 1990;186:211–5.

    PubMed  CAS  Google Scholar 

  593. Diaz Curiel M, Zea Mendoza A, Rapado A, Gonzalez Villasante J. Significacion clinica de la hipouicemia en 14,685 determinaciones del autoanalizador. Rev Clin Esp. 1975;139:365.

    Google Scholar 

  594. Sperling O, Weinberger A, Pinkhas J, de Vries A. Frequency and causes of hypouricemia in hospital patients. Isr J Med Sci. 1977;13:529.

    PubMed  Google Scholar 

  595. Hisatome I, Ogino K, Kotake H, et al. Cause of persistent hypouricemia in outpatients. Nephron. 1989;51:13.

    Article  PubMed  CAS  Google Scholar 

  596. Yanasze M, Nakahama H, Mikami H, et al. Prevalence of hypouricemia in apparently normal population. Nephron. 1988;48:80.

    Article  Google Scholar 

  597. Simmonds HA, Van Acker KJ. Adenine phosphoribosyltransferase deficiency: 2,8-dihydroxyadenine lithiasis. In: Stanbury JB, Wyngaarden JB, Fredrickson DS, Goldstein JL, Brown MS, editors. The metabolic basis of inherited disease. 5th ed. New York: McGraw-Hill, Inc; 1983. p. 1144–56.

    Google Scholar 

  598. Coupris L, Champion G, Duverne C, et al. 2,8-dihydroxyadenine lithiasis. Two new pediatric cases of this misdiagnosed metabolic abnormality. The value of extracorporeal lithotripsy. Chir Pediatr. 1989;30:253.

    PubMed  CAS  Google Scholar 

  599. Yagisawa T, Yamazaki Y, Toma H, Kamatani N. Radiopaque 2,8-dihydroxyadenine lithiasis. Int Urol Nephrol. 1999;31:141.

    Article  PubMed  CAS  Google Scholar 

  600. Simmonds HA, Sahota AS, Van Acker KJ. Adenine phosphoribosyltransferase deficiency and 2,8-dihydroxyadenine lithiasis. In: Scriver CR, Beaudet AL, Sly WS, Valle D, editors. The metabolic and molecular bases of inherited disease. New York: McGraw-Hill, Inc; 1995. p. 1704.

    Google Scholar 

  601. Ceballos-Picot I, Perignon JL, Hamet M, et al. 2,8-dihydroxyadenine urolithiasis, an underdiagnosed disease. Lancet. 1992;339:1050.

    Article  PubMed  CAS  Google Scholar 

  602. Takemoto M, Nagano S. Urolithiasis containing 2,8-dihydroxyadenine: report of a case. Acta Urol (Jpn). 1979;25:265.

    Google Scholar 

  603. Gliklich D, Gruber HE, Matas AJ, et al. 2,8-dihydroxyadenine lithiasis. Report of a case first diagnosed after renal transplant. Q J Med. 1988;69:785.

    Google Scholar 

  604. Greenwood MC, Dillon MJ, Simmonds HA, et al. Renal failure due to 2,8-dihydroxyadenine urolithiasis. Eur J Pediatr. 1982;138:346.

    Article  PubMed  CAS  Google Scholar 

  605. Schabel F, Doppler W, Hirsch-Kauffmann M, et al. Hereditary deficiency of adenine phosphoribosyltransferase. Paediatr Paedol. 1980;15:233.

    CAS  Google Scholar 

  606. Joost J, Doppler W. The 2,8-dihydroxyadenine stone in childhood. Urology. 1982;20:67.

    Article  PubMed  CAS  Google Scholar 

  607. Laxdal T, Jonasson TA. Adenine phosphoribosyltransferase deficiency in Iceland. Acta Med Scand. 1988;224:621.

    Article  PubMed  CAS  Google Scholar 

  608. Gleeson MJ, Griffith DP. Distribution of patients with 2,8-dihydroxyadenine urolithiasis and adenine phosphoribosyltransferase deficiency in Japan. J Urol. 1989;142:834.

    PubMed  CAS  Google Scholar 

  609. Cartier P, Hamet M. Une nouvelle maladie metabolique: le deficit complet en adenine-phosphoribosyltransferase avec lithiasise de 2,8-dihydroxyadenine. C R Acad Sci (Paris). 1974;279:883.

    CAS  Google Scholar 

  610. Simmonds HA, Van Acker KJ, Cameron JS, Snedden W. The identification of 2,8-dihydroxyadenine, a new component of urinary stones. Biochem J. 1986;157:485.

    Google Scholar 

  611. Simmonds HA, Potter CF, Sahota A, et al. Adenine phosphoribosyltransferase deficiency presenting with supposed uric acid stones; pitfalls of diagnosis. J R Soc Med. 1978;71:791.

    PubMed  CAS  Google Scholar 

  612. Simmonds HA. 2,8-dihydroxyadeninuria, or when is a uric acid stone not a uric acid stone? Clin Nephrol. 1979;12:195.

    PubMed  CAS  Google Scholar 

  613. Reveillaud RJ, Daudon M, Protat MF, et al. Lithiase 2,8-dihydroxyadenique: un nouveau cas depiste par analyse infra-rouge. Nouv Presse Med. 1979;8:2965.

    PubMed  CAS  Google Scholar 

  614. Johnson LA, Gordon RB, Emmerson BT. Adenine phosphoribosyltransferase: a simple spectrophotometric assay and the incidence of mutation in the normal population. Biochem Genet. 1977;15:256.

    Google Scholar 

  615. Fox IH, LaCroix S, Planet G, Moore M. Partial deficiency of adenine phosphoribosyltransferase in man. Medicine. 1977;56:515.

    Article  PubMed  CAS  Google Scholar 

  616. Emmerson BT, Gordon RB, Thompson L. Adenine phosphoribosyltransferase deficiency: its inheritance and occurrence in a female with gout and renal disease. Aust N Z J Med. 1975;5:440.

    Article  PubMed  CAS  Google Scholar 

  617. Kelley WN, Levy RI, Rosenbloom FM, et al. Adenine phosphoribosyltransferase deficiency – a previously undescribed genetic defect in man. J Clin Invest. 1968;47:2281.

    Article  PubMed  CAS  Google Scholar 

  618. Fox IH, Meade JC, Kelley WN. Adenine phosphoribosyltransferase deficiency in man. Am J Med. 1973;55:614.

    Article  PubMed  CAS  Google Scholar 

  619. Delbarre F, Auscher C, Amor B, et al. Gout with adenine phosphoribosyltransferase deficiency. Biomedicine. 1974;21:82.

    PubMed  CAS  Google Scholar 

  620. Kojima T, Nishina T, Kamatani N, Nishioka K. Reversed-phase high-performance liquid chromatography of 2,8-dihydroxyadenine in serum and urine with electrochemical detection. Clin Chim Acta. 1989;181:109.

    Article  PubMed  CAS  Google Scholar 

  621. Doppler W, Hirsch-Kauffmann M, Schabel F, Schweiger M. Characterization of the biochemical basis of a complete deficiency of the adenine phosphoribosyltransferase (APRT). Hum Genet. 1984;57:404.

    Article  Google Scholar 

  622. Feigleson P, Davidson JD, Robins RK. Pyrazolopy­rimidines as inhibitors and substrates of xanthine oxidase. J Biol Chem. 1957;226:993–1000.

    Google Scholar 

  623. Krenitsky TA, Elion GB, Strelitz RA, Hitchings GH. Ribonucleosides of allopurinol and oxoallopurinol. J Biol Chem. 1967;242:2675–82.

    PubMed  CAS  Google Scholar 

  624. Langrebe AR, Nyhan WL, Coleman M. Urinary tract stones resulting from the excretion of oxipurinol. N Engl J Med. 1975;292:626–7.

    Article  Google Scholar 

  625. Stote RM, Smith LH, Dubb JW, et al. Oxipurinol nephrolithiasis in regional enteritis secondary to allopurinol therapy. Ann Intern Med. 1980;92:384–5.

    PubMed  CAS  Google Scholar 

  626. Prien EL, Prien Jr EL. Composition and structure of urinary stone. Am J Med. 1968;45:654–72.

    Article  PubMed  CAS  Google Scholar 

  627. Talbott JH. Gout. New York: Grune & Stratton; 1957. p. 205.

    Google Scholar 

  628. Coe FL. Treated and untreated recurrent calcium nephrolithiasis in patients with idiopathic hypercalciuria, hyperuricosuria, or no metabolic disorder. Ann Intern Med. 1977;87:404–10.

    PubMed  CAS  Google Scholar 

  629. Coe FL, Moran E, Kavalach AG. The contribution of dietary protein over-consumption to hyperuricosuria in calcium oxalate stone formers. J Chronic Dis. 1976;29:793–800.

    Article  PubMed  CAS  Google Scholar 

  630. Coe FL. Association of calcium nephrolithiasis with disorders of uric acid metabolism. Handb Exp Pathol. 1978;51:423.

    Article  CAS  Google Scholar 

  631. Coe FL, Raisen L. Allopurinol treatment of uric-acid disorders in calcium-stone formers. Lancet. 1973;1:129–31.

    Article  PubMed  CAS  Google Scholar 

  632. Coe FL, Kavalach AG. Hypercalciuria and hyperuricosuria in patients with calcium nephrolithiasis. N Engl J Med. 1974;291:1344–50.

    Article  PubMed  CAS  Google Scholar 

  633. Smith MJV. Placebo versus allopurinol for renal calculi. J Urol. 1977;117:690–2.

    PubMed  CAS  Google Scholar 

  634. Ettinger B, Tang A, Citron JT, et al. Randomized trial of allopurinol in the prevention of calcium oxalate calculi. N Engl J Med. 1986;315:1386–9.

    Article  PubMed  CAS  Google Scholar 

  635. Pak CYC, Peterson R. Successful treatment of hyperuricosuric calcium oxalate nephrolithiasis with potassium citrate. Arch Intern Med. 1986;146:863–7.

    Article  PubMed  CAS  Google Scholar 

  636. Pak CYC, Sakhaee K, Fuller C. Successful management of uric acid nephrolithiasis with potassium citrate. Kidney Int. 1986;30:422–8.

    Article  PubMed  CAS  Google Scholar 

  637. Noda S, Hayashi K, Eto K. Oxalate crystallization in the kidney in the presence of hyperuricemia. Scanning Microsc. 1989;3:829.

    PubMed  CAS  Google Scholar 

  638. Gover PK, Ryall RL, Marshall VR. Dissolved urate promotes calcium oxalate crystallization: epitaxy is not the cause. Clin Sci (Colch). 1993;85:303.

    Google Scholar 

  639. Suki WN, Hull AR, Rector Jr FC, et al. Mechanism of the effect of thiazide diuretics on calcium and uric acid. J Clin Invest. 1967;46:1121.

    Google Scholar 

  640. Wyngaarden JB. Diuretics and hyperuricemia. N Engl J Med. 1970;283:1170.

    Article  Google Scholar 

  641. Cannon PJ, Heinemann H, Stason WB, et al. Ethacrynic acid. Effectiveness and mode of diuretic action in man. Circulation. 1965;31:5.

    Article  PubMed  CAS  Google Scholar 

  642. Steele TH. Evidence for altered renal urate reabsorption during changes in volume of the extracellular fluid. J Lab Clin Med. 1969;74:288.

    PubMed  CAS  Google Scholar 

  643. Schirmeister J, Man NK, Hallauer W. Lactate and uric acid following oral diuretic drug administration in man. Klin Wochenschr. 1967;45:1219.

    Article  PubMed  CAS  Google Scholar 

  644. Schirmeister J, Man NK, Warning D, Hallauer W. On the question of an extrarenal cause for uric acid retention after furosemide. Verh Dtsch Ges Inn Med. 1967;73:1025.

    PubMed  CAS  Google Scholar 

  645. Park YB, Park YS, Song J, et al. Clinical manifestations of Korean female gouty patients. Clin Rheumatol. 2000;19:142.

    Article  PubMed  CAS  Google Scholar 

  646. Hayem G, Delahousse M, Meyer O, et al. Female premenopausal tophaceous gout induced by long-term diuretic abuse. J Rheumatol. 1996;23:2166.

    PubMed  CAS  Google Scholar 

  647. Puig JG, Mechan AD, Jiminez ML, et al. Female gout. Clinical spectrum and uric acid metabolism. Arch Intern Med. 1991;151:726.

    Article  PubMed  CAS  Google Scholar 

  648. Meyers OL, Monteagudo FS. A comparison of gout in men and women. A 10-year experience. S Afr Med J. 1986;70:721.

    PubMed  CAS  Google Scholar 

  649. Lally EV, Ho Jr G, Kaplan SR. The clinical spectrum of gouty arthritis in women. Arch Intern Med. 1986;146:2221.

    Article  PubMed  CAS  Google Scholar 

  650. Meyers OL, Monteagudo FS. Gout in females: an analysis of 92 patients. Clin Exp Rheumatol. 1985;3:105.

    PubMed  CAS  Google Scholar 

  651. Scott JT, Higgins CS. Diuretic induced gout: a multifactorial condition. Ann Rheum Dis. 1992;51:259.

    Article  PubMed  CAS  Google Scholar 

  652. Lin KC, Lin HY, Chou P. The interaction between uric acid level and other risk factors on the development of gout among asymptomatic hyperuricemic men in a prospective study. J Rheumatol. 2000;27:1501.

    PubMed  CAS  Google Scholar 

  653. Lin KC, Lin HY, Chou P. Community based epidemiological study on hyperuricemia and gout in Kin-Hu, Kinmen. J Rheumatol. 2000;27:1045.

    PubMed  CAS  Google Scholar 

  654. Nicotero JA, Scheib ET, Martinez R, et al. Prevention of hyperuricemia by allopurinol in hypertensive patients treated with chlorothiazide. N Engl J Med. 1970;282:133.

    Article  PubMed  CAS  Google Scholar 

  655. Brest AN, Heider C, Mehbod H, et al. Drug control of diuretic-induced hyperuricemia. JAMA. 1966;195:132.

    Article  Google Scholar 

  656. Emmerson BT. A comparison of uricosuric agents in gout with special reference to sulfinpyrazone. Med J Aust. 1963;1:839.

    Google Scholar 

  657. Yu TF, Gutman AB. Paradoxical retention of uric acid by uricosuric drugs in low dosage. Proc Soc Exp Biol Med. 1955;90:542.

    PubMed  CAS  Google Scholar 

  658. Gutman AB, Yu TF. Effect of salicylate in varying dosage on urinary urate excretion in gouty subjects. Ann Rheum Dis. 1955;14:444.

    Article  Google Scholar 

  659. Grayzel AI, Liddle L, Seegmiller JE. Diagnostic significance of hyperuricemia in arthritis. N Engl J Med. 1961;265:763.

    Article  PubMed  CAS  Google Scholar 

  660. See G. Etudes sur l’acid salicylique et lest salicylates: traitment du rheumatisme aigu et chronique, de la goutte, et de diverses affections du systeme nerveux sensitif par les salicylates. Bull Acad Med Paris. 1877;6:689, 717, 926, 937, 1024.

    Google Scholar 

  661. Yu TF, Dayton PG, Gutman AB. Mutual suppression of the uricosuric effects of sulfinpyrazone and salicylate: a study in interactions between drugs. J Clin Invest. 1963;42:1330.

    Article  Google Scholar 

  662. Lieber CS, Davidson CS. Some metabolic effects of ethyl alcohol. Am J Med. 1962;33:319.

    Article  PubMed  CAS  Google Scholar 

  663. Lieber CS, Jones DP, Losowsky MS, et al. Interrelation of uric acid and ethanol metabolism in man. J Clin Invest. 1962;41:1863.

    Article  PubMed  CAS  Google Scholar 

  664. MacLachlan MJ, Rodnan JP. Effects of food, fast and alcohol on serum uric acid and acute attacks of gout. Am J Med. 1967;42:38.

    Article  PubMed  CAS  Google Scholar 

  665. Newcombe DS. Ethanol metabolism and uric acid. Metabolism. 1972;21:1193.

    Article  PubMed  CAS  Google Scholar 

  666. Olin JA, Devenyi P, Weldon KL. Uric acid in alcoholics. Q J Stud Alcohol. 1973;34:1202.

    PubMed  CAS  Google Scholar 

  667. Cullen JH, Early LJA, Fiore JM. The occurrence of hyperuricemia during pyrazinamide-isoniazide therapy. Am Rev Tuberc. 1956;74:289.

    PubMed  CAS  Google Scholar 

  668. Inoue T, Iheda N, Kurasawa T, et al. Hyperuricemia and arthralgias during pyrazinamide treatment. Nihon Kokyuki Gakkai Zasshi. 1999;37:115.

    Article  PubMed  CAS  Google Scholar 

  669. Koumbaniou C, Nicopoulaaaos G, Vassilion M, et al. Is pyrazinamide really the third drug of choice in the treatment of tuberculosis. Int J Tuberc Lung Dis. 1998;2:675.

    PubMed  CAS  Google Scholar 

  670. Steele TH, Rieselbach RE. The renal mechanism for urate homeostasis in normal man. Am J Med. 1967;43:868.

    Article  PubMed  CAS  Google Scholar 

  671. Gutman AB, Yu TF, Berger L. Renal function in gout. III. Estimation of tubular secretion and reabsorption of uric acid by use of pyrazinamide (pyrazinoic acid). Am J Med. 1969;47:575.

    Article  PubMed  CAS  Google Scholar 

  672. Weiner IM, Tinker JP. Pharmacology of pyrazinamide: metabolic and renal function studies related to the mechanism of drug-induced urate retention. J Pharmacol Exp Ther. 1972;180:411.

    PubMed  CAS  Google Scholar 

  673. Shapiro M, Hyde L. Hyperuricemia due to pyrazinamide. Am J Med. 1957;23:596.

    Article  PubMed  CAS  Google Scholar 

  674. Kanner O, Jacobs P. Elevation of blood serum uric acid levels with chemotherapy. Transactions. 1957;16:244.

    Google Scholar 

  675. Wood RHN. Salicylates. Bull Rheum Dis. 1963;13:297.

    PubMed  CAS  Google Scholar 

  676. Petty TL, Dalrymple GV. Inhibition of pyrazinamide hyperuricemia by small doses of acetylsalicylic acid. Ann Intern Med. 1964;60:898.

    PubMed  CAS  Google Scholar 

  677. Postlethwaite AE, Bartel AG, Kelley WN. Hyperuricemia due to ethambutol. N Engl J Med. 1972;286:761.

    Article  PubMed  CAS  Google Scholar 

  678. Postlethwaite AE, Bartel AG, Kelley WN. Hyperuricemia induced by ethambutol. Adv Exp Med Biol. 1974;41B:763.

    Google Scholar 

  679. Palestine AG, Nussenblat RB, Chan CC. Side effects of systemic cyclosporine in patients not undergoing tranplantation. Am J Med. 1984;77:652.

    Article  PubMed  CAS  Google Scholar 

  680. Tiller DJ, Hall BM, Hovrath JS, et al. Gout and hyperuricemia in patients on cyclosporine and diuretics. Lancet. 1985;1:453.

    Article  PubMed  CAS  Google Scholar 

  681. Chapman JR, Griffiths D, Harding NG, Morris PJ. Reversibility of cyclosporine nephrotoxicity after three month’s treatment. Lancet. 1985;1:128.

    Article  PubMed  CAS  Google Scholar 

  682. VanHooff JP, Leunissen KML, vande Staak W. Cyclosporin, uric acid, and the kidney. Lancet. 1985;1:201.

    Google Scholar 

  683. Najarian JS, Fryd DS, Strand M, et al. A single institution randomized prospective trial of cyclosporine versus azathioprine-antilymphocyte globulin for immunosuppression in renal allografts recipients. Ann Surg. 1985;201:142.

    Article  PubMed  CAS  Google Scholar 

  684. Burack DA, Griffith BP, Thompson ME, Kohl LE. Hyperuricemia and gout among heart transplant recipients receiving cyclosporine. Am J Med. 1992;92:141.

    Article  PubMed  CAS  Google Scholar 

  685. Clive DM. Renal transplant-associated hyperuricemia and gout. J Am Soc Nephrol. 2000;11:974.

    PubMed  CAS  Google Scholar 

  686. Pela I, Seracini D, Lavoratti G, Materassi M. Acute gouty arthritis in adolescents with renal transplants. Pediatr Med Chir. 1999;21:135.

    PubMed  CAS  Google Scholar 

  687. Johnson DW, Saunders HJ, Johnson FJ, et al. Fibrogenic effects of cyclosporin A on the tubulointerstitium: role of cytokines and growth factors. Exp Nephrol. 1999;7:470.

    Article  PubMed  CAS  Google Scholar 

  688. Hansen JM, Fogh-Andersen N, Leyssac PP, Strandgaard S. Glomerular and tubular function in renal transplant patients treated with and without cyclosporin A. Nephron. 1998;80:450.

    Article  PubMed  CAS  Google Scholar 

  689. Edvardsson VO, Kaiser BA, Polinsky MS, et al. Natural history and etiology of hyperuricemia following pediatric renal transplantation. Pediatr Nephrol. 1995;9:57.

    Article  PubMed  CAS  Google Scholar 

  690. Laine J, Holmberg C. Mechanisms of hyperuricemia in cyclosporine-treated renal transplanted children. Nephron. 1996;74:318.

    Article  PubMed  CAS  Google Scholar 

  691. Zurcher RM, Bock HA, Thiel G. Hyperuricaemia in cyclosporine-treated patients: GFR-related effect. Nephrol Dial Transplant. 1996;11:153.

    Article  PubMed  CAS  Google Scholar 

  692. Peeters P, Sennesael J. Low back pain caused by spinal tophus: a complication of gout in a kidney transplant recipient. Nephrol Dial Transplant. 1998;13:3245.

    Article  PubMed  CAS  Google Scholar 

  693. Hausch R, Wilkerson M, Singh E, et al. Tophaceous gout of the thoracic spine presenting as back pain and fever. J Clin Rheumatol. 1999;6:335.

    Article  Google Scholar 

  694. Chan GLC, Canafax DM, Johnson CA. The therapeutic use of azathioprine in renal transplantation. Pharmacotherapy. 1987;7:165.

    PubMed  CAS  Google Scholar 

  695. Cummins D, Sekar M, Halil M, Banner N. Myelosuppression associated with azathioprine-allopurinol interaction after heart and lung transplantation. Transplantation. 1996;61:1661.

    Article  PubMed  CAS  Google Scholar 

  696. Byrne PAC, Fraser AG, Pritchard MH. Treatment of gout following cardiac transplantation. Br J Rheumatol. 1996;35:1329.

    PubMed  CAS  Google Scholar 

  697. Jacobs F, Mamzer-Bruneel MF, Skhiri H, et al. Safety of the mycophenolate mofetil-allopurinol combination in kidney transplant recipients with gout. Transplantation. 1997;64:2087.

    Article  Google Scholar 

  698. Perez Ruiz F, Calaboro M, Ferenendez Lopez J, et al. Treatment of chronic gout in patients with renal function impairment. J Clin Rheumatol. 1999;5:49.

    Article  PubMed  CAS  Google Scholar 

  699. Flury W, Ruch HR, Montandon A. The treatment of hyperuricemia after kidney transplantation. Schweiz Med Wochenschr. 1977;107:1339.

    PubMed  CAS  Google Scholar 

  700. Imanishi M, Ikegami M, Ishii T, et al. Clinical studies on hyperuricemia and gout after transplantation. Hinyokika Kiyo. 1990;36:893.

    PubMed  CAS  Google Scholar 

  701. Matzkies F. Effects and side effects of Benzbromarone in the initial treatment of hyperuricemia and gout. Results of a field study of 3899 patients. Fortschr Med. 1978;96:1619.

    PubMed  CAS  Google Scholar 

  702. Gehenot M, Horsmans V, Rahier J, Geubel AP. Subfulminant hepatitis requiring liver transplantation after benzarone administration. J Hepatol. 1994;20:842.

    Article  PubMed  CAS  Google Scholar 

  703. Diamond HS. Uricosuric drugs. Handb Exp Pharmacol. 1977;51:459.

    Article  Google Scholar 

  704. Sinclair DS, Fox IH. The pharmacology of the hypouricemic effect of Benzbromarone. J Rheumatol. 1975;2:437.

    PubMed  CAS  Google Scholar 

  705. Camus JP, Prier A, Kartun P, et al. Thyreotoxicose et benziodarone. Rev Rhum. 1973;40:2, 148.

    Google Scholar 

  706. Davis S, Park YK, Abuchowski A, Davis FF. Hypouricemic effect of polyethylene glycol modified urate oxidase. Lancet. 1987;2:281.

    Google Scholar 

  707. Chua CC, Greenberg LL, Viau AT, et al. Use of polyethylene glycol-modified uricase (PEG-uricase) to treat hyperuricemia in a patient with non-Hodgkin lymphoma. Ann Intern Med. 1988;109:114.

    PubMed  CAS  Google Scholar 

  708. Ippoliti G, Negri M, Campana C, Vigano M. Urate oxidase in hyperuricemic heart transplant recipients treated with azathioprine. Transplantation. 1997;63:1370.

    Article  PubMed  CAS  Google Scholar 

  709. Rozenberg S, Koeger AC, Bourgeois P. Urate-oxidase for gouty arthritis in cardiac transplant recipients. J Rheumatol. 1973;20:2171.

    Google Scholar 

  710. Rozenberg S, Roche B, Dorent R, et al. Urate-oxidase for the treatment of tophaceous gout in heart transplant recipients. Rev Rhum Engl Ed. 1995;65:392.

    Google Scholar 

  711. Royer R, Lamarche M, Kissel P. Etude de l’action d’une urate-oxydase fongique sur l’uricemie et l’excretion de l’azote urique chez l’homme. Therapie. 1967;22:1113.

    PubMed  CAS  Google Scholar 

  712. Brogard JM, Coumaros D, Frankhauser J, et al. Enzymatic uricolysis: a study of the effect of a fungal urate-oxydase. Eur J Clin Biol Res. 1972;17:890.

    CAS  Google Scholar 

  713. Mourad G, Cristol JP, Chong G, et al. Role of precipitating anti-urate oxidase antibodies in urate oxidase-resistant hyperuricemia. Presse Med. 1984;13:2585.

    PubMed  CAS  Google Scholar 

  714. Wolf G, Hegewisch-Becher S, Hossfeld DK, Stahl RA. Hyperuricemia and renal insufficiency associated with malignant disease: urate oxidase as an efficient therapy? Am J Kidney Dis. 1999;34:E20.

    Article  PubMed  Google Scholar 

  715. Pui CH, Relling MV, Lascombe F, et al. Urate oxidase in prevention and treatment of hyperuricemia associated with lymphoid malignancies. Leukemia. 1997;11:1813.

    Article  PubMed  CAS  Google Scholar 

  716. Seidemann K, Meyer U, Jansen P, et al. Impaired renal function and tumor lysis syndrome in pediatric patients with non-Hodgkin’s lymphoma and B-ALL. Observations from the BFM trials. Klin Padiatr. 1998;210:279.

    Article  PubMed  CAS  Google Scholar 

  717. Rana SS, Guiliani MJ, Oddis ChV, Lacomis D. Acute onset of colchicine myoneuropathy in cardiac transplant recipients: case studies of three patients. Clin Neurol Neurosurg. 1997;99:266.

    Article  PubMed  CAS  Google Scholar 

  718. Wallace SL, Singer JZ, Duncan GJ, et al. Renal function predicts colchicine toxicity: guidelines for the prophylactic use of colchicine in gout. J Rheumatol. 1991;18:264.

    PubMed  CAS  Google Scholar 

  719. Garg G, Grundy SM. Nicotinic acid as therapy for dyslipidemia in non-insulin-dependent diabetes mellitus. JAMA. 1990;264:723.

    Article  PubMed  CAS  Google Scholar 

  720. Kreisberg RA. Diabetic dyslipidemia. Am J Cardiol. 1998;82:67u, 85u.

    Article  PubMed  CAS  Google Scholar 

  721. Gershon SL, Fox IH. Pharmacologic effects of nicotinic acid on human purine metabolism. J Lab Clin Med. 1974;84:179.

    PubMed  CAS  Google Scholar 

  722. Schwartz ML. Severe reversible hyperglycemia as a consequence of niacin therapy. Arch Intern Med. 1993;153:2050.

    Article  PubMed  CAS  Google Scholar 

  723. Christensen A, Achor WP, Berge KG, et al. Nicotinic acid treatment of hypercholesterolemia. JAMA. 1961;177:546.

    Article  PubMed  CAS  Google Scholar 

  724. Parsons WB. Studies of nicotinic acid use in hypercholesterolemia. Arch Intern Med. 1961;107:653.

    Article  PubMed  CAS  Google Scholar 

  725. Berge KG, Achor WP, Christensen NA, et al. Hypercholesterolemia and nicotinic acid: a long term study. Am J Med. 1961;31:25.

    Article  Google Scholar 

  726. Gant ZN, Pocelinko R, Solomon AM, et al. Oral glucose tolerance, plasma insulin, and uric acid excretion in man during chronic administration of nicotinic acid. Metabolism. 1971;20:1031.

    Article  Google Scholar 

  727. Becker MA, Raivio KO, Meyer LJ, et al. Effects of nicotinic acid on human purine metabolism. Clin Res. 1973;21:616.

    Google Scholar 

  728. Shuster L, Abraham G. The effect of nicotinamide on incorporation in vivo of formate-C14. J Biol Chem. 1959;234:129.

    PubMed  CAS  Google Scholar 

  729. Shuster L, Goldin A. The incorporation of C14 glucose and C14 ribose into mouse diphosphopyridine nucleotide. J Biol Chem. 1958;230:873.

    PubMed  CAS  Google Scholar 

  730. Boyle JA, Raivio KO, Becker MA, et al. Effects of nicotinic acid on human fibroblast purine biosynthesis. Biochim Biophys Acta. 1972;269:179.

    Article  PubMed  CAS  Google Scholar 

  731. Oberhaemsli RD, Rajagopalan B, Taylor DJ. Study of hereditary fructose intolerance by use of 31-P magnetic resonance spectroscopy. Lancet. 1987;2:931.

    Article  Google Scholar 

  732. Seegmiller JE, Dixon RM, Kemp GJ, et al. Fructose-induced aberration of metabolism in familial gout identified by 31-P magnetic resonance spectroscopy. Proc Natl Acad Sci USA. 1990;87:8326.

    Article  PubMed  CAS  Google Scholar 

  733. Steinmann B, Gitzelmann R. The diagnosis of hereditary fructose intolerance. Helv Paediatr Acta. 1981;36:297.

    PubMed  CAS  Google Scholar 

  734. Perheentupa J, Raivio K. Fructose-induced hyperuricemia. Lancet. 1967;2:528.

    Article  PubMed  CAS  Google Scholar 

  735. Fox IH, Kelley WN. Studies on the mechanism of fructose-induced hyperuricemia in man. Metabolism. 1972;21:713.

    Article  PubMed  CAS  Google Scholar 

  736. Narins RG, Weisberg JS, Myers AR. Effects of carbohydrates on uric acid metabolism. Metabolism. 1974;23:455.

    Article  PubMed  CAS  Google Scholar 

  737. Peaston MJT. Dangers of intravenous fructose. Lancet. 1973;1:266.

    Article  PubMed  CAS  Google Scholar 

  738. Kogut MD, Roe TF, Ng W, Nonnel GN. Fructose-induced hyperuricemia: observations in normal ­children and in patients with hereditary fructose intolerance and galactosemia. Pediatr Res. 1975;9:774.

    Article  PubMed  CAS  Google Scholar 

  739. Sahebjami DH, Scalettar R. Effect of fructose infusion on lactate and uric acid metabolism. Lancet. 1971;1:366.

    Article  PubMed  CAS  Google Scholar 

  740. Edwards NL, Gelfand EW, Biggar D, Fox IH. Partial deficiency of purine nucleoside phosphorylase: studies of purine and pyrimidine metabolism. J Lab Clin Med. 1978;91:736.

    PubMed  CAS  Google Scholar 

  741. Kurtz TW, Kabra PM, Booth BE, et al. Liquid chromatographic measurements of inosine, hypoxanthine and xanthine in studies of fructose-induced degradation of adenine nucleotides in humans and rats. Clin Chem. 1986;32:782.

    PubMed  CAS  Google Scholar 

  742. Bode JC, Zelder O, Rumpelt HJ, Wittkamp U. Depletion of liver adenosine phosphates and metabolic effects of intravenous infusion of fructose and sorbitol in man and in the rat. Eur J Clin Invest. 1973;3:436.

    Article  PubMed  CAS  Google Scholar 

  743. Hultman E, Nilsson LH, Sahlin K. Adenine nucleotide content of human liver. Normal values and fructose-induced depletion. Scand J Clin Lab Invest. 1975;35:245.

    Article  PubMed  CAS  Google Scholar 

  744. Buchli R, Meier D, Martin E, Boesiger P. Assessment of absolute metabolite concentrations in human tissue by 31P MRS in vivo. Part II. Muscle, liver, kidney. Magn Reson Med. 1994;32:453.

    Article  PubMed  CAS  Google Scholar 

  745. Boesiger P, Buchli R, Meier D, et al. Changes of liver metabolite concentrations in adults with disorders of fructose metabolism after intravenous fructose by 31P magnetic resonance spectroscopy. Pediatr Res. 1994;36:436.

    Article  PubMed  CAS  Google Scholar 

  746. Oberhaensli RD, Galloway GJ, Taylor DJ, et al. Assessment of human liver metabolism by phosphorus-31 magnetic resonance spectroscopy. Br J Radiol. 1986;59:695.

    Article  PubMed  CAS  Google Scholar 

  747. Dufour JF, Stoupis C, Lazeyras F, et al. Alterations in hepatic fructose metabolism in cirrhotic patients demonstrated by dynamic 31phosphorus spectroscopy. Hepatology. 1992;15:835.

    Article  PubMed  CAS  Google Scholar 

  748. Sukuma H, Itabashi K, Takeda K, et al. Serial P-31 MR spectroscopy after fructose infusion in patients with chronic hepatitis. J Magn Reson Imaging. 1991;1:701.

    Article  Google Scholar 

  749. Van den Berghe G, Bronfman M, Vanneste R, Hers HG. The mechanism of adenosine triphosphate depletion in the liver after a load of fructose. Biochem J. 1977;162:601.

    PubMed  Google Scholar 

  750. Lamers JMJ, Hulsmann WC. The effect of fructose on the stores of energy-rich phosphate in rat jejunum in vivo. Biochim Biophys Acta. 1973;313:1.

    Article  PubMed  CAS  Google Scholar 

  751. Burch HB, Lowry OH, Meinhardt L, et al. Effect of fructose, dihydroxyacetone, glycerol, and glucose on metabolites and related compounds in liver and kidney. J Biol Chem. 1970;245:2092.

    PubMed  CAS  Google Scholar 

  752. Morris RC, Nigon K, Reed EB. Evidence that the depletion of inorganic phosphate determines the severity of the disturbance of adenine nucleotide metabolism in the liver and renal cortex of the fructose-loaded rat. J Clin Invest. 1978;61:209.

    Article  PubMed  CAS  Google Scholar 

  753. Raivio KO, Becker MA, Meyer LJ, et al. Stimulation of human purine synthesis de novo by fructose infusion. Metabolism. 1975;24:861.

    Article  PubMed  CAS  Google Scholar 

  754. Itakura M, Sabina RL, Heald PW, Holmes EW. Basis for the control of purine biosynthesis by purine ribonucleotides. J Clin Invest. 1981;67:994.

    Article  PubMed  CAS  Google Scholar 

  755. Vincent MF, Van den Berghe G, Hers HG. Increase in phosphoribosyl pyrophosphate induced by ATP and Pi depletion in hepatocytes. FASEB J. 1989;3:1862.

    PubMed  CAS  Google Scholar 

  756. Kaye R, Williams ML, Barbero G. Comparative study of glucose and fructose metabolism in infants with reference to utilization and to the accumulation of glycolytic intermediates. J Clin Invest. 1958;37:752.

    Article  PubMed  CAS  Google Scholar 

  757. Riddle MC. Endogenous uric acid metabolism in pernicious anemia. J Clin Invest. 1929;8:69.

    Article  PubMed  CAS  Google Scholar 

  758. Opsahl R. Hematopoiesis and endogenous uric acid. Acta Med Scand. 1939;102:611.

    Article  CAS  Google Scholar 

  759. Krafka Jr J. Endogenous uric acid and hematopoiesis. II. Uric acid, reticulocytosis and erythrocytes after hemolysis by phenylhydrazine hydrochloride. J Biol Chem. 1929;83:409.

    CAS  Google Scholar 

  760. Sears WG. The occurrence of gout during treatment of pernicious anemia. Lancet. 1933;1:24.

    Article  Google Scholar 

  761. Fox IH, Dotten DA, Marchant PJ. Alterations of human purine metabolism in megaloblastic anemia. Adv Exp Med Biol. 1977;76B:249.

    Article  PubMed  CAS  Google Scholar 

  762. Luhby AL, Cooperman JM. Aminoimidazole­carboxamide excretion in vitamin-B12 and folic acid deficiencies. Lancet. 1962;2:1381.

    Article  PubMed  CAS  Google Scholar 

  763. Newcombe DS. The urinary excretion of aminoimidazolecarboxamide in the Lesch-Nyhan syndrome. Pediatrics. 1970;46:508.

    PubMed  CAS  Google Scholar 

  764. Hernandez Nieto L, Brito Barroso ML, Nyhan WL. Anemia megaloblastica en la enfremedad de Lesch-Nyhan. Sangre (Barc). 1984;29:476.

    CAS  Google Scholar 

  765. Manzke H. Hyperuricamie mit cerebralparese syndrom eines hereditaren purinstoffwechselleidens. Helv Paediatr Acta. 1967;22:258.

    PubMed  CAS  Google Scholar 

  766. Marie J, Royer P, Rappaport R. Hyperuricemie congenitale avec troubles neurologiques, renaux et sanguins. Arch Fr Pediatr. 1967;24:401.

    Google Scholar 

  767. van der Zee SPM, Monnens LAH, Schretlen EDAM. Een hereditaire purinestoffwisselsstoormis met een cerebrale aandoening en megaloblastaire anemie (syndroom von Lesch en Nyhan). Ned Tijdschr Geneeskd. 1968;112:1475.

    PubMed  Google Scholar 

  768. van der Zee SPM, Lommen EJP, Trijbels JMF, Schretlen EDAM. The influence of adenine on the clinical feature and purine metabolism in the ­Lesch-Nyhan syndrome. Acta Paediatr Scand. 1970;59:259.

    Article  PubMed  Google Scholar 

  769. Henderson DA. The aetiology of chronic nephritis in Queensland. Med J Aust. 1958;1:377.

    Google Scholar 

  770. Ball GV, Sorensen LB. Pathogenesis of hyperuricemia in saturnine gout. N Engl J Med. 1968; 280:1199.

    Article  Google Scholar 

  771. Schwartz J, Levin R. The risk of lead toxicity in homes with lead paint hazard. Environ Res. 1991; 54:1.

    Article  PubMed  CAS  Google Scholar 

  772. Delcourt JL, Hamrick HJ, O’Tauma LA, et al. Increased lead burden in children of battery workers: asymptomatic exposure resulting from contaminated work clothing. Pediatrics. 1978;62:563.

    Google Scholar 

  773. Garrettson LK. Childhood lead poisoning in radiator mechanics’ children. Vet Hum Toxicol. 1988;30:112.

    PubMed  CAS  Google Scholar 

  774. Kaye WE, Novotny TE, Tucker M. New ceramics-related industry implicated in elevated blood lead levels in children. Arch Environ Health. 1987;42: 161.

    Article  PubMed  CAS  Google Scholar 

  775. Committee on Lead in the Human Environment: Environmental studies board, Commission on Natural Resources, National Research Council, National Academy of Sciences; 1980.

    Google Scholar 

  776. Crutcher JE. Clinical manifestations and therapy of acute lead intoxication due to the ingestion of illicitly distilled alcohol. Ann Intern Med. 1963;59:707.

    PubMed  CAS  Google Scholar 

  777. CDC. Elevated blood lead levels associated with illicitly distilled alcohol – Alabama, 1990–1991. MMWR Morb Mortal Wkly Rep. 1992;41:294.

    Google Scholar 

  778. Mustajoki P. Lead poisoning from illicit alcohol. Duodecim. 1978;94:993.

    PubMed  CAS  Google Scholar 

  779. Ellis T, Lacy R. Illicit alcohol (moonshine) consumption in West Alabama revisited. South Med J. 1998;91:858.

    Article  PubMed  CAS  Google Scholar 

  780. Lacy R, Winternitz WW. Moonshine consumption in West Alabama. Ala J Med Sci. 1984;21:364.

    PubMed  CAS  Google Scholar 

  781. Pegues DA, Hughes BJ, Woernle CH. Elevated blood lead levels associated with illegally distilled alcohol. Arch Intern Med. 1993;153:1501.

    Article  PubMed  CAS  Google Scholar 

  782. Halla JT, Ball GV. Saturnine gout: a review of 42 patients. Semin Arthritis Rheum. 1982;11:307.

    Article  PubMed  CAS  Google Scholar 

  783. Montgomery R, Finkenbine R. A brief review of moonshine use. Psychiatr Serv. 1999;50:1088.

    PubMed  CAS  Google Scholar 

  784. Ball GV. Two epidemics of gout. Bull Hist Med. 1971;45:401.

    PubMed  CAS  Google Scholar 

  785. Baker G. An essay concerning the cause of the endemial colic of Devonshire. London: J. Hughs; 1767.

    Google Scholar 

  786. Sherlock JC, Pickford CJ, White GF. Lead in alcoholic beverages. Food Addit Contam. 1986;3:347.

    Article  PubMed  CAS  Google Scholar 

  787. Molinini R, Caravella R, Carino M, Nuzzaco A. Three cases of poisoning caused by wine contaminated with lead. G Ital Med Lav. 1985;7:101.

    PubMed  CAS  Google Scholar 

  788. Hight SC. Lead migration from lead crystal wine glasses. Food Addit Contam. 1996;13:747.

    Article  PubMed  CAS  Google Scholar 

  789. Probst-Hensch N, Braun-Fabrlaender C, Bodenmann A, Ackermann-Liebrich U. Alcohol consumption and other lifestyle factors: avoidable sources of excess lead exposure. Soz Praventivmed. 1993;38:43.

    Article  PubMed  CAS  Google Scholar 

  790. Tumpowsky CM, Davis LK, Rabin R. Elevated blood lead levels among adults in Massachusetts, 1991–1995. Public Health Rep. 2000;115:364.

    Article  PubMed  CAS  Google Scholar 

  791. Garrod AB. The nature and treatment of gout and rheumatic gout. London: Walton & Maberg; 1859.

    Google Scholar 

  792. Emmerson BT. Chronic lead nephropathy. Kidney Int. 1973;4:1.

    Article  PubMed  CAS  Google Scholar 

  793. Emmerson BT. Chronic lead nephropathy: the diagnostic uses of calcium EDTA and the association with gout. Australas Ann Med. 1963;12:310.

    PubMed  CAS  Google Scholar 

  794. Emmerson BT. The clinical differentiation of lead gout from primary gout. Arthritis Rheum. 1968; 11:623.

    Article  PubMed  CAS  Google Scholar 

  795. Reynolds PR, Knapp MJ, Baraf HSB, Holmes EW. Moonshine and lead. Relationship to the pathogenesis of hyperuricemia and gout. Arthritis Rheum. 1983;26:1057.

    Article  PubMed  CAS  Google Scholar 

  796. Batuman V, Maesako JK, Haddad B, et al. The role of lead in gout nephropathy. N Engl J Med. 1981; 304:520.

    Article  PubMed  CAS  Google Scholar 

  797. Poor G, Mituszova M. Saturnine gout. Baillieres Clin Rheumatol. 1989;3:51.

    Article  PubMed  CAS  Google Scholar 

  798. Cooper WC, Wong O, Kheifets L. Mortality among employees of lead battery plants and lead-producing plants. Scand J Work Environ Health. 1985;11:331.

    Article  PubMed  CAS  Google Scholar 

  799. Shadick NA, Kim R, Weiss S, et al. Effect of low level lead exposure on hyperuricemia and gout among middle aged and elderly men: the normative aging study. J Rheumatol. 2000;27:1708.

    PubMed  CAS  Google Scholar 

  800. Richet G, Albahary C, Ardaillou R, et al. The kidney in chronic lead poisoning. Rev Fr Etud Clin Biol. 1964;50:188.

    Google Scholar 

  801. Richet G, Albahary C, Morel-Maroger L, et al. Renal changes in 23 cases of occupational lead poisoning. Bull Mem Soc Hop Paris. 1966;117:441.

    CAS  Google Scholar 

  802. Craswell PW, Price J, Boyle PD, et al. Patterns of lead excretion in patients with gout and chronic renal failure: a comparative German and Australian study. Sci Total Environ. 1987;66:17.

    Article  PubMed  CAS  Google Scholar 

  803. Wright LF, Saylor RP, Cecere FA. Occult lead intoxication in patients with gout and kidney disease. J Rheumatol. 1984;11:517.

    PubMed  CAS  Google Scholar 

  804. Craswell PW, Price J, Boyle PD, et al. Chronic renal failure with gout: a marker of chronic lead poisoning. Kidney Int. 1984;26:319.

    Article  PubMed  CAS  Google Scholar 

  805. Colleoni N, D’Amico G. Chronic lead accumulation as a possible cause of renal failure in gouty patients. Nephron. 1986;44:32.

    Article  PubMed  CAS  Google Scholar 

  806. Albahary C, Richet G, Guillaume J, Morel-Maroger L. The kidney in occupational lead poisoning. Arch Mal Prof. 1965;26:5.

    PubMed  CAS  Google Scholar 

  807. Sanchez-Fructuoso AI, Torralbo A, Arroyo M, et al. Occult lead intoxication as a cause of hypertension and renal failure. Nephrol Dial Transplant. 1996;11:1775.

    Article  PubMed  CAS  Google Scholar 

  808. Loghman-Adham M. Renal effects of environmental and occupational lead exposure. Environ Health Perspect. 1997;105:928.

    Article  PubMed  CAS  Google Scholar 

  809. Perazella MA. Lead and the kidney: nephropathy, hypertension, and gout. Conn Med. 1996;60:521.

    PubMed  CAS  Google Scholar 

  810. Batuman V. Lead nephropathy, gout, and hypertension. Am J Med Sci. 1993;30:241.

    Article  Google Scholar 

  811. Cledes J, Allain P. Chronic lead nephropathy. Epidemiology and diagnosis. Presse Med. 1992; 21:759.

    PubMed  CAS  Google Scholar 

  812. Nolan CV, Shaikh ZA. Lead nephrotoxicity and associated disorders: biochemical mechanisms. Toxicology. 1992;73:127.

    Article  PubMed  CAS  Google Scholar 

  813. Peitzman SJ, Bodison W, Ellis I. Moonshine drinking among hypertensive veterans in Philadelphia. Arch Intern Med. 1985;145:632.

    Article  PubMed  CAS  Google Scholar 

  814. Miranda ME, Puig JG, Mateos FA, et al. The role of lead in gout nephropathy reviewed: pathogenic or associated factor? Adv Exp Med Biol. 1991;309A:209.

    PubMed  CAS  Google Scholar 

  815. Cullen MR, Robins JM, Eskenazi B. Adult inorganic lead intoxication: presentation of 31 new cases and a review of recent advances in the literature. Medicine. 1983;62:221.

    Article  PubMed  CAS  Google Scholar 

  816. Batuman V, Landy E, Maesaka JR, Weeden RP. Contribution of lead to hypertension with renal impairment. N Engl J Med. 1983;309:17.

    Article  PubMed  CAS  Google Scholar 

  817. Rabinowitz MB, Wetherill GW, Kopple JD. Kinetic analysis of lead metabolism in healthy humans. J Clin Invest. 1976;58:260.

    Article  PubMed  CAS  Google Scholar 

  818. Rempel D. The lead-exposed worker. JAMA. 1989;262:532.

    Article  PubMed  CAS  Google Scholar 

  819. Occupational exposure to lead. Final standard. 43 Federal Register 220:52952–53014 and 225:54353–54616, 1981, 46 Federal Register 238:60758–60766, 1981.

    Google Scholar 

  820. 29 CFR 1910.1025 and 1926.62.

    Google Scholar 

  821. Chisholm Jr JJ. Mobilization of lead by calcium disodium edetate. Am J Dis Child. 1987;141:1256.

    Google Scholar 

  822. Weinberger HL, Post EM, Schneider T, et al. An analysis of 248 initial mobilization tests performed on an ambulatory basis. Am J Dis Child. 1987;141:1266.

    PubMed  CAS  Google Scholar 

  823. Cory-Slechta DA, Weiss B, Cox C. Mobilization and redistribution of lead over the course of CaEDTA chelation therapy. J Pharmacol Exp Ther. 1987;243:804.

    PubMed  CAS  Google Scholar 

  824. Hu H, Aro A, Payton M, et al. The relationship of bone and blood lead to hypertension. The normative aging study. JAMA. 1996;275:1171, 1996;276:1038.

    Article  PubMed  CAS  Google Scholar 

  825. Hu H, Raabinowitz M, Smith D. Bone lead as a biological marker in epidemiologic studies of chronic toxicity: conceptual paradigms. Environ Health Perspect. 1998;106:1.

    Article  PubMed  CAS  Google Scholar 

  826. Todd AC. Calculating bone-lead measurement variance. Environ Health Perspect. 2000;108:383, 2000;108:A298.

    Article  PubMed  CAS  Google Scholar 

  827. Wedeen RP, Ty A, Udasin I, et al. Clinical application of in vivo tibial K-XRF for monitoring lead stores. Arch Environ Health. 1995;50:355.

    Article  PubMed  CAS  Google Scholar 

  828. Bateman SN, Pejovic-Milic A, Stronach IM, et al. Performance appraisals of digital spectroscopy systems for the measurement of bone lead. Appl Radiat Isot. 2000;53:647.

    Article  PubMed  CAS  Google Scholar 

  829. Ambrose TM, Al-Lozi M, Scott MG. Bone lead concentrations assessed by in vivo x-ray fluorescence. Clin Chem. 2000;46:1171.

    PubMed  CAS  Google Scholar 

  830. Wedeen RD. In vivo tibial XRF measurements of bone lead. Arch Environ Health. 1990;45:69.

    Article  PubMed  CAS  Google Scholar 

  831. Rosen JF, Markowitz ME, Bijur PE, et al. L-line x-ray fluorescence of cortical bone lead compared with CaNa2EDTA test in lead-toxic children: public health implications. Proc Natl Acad Sci USA. 1989;86:685.

    Article  PubMed  CAS  Google Scholar 

  832. Friedheim E, Graziano JH, Popovac D, et al. Treatment of lead poisoning by 2,3-dimercaptosuccinic acid. Lancet. 1978;2:1234.

    Article  PubMed  CAS  Google Scholar 

  833. Graziano JH, Siris ES, Lolacono N, et al. 2,3-Dimercaptosuccinic acid as an antidote for lead intoxication. Clin Pharmacol Ther. 1985;37:431.

    Article  PubMed  CAS  Google Scholar 

  834. Chisholm Jr JJ, Thomas DJ. Use of 2,3-dimercaptopropane-1-sulfonate in treatment of lead poisoning in children. J Pharmacol Exp Ther. 1985;235:665.

    Google Scholar 

  835. Graziano JH, Lolacono NJ, Meyer P. Dose–response of oral 2,3-dimercaptosuccinic acid in children with elevated blood lead concentrations. J Pediatr. 1988;113:751.

    Article  PubMed  CAS  Google Scholar 

  836. Chisholm Jr JJ. BAL, EDTA, DMSA and DMPS in the treatment of lead poisoning in children. J Toxicol Clin Toxicol. 1992;30:493.

    Article  Google Scholar 

  837. Tutunji MF, al-Mahasneh QM. Disappearance of heme metabolites following chelation therapy with meso 2,3-dimercaptosuccinic acid (DMSA). J Toxicol Clin Toxicol. 1994;32:267.

    Article  PubMed  CAS  Google Scholar 

  838. Aposhian HV, Maiorino RM, Gonzalez-Ramirez D, et al. Mobilization of heavy metals by newer, therapeutically useful chelating agents. Toxicology. 1995;97:23.

    Article  PubMed  Google Scholar 

  839. Parru S, Alessio L. The use of chelating agents in occupational lead poisoning. Occup Med (Lond). 1996;46:41.

    Article  Google Scholar 

  840. Lifshitz M, Hashkanazi R, Phillip M. The effect of 2,3-dimercaptosuccinic acid in the treatment of lead poisoning in adults. Ann Med. 1997;29:83.

    Article  PubMed  CAS  Google Scholar 

  841. Berlin Jr CM. Lead poisoning in children. Curr Opin Pediatr. 1997;9:173.

    Article  PubMed  Google Scholar 

  842. Besunder JB, Super DM, Anderson RL. Comparison of dimercaptosuccinic acid and calcium disodium ethylenediaminetetraacetic acid versus dimercaptopropanol and ethylenediaminetetraacetic acid in children with lead poisoning. J Pediatr. 1997;130:966.

    Article  PubMed  CAS  Google Scholar 

  843. Miller AL. Dimercaptosuccinic acid (DMSA), a non-toxic, water-soluble treatment for heavy metal toxicity. Altern Med Rev. 1998;3:199.

    PubMed  CAS  Google Scholar 

  844. Restek-Samarzija N, Blanusa M, Pizent A, et al. Meso-2,3-dimercaptosuccinic acid in the treatment of occupationally exposed lead workers. Arh Hig Rada Toksikol. 1998;49:137.

    PubMed  CAS  Google Scholar 

  845. The Treatment of Lead-Exposed Children (TLC) trial: design and recruitment for a study of the effect of oral chelation on growth and development in toddlers. Paediatr Perinat Epidemiol. 1998;12:313.

    Google Scholar 

  846. Lever SZ, Parsons TL. The presence of lead decreases the availability of meso-2,3-dimercaptosuccinic acid for analysis in the monobromobimane assay. Chem Res Toxicol. 1999;12:1057.

    Article  PubMed  CAS  Google Scholar 

  847. Smith DR, Calacsan C, Woolard D, et al. Succimer and the urinary excretion of essential elements in a primate model of childhood lead exposure. Toxicol Sci. 2000;54:473.

    Article  PubMed  CAS  Google Scholar 

  848. Chisholm Jr JJ. Safety and efficacy of meso-2,3-dimercaptosuccinic acid (DMSA) in children with elevated blood lead concentrations. J Toxicol Clin Toxicol. 2000;38:365.

    Article  Google Scholar 

  849. Ellis MR, Kane KY. Lightening the lead load in children. Am Fam Physician. 2000;62:545, 559.

    PubMed  CAS  Google Scholar 

  850. Markowitz M. Lead poisoning. Pediatr Rev. 2000;21:327.

    Article  PubMed  CAS  Google Scholar 

  851. Eisner ER, Schumacher HR, Sidransky E. Gout and Gaucher disease. Arthritis Rheum. 2000;43:S122.

    Google Scholar 

  852. Chang-Lo M, Yam LT, Rubenstone AI, Schwartz SO. Gaucher’s disease associated with chronic lymphocytic leukemia, gout and carcinoma. J Pathol. 1975;116:203–7.

    Article  PubMed  CAS  Google Scholar 

  853. Liel Y, Hausmann MJ, Moses M. Case report: serendipitous Gaucher’s disease presenting as elevated erythrocyte sedimentation rate due to monoclonal gammopathy. Am J Med Sci. 1991;301:393.

    Article  PubMed  CAS  Google Scholar 

  854. Shoenfeld Y, Berliner S, Pinkhas J, Beutler E. The association of Gaucher’s disease and dysproteinemias. Acta Haematol (Basel). 1980;64:241.

    Article  CAS  Google Scholar 

  855. Turesson T, Rausing A. Gaucher’s disease and benign monoclonal gammopathy. A case report with immunofluorescence study of bone marrow and spleen. Acta Med Scand. 1975;197:507.

    Article  PubMed  CAS  Google Scholar 

  856. Pratt PW, Estren F, Kochwa S. Immunoglobin abnormalities in Gaucher’s disease. Report of a case. Blood. 1968;31:633.

    PubMed  CAS  Google Scholar 

  857. Mark T, Dominguez C, Rywlin AM. Gaucher’s disease associated with chronic lymphocytic leukemia. South Med J. 1982;75:361.

    Article  PubMed  CAS  Google Scholar 

  858. Kaufman S, Rozenfeld V, Yona R, Varon M. Gaucher’s disease associated with chronic lymphocytic leukaemia. Clin Lab Haematol. 1986;8:321.

    Article  PubMed  CAS  Google Scholar 

  859. Bruckstein AH, Karanas A, Dire JJ. Gaucher’s disease associated with Hodgkin’s disease. Am J Med. 1980;68:610.

    Article  PubMed  CAS  Google Scholar 

  860. Cho SY, Sastre M. Coexistence of Hodgkin’s disease and Gaucher’s disease. Am J Clin Pathol. 1976;65:103.

    PubMed  CAS  Google Scholar 

  861. Paulson JA, Marti GI, Fink JK, et al. Richter’s transformation of lymphoma complicating Gaucher’s disease. Hematol Pathol. 1989;3:91.

    PubMed  CAS  Google Scholar 

  862. Gal R, Gukovsky-Oren S, Floru S, et al. Sequential appearance of breast carcinoma, multiple myeloma and Gaucher’s disease. Haematologica. 1979;73:63.

    Google Scholar 

  863. Garfinkel D, Sidi Y, Ben-Bassat M, et al. Coexistence of Gaucher’s disease and multiple myeloma. Arch Intern Med. 1982;142:2229.

    Article  PubMed  CAS  Google Scholar 

  864. Benjamin D, Joshua H, Djaldetti M, et al. Nonsecretory IgD-kappa multiple myeloma in a patient with Gaucher’s disease. Scand J Haematol. 1979;22:179.

    Article  PubMed  CAS  Google Scholar 

  865. Lamon J, Miller W, Tavassoli M, et al. Specialty conference: multiple myeloma complicating Gaucher’s disease. West J Med. 1982;136:122.

    Google Scholar 

  866. Ruestow PC, Levinson DJ, Catchatourian R, et al. Coexistence of IgA myeloma and Gaucher’s disease. Arch Intern Med. 1980;140:1115.

    Article  PubMed  CAS  Google Scholar 

  867. Beutler E, Grabowski GA. Gaucher disease. In: Scriver CR, Beaudet AL, Sly WS, Valle D, editors. The metabolic and molecular bases of inherited disease. New York: McGraw-Hill, Inc; 1995. p. 2643.

    Google Scholar 

  868. Beutler E, Gelbart T, Kuhl W, et al. Mutations in Jewish patients with Gaucher disease. Blood. 1992;79:1662.

    PubMed  CAS  Google Scholar 

  869. Beutler E, Gelbart T, Kuhl W, et al. Identification of the second common Jewish Gaucher disease mutation makes population based screening for the heterozygote state. Proc Natl Acad Sci USA. 1991;88:10544.

    Article  PubMed  CAS  Google Scholar 

  870. Beutler E. Gaucher disease: new molecular approaches to diagnosis and treatment. Science. 1992;256:794.

    Article  PubMed  CAS  Google Scholar 

  871. Hadler NM, Franck WA, Bress NM, et al. Acute polyarticular gout. Am J Med. 1974;56:715.

    Article  PubMed  CAS  Google Scholar 

  872. Hench PS. Gout and gouty arthritis. In: Cecil RL, Loeb RF, editors. Textbook of medicine. 9th ed. Philadelphia: Saunders; 1955. p. 643.

    Google Scholar 

  873. Scudmore C. A treatise of the nature and course of gout and gravel. 4th ed. London: Mallett; 1823. p. 64.

    Google Scholar 

  874. Williamson CS. Gout: a clinical study of one hundred and sixteen cases. JAMA. 1920;74:1625.

    Article  Google Scholar 

  875. Brochner-Mortensen K. One hundred gouty patients. Acta Med Scand. 1941;106:81.

    Article  CAS  Google Scholar 

  876. Grahame R, Scott JT. Clinical survey of 354 patients with gout. Ann Rheum Dis. 1970;29:461.

    Article  PubMed  CAS  Google Scholar 

  877. McCracken JP, Owen PS, Pratt JH. Gout: still a forgotten disease. JAMA. 1946;131:367.

    Article  CAS  Google Scholar 

  878. Seegmiller JE. Diseases of purine and pyrimidine metabolism. In: Bondy PK, Rosenberg LE, editors. Metabolic control and disease. 8th ed. Philadelphia: Saunders; 1980. p. 777.

    Google Scholar 

  879. Emmerson BT, Wyngaarden JB. Purine metabolism in heterozygous carriers of hypoxanthine-guanine phosphoribosyltransferase deficiency. Science. 1969;166:1533.

    Article  PubMed  CAS  Google Scholar 

  880. Yu TF. Some unusual features of gouty arthritis in females. Arthritis Rheum. 1977;6:247.

    Article  CAS  Google Scholar 

  881. Burch TA, O’Brien WM, Reed R, et al. Hyperuricemia and gout in Mariana Islands. Ann Rheum Dis. 1966;25:114.

    PubMed  CAS  Google Scholar 

  882. Reed D, Labarthe D, Stallones R. Epidemiologic studies of serum uric acid levels among Micronesians. Arthritis Rheum. 1972;15:381.

    Article  PubMed  CAS  Google Scholar 

  883. Prior IAM, Rose BS, Harvey HPB, et al. Hyperuricemia, gout, and diabetic abnormality in Polynesian people. Lancet. 1966;1:333.

    Article  PubMed  CAS  Google Scholar 

  884. Lennane GAQ, Rose BS, Isdale IC. Gout in Maori. Ann Rheum Dis. 1960;19:120.

    Article  PubMed  CAS  Google Scholar 

  885. Healey LA, Jones KW. Hyperuricemia in American Samoans. Arthritis Rheum. 1971;14:283.

    Article  PubMed  CAS  Google Scholar 

  886. Chang SJ, Ko YC, Wang TN, et al. High prevalence of gout and related risk factors in Taiwan’s Aborigines. J Rheumatol. 1997;24:1364.

    PubMed  CAS  Google Scholar 

  887. Talbott JH. Gout. New York: Grune & Stratton; 1964. p. 128.

    Google Scholar 

  888. Greenhut IJ, Silver RA, Campbell JA. Occurrence of gout in a female: report of an unusual case. Radiology. 1953;60:257.

    PubMed  CAS  Google Scholar 

  889. Hill IC. Gout. Lancet. 1938;1:826.

    Article  Google Scholar 

  890. Weingold AB. Gout and pregnancy. Obstet Gynecol. 1960;16:309.

    PubMed  CAS  Google Scholar 

  891. Lee FI, Loeffler FE. Gout and pregnancy. J Obstet Gynaecol Br Comm. 1962;69:299.

    Article  CAS  Google Scholar 

  892. Friedman EA, Little WA. Pregnancy and gout: a case report. Am J Obstet. 1958;76:913.

    CAS  Google Scholar 

  893. Batt RE, Cirksena WJ, Lebherz TB. Gout and salt wasting renal disease during pregnancy; Diagnosis, management, and follow-up. JAMA. 1963;186:835.

    Article  PubMed  CAS  Google Scholar 

  894. Mertz DP, Henninges D, Schwoerer P. Gout and pregnancy. An unusual case with severe hyperlipoproteinaemia. Munch Med Wochenschr. 1972;114:658.

    PubMed  CAS  Google Scholar 

  895. Kelsall JT, O’Hanlon DP. Gout during pregnancy. J Rheumatol. 1994;21:1365.

    PubMed  CAS  Google Scholar 

  896. Lee IS, Hsu CD. Placental pathologies are not associated with hyperuricemia in preeclamptic pregnancies. Conn Med. 1999;63:459.

    PubMed  CAS  Google Scholar 

  897. Fadel HE, Northrop G, Misenhimer HR. Hyperuricemia in pre-eclampsia. A reappraisal. Am J Obstet Gynecol. 1976;125:640.

    PubMed  CAS  Google Scholar 

  898. Riedel H, Eisenbach GM, Henkel E, et al. The clinical significance of hyperuricemia for the prognosis of pregnancy toxemia. Fortschr Med. 1978;96:58.

    PubMed  CAS  Google Scholar 

  899. Chesley LC. Diagnosis of preeclampsia. Obstet Gynecol. 1985;65:423.

    PubMed  CAS  Google Scholar 

  900. Mauy A, Hubel CA, Roberts JA. Hyperuricemia and xanthine oxidase in preeclampsia, revisited. Am J Obstet Gynecol. 1996;174:288.

    Article  Google Scholar 

  901. Mustaphi R, Gopalan S, Dhaliwal L, Surkar AK. Hyperuricemia and pregnancy induced hypertension – reappraisal. Indian J Med Sci. 1996;50:68.

    PubMed  CAS  Google Scholar 

  902. Merviel P, Ba R, Beaufils M, et al. Lone hyperuricemia during pregnancy: maternal and fetal outcomes. Eur J Obstet Gynecol Reprod Biol. 1998;77:145.

    Article  PubMed  CAS  Google Scholar 

  903. Hsiung R, Hasselmann M, Lutun P, Gordji M. Acute fatty liver of pregnancy. Diagnostic value of hyperuricemia in the pre-jaundice stage. J Gynecol Obstet Biol Reprod (Paris). 1988;17:901.

    CAS  Google Scholar 

  904. Nishioka N, Mikanagi K. Clinical features of 4,000 gouty subjects in Japan. Adv Exp Med Biol. 1980;122A:47.

    Article  PubMed  CAS  Google Scholar 

  905. Cornelius R, Schneider HJ. Gouty arthritis in the adult. Radiol Clin North Am. 1988;26:1267.

    PubMed  CAS  Google Scholar 

  906. Deesomchok U, Tumrasvin T. A clinical comparison of females and males with gouty arthritis. J Med Assoc Thai. 1989;72:510.

    PubMed  CAS  Google Scholar 

  907. Hauge M, Harvold B. Heredity in gout and hyperuricemia. Acta Med Scand. 1955;152:247.

    Article  PubMed  CAS  Google Scholar 

  908. O’Sullivan JB. Gout in a New England town. A prevalence study in Sudbury, Massachusetts. Ann Rheum Dis. 1969;31:166.

    Article  Google Scholar 

  909. Popert AJ, Hewitt JV. Gout and hyperuricemia in rural and urban populations. Ann Rheum Dis. 1962;21:154.

    Article  PubMed  CAS  Google Scholar 

  910. Smyth CJ, Stecher RM, Wolfson WQ. Genetic and endocrine determinants of the plasma urate level. Science. 1948;108:524.

    Article  Google Scholar 

  911. Delbarre F, Braun S, St. Georges-Chaumet F. La goutte feminine (Analyse de quarante observations). Semin Hop (Paris). 1967;43:623.

    CAS  Google Scholar 

  912. Cowdry SC. Hyperuricemia in infectious mononucleosis. JAMA. 1966;196:319.

    Article  Google Scholar 

  913. Nessan VJ, Geerken RC, Ulvilla J. Uric acid excretion in infectious mononucleosis: a function of increased purine turnover. J Clin Endocrinol Metab. 1974;38:652.

    Article  PubMed  CAS  Google Scholar 

  914. Diamond H, Sharon E, Holden D. Renal handling of uric acid in sickle cell anemia. In: Sperling O, DeVries A, Wyngaarden JB, editors. Purine metabolism in man. New York: Plenum; 1973. p. 759.

    Google Scholar 

  915. Glynn RJ, Campion EW, Silbert JE. Trends in serum uric acid levels. 1961–1980. Arthritis Rheum. 1983;26:87.

    Article  PubMed  CAS  Google Scholar 

  916. Myers A, Epstein FH, Dodge HJ, Mikkelsen WM. The relationship of serum uric acid to risk factors in coronary heart disease. Am J Med. 1968;45:520.

    Article  PubMed  CAS  Google Scholar 

  917. Krizek V. Serum uric acid in relation to body weight. Ann Rheum Dis. 1966;25:456.

    PubMed  CAS  Google Scholar 

  918. Gertler MM, Garn SM, Levine SA. Serum uric acid in relation to age and physique in health and in coronary artery disease. Ann Intern Med. 1951;34:1421.

    PubMed  CAS  Google Scholar 

  919. Fessel JW, Siegelaub AB, Johnson ES. Correlates and consequences of asymptomatic hyperuricemia. Arch Intern Med. 1973;132:44.

    Article  PubMed  CAS  Google Scholar 

  920. Loenen HM, Eshuis H, Lowik MR, et al. Serum uric acid correlates in elderly men and women with special reference to body composition and dietary intake (Dutch Nutrition Surveillance System). J Clin Epidemiol. 1990;43:1297.

    Article  PubMed  CAS  Google Scholar 

  921. Emmerson BT, Knowles BR. Triglyceride concentrations in primary gout and gout of chronic lead nephropathy. Metabolism. 1971;20:721.

    Article  PubMed  CAS  Google Scholar 

  922. Heydon S. The workingman’s diet. II. Effect of weight reduction in obese patients with hypertension, diabetes, hyperuricemia and hyperlipidemia. Nutr Metab. 1978;22:141.

    Article  Google Scholar 

  923. Berchtold P, Berger M, Grieser E, et al. Cardiovascular risk factors in gross obesity. Int J Obes. 1977;1:219.

    PubMed  CAS  Google Scholar 

  924. Fessel WJ. High uric acid as an indicator of cardiovascular disease. Independence from obesity. Am J Med. 1980;68:401.

    Article  PubMed  CAS  Google Scholar 

  925. Bonora E, Targher G, Zenere MB, et al. Relationship of uric acid concentration to cardiovascular risk factors in young men. Role of obesity and central fat distribution. The Verona Young Men Atherosclerosis Risk Factor Study. Int J Obes Relat Metab Disord. 1996;20:975.

    PubMed  CAS  Google Scholar 

  926. Chu NF, Wang DJ, Liou SH, Shieh SM. Relationship between hyperuricemia and other cardiovascular disease risk factors among adult males in Taiwan. Eur J Epidemiol. 2000;16:13.

    Article  PubMed  CAS  Google Scholar 

  927. Yamashita S, Matsuzawa Y, Tokunaga K, et al. Studies on the impaired metabolism of uric acid in obese subjects: marked reduction of renal urate excretion and its improvement by a low-calorie diet. Int J Obes. 1986;10:255.

    PubMed  CAS  Google Scholar 

  928. Takahashi S, Yauramoto T, Tsutsumi Z, et al. Close correlation between visceral fat accumulation and uric acid metabolism in healthy men. Metabolism. 1997;46:1162.

    Article  PubMed  CAS  Google Scholar 

  929. Matsuura F, Yamashita S, Nakamura T, et al. Effect of visceral fat obesity on uric acid metabolism in male obese subjects: visceral fat obesity is linked more closely to overproduction of uric acid than subcutaneous fat obesity. Metabolism. 1998;47:929.

    Article  PubMed  CAS  Google Scholar 

  930. Fruehwald-Schultes B, Peters A, Kern W, et al. Serum leptin is associated with serum uric acid concentrations in humans. Metabolism. 1999;48:677.

    Article  PubMed  CAS  Google Scholar 

  931. Monocci A, Savia G, Lucantoni R, et al. Leptin plasma concentrations are dependent on body fat distribution in obese patients. Int J Obes Relat Metab Disord. 2000;24:1139.

    Article  CAS  Google Scholar 

  932. Shmulewitz D, Auerbach SB, Lehner T, et al. Epidemiology and factor analysis of obesity, type II diabetes, hypertension, and dyslipidemia (syndrome X) on the island of Kosrae. Federation states of Micronesia. Hum Hered. 2001;51:8.

    Article  PubMed  CAS  Google Scholar 

  933. Leyva F, Godsland IF, Ghatei M, et al. Hyperleptinemia as a component of a metabolic syndrome of cardiovascular risk. Arterioscler Thromb Vasc Biol. 1998;18:928.

    Article  PubMed  CAS  Google Scholar 

  934. Fried SK, Ricci MR, Russell CD, Laferrere B. Regulation of leptin production in humans. J Nutr. 2000;130:3127.

    Google Scholar 

  935. Khaodhiar L, McCowen KC, Blackburn GL. Obesity and its comorbid conditions. Clin Cornerstone. 1999;2:17.

    Article  PubMed  CAS  Google Scholar 

  936. Benedek TG. Correlations of serum uric acid and lipid concentrations in normal, gouty and atherosclerotic men. Ann Intern Med. 1967;66:851.

    PubMed  CAS  Google Scholar 

  937. Berkowitz D. Gout, hyperlipidemia and diabetes interrelationships. JAMA. 1966;197:77.

    Article  PubMed  CAS  Google Scholar 

  938. Berkowitz D. Blood lipid and uric acid interrelationships. JAMA. 1964;190:856.

    Article  PubMed  CAS  Google Scholar 

  939. Feldman EB, Wallace SL. Hypertriglyceridemia in gout. Circulation. 1964;29:508.

    Article  PubMed  Google Scholar 

  940. Barlow KA. Hyperlipidemia in primary gout. Metabolism. 1968;17:289.

    Article  PubMed  CAS  Google Scholar 

  941. Gibson T, Grahame R. Gout and hyperlipidemia. Ann Rheum Dis. 1974;33:298.

    Article  PubMed  CAS  Google Scholar 

  942. Jiao S, Kameda K, Matsuzawa Y, Tarui S. Hyperlipoproteinaemic phenotype and influence of alcohol intake and obesity in Japan. Ann Rheum Dis. 1986;44:390.

    Google Scholar 

  943. Ferns GA, Lanham J, Stocks J, et al. The measurement of high density lipoprotein subfractions in patients with primary gout using a simple precipitation method. Ann Clin Biochem. 1985;22:526.

    PubMed  Google Scholar 

  944. Ulreich A, Kostner GM, Pfeiffer KP, et al. Serum lipids and lipoproteins in patients with primary gout. Rheumatol Int. 1985;5:73.

    Article  PubMed  CAS  Google Scholar 

  945. Jacobelli S, Artega A, Bidegain F. Cholesterol distribution among lipoprotein fractions in patients with gout and normal controls. J Rheumatol. 1986;13:774.

    PubMed  CAS  Google Scholar 

  946. Phillipi T, Barrett-Connor E. Fasting plasma glucose, uric acid, and triglycerides as predictors of the ration of total cholesterol to HDLC. Am J Clin Pathol. 1984;82:329.

    Google Scholar 

  947. Perez-Ruiz F, Calabozo M, Herrero-Beites AM, et al. Improvement of renal function in patients with chronic gout after proper control of hyperuricemia and gouty bouts. Nephron. 2000;86:287.

    Article  PubMed  CAS  Google Scholar 

  948. Harris-Jones JN. Hyperuricemia and essential hypercholesterolemia. Lancet. 1957;1:857.

    Article  Google Scholar 

  949. Salvini L, Verdi G. Statistical study on correlation between blood level of cholesterol beta/alpha lipoprotein ratio and uric acid of normal and arteriosclerotic subjects. Gerontologia. 1959;3:327.

    Article  PubMed  CAS  Google Scholar 

  950. Jensen J, Blankenhorn DH, Dornerup V. Blood uric acid levels in familial hypercholesterolemia. Lancet. 1966;1:298.

    Article  PubMed  CAS  Google Scholar 

  951. Strejcek J, Kucerova L. Idiopathic hyperlipidemia and gout. Acta Rheumatol Scand. 1968;14:95.

    PubMed  CAS  Google Scholar 

  952. Brunzele JD, Bierman EL. Chylomicronemia syndrome: Interaction of genetic and acquired hypertriglyceridemia. Med Clin North Am. 1982;66:455.

    Google Scholar 

  953. Fallat RW, Glueck CJ. Familial and acquired type V hyperlipoproteinemia. Atherosclerosis. 1976;23:41.

    Article  PubMed  CAS  Google Scholar 

  954. Lipid Research Clinics Programs: the prevalence study. In: Population studies data book I. Bethesda: US Department of Health and Human Services, National Institutes of Health, Publication 80–1527; 1980.

    Google Scholar 

  955. Hunt SC, Wu LL, Hopkins PN, et al. Apolipoprotein, low density lipoprotein subfraction and insulin associations with familial combined hyperlipidemia. Study of Utah patients with familial dyslipidemic hypertension. Arteriosclerosis. 1989;9:335.

    Article  PubMed  CAS  Google Scholar 

  956. Williams RR, Hunt SC, Hopkins PN, et al. Familial dyslipidemic hypertension: Evidence from 58 Utah families for a syndrome present in approximately 12% of patients with essential hypertension. JAMA. 1988;259:3579.

    Article  PubMed  CAS  Google Scholar 

  957. Goldstein JL, Schrott HG, Hazzard WL, et al. Hyperlipidemia in coronary artery disease. II. Genetic analysis of lipid levels of 176 families and delineation of a new inherited disorder, combined hyperlipidemia. J Clin Invest. 1973;52:1544.

    Article  PubMed  CAS  Google Scholar 

  958. Rose HG, Kranz P, Weinstock M, et al. Inheritance of combined hyperlipoproteinemia. Evidence for a new lipoprotein phenotype. Am J Med. 1973;54:148.

    Article  PubMed  CAS  Google Scholar 

  959. Vaverkova H, Weinberg AO, Horcicika V, et al. Familial combined hyperlipidemia. Part I. Lipid values and the lipoprotein pattern. Acta Univ Palacki Olomuc Fac Med. 1986;113:193.

    PubMed  CAS  Google Scholar 

  960. Austin MA, Brunzell J, Fitch WL, Krauss RM. Inheritance of low density lipoprotein subclass patterns in familial combined hyperlipidemia. Arteriosclerosis. 1990;10:520.

    Article  PubMed  CAS  Google Scholar 

  961. Austin MA, King M-C, Vranizan KM, Krauss RM. Atherogenic lipoprotein phenotype: a proposed genetic marker for coronary heart disease. Circulation. 1990;82:495.

    Article  PubMed  CAS  Google Scholar 

  962. Pitkanen OP, Nuutila P, Raitakari OT, et al. Coronary flow reserve in young men with familial combined hyperlipidemia. Circulation. 1999;99:1678.

    Article  PubMed  CAS  Google Scholar 

  963. Pajukanta P, Porkka KV. Genetics of familial combined hyperlipidemia. Curr Atheroscler Rep. 1999; 1:79.

    Article  PubMed  CAS  Google Scholar 

  964. Gehrisch S, Kostka H, Tiebel M, et al. Mutations of the hepatic lipase gene in patients with combined hypertriglyceridemia/hyperalphalipoproteinemia and in patients with familial combined hyperlipidemia. J Mol Med. 1999;77:728.

    Article  PubMed  CAS  Google Scholar 

  965. Jarvik GP, Beaty TH, Gallagher PR, et al. Genotype at a major locus with large effects on apolipoprotein B levels predicts familial combined hyperlipidemia. Genet Epidemiol. 1993;10:257.

    Article  PubMed  CAS  Google Scholar 

  966. Ribalta J, La Ville AE, Heras M, et al. Familial combined hyperlipidemia: detection and characterization of the hyperlipidemic profile among children and adolescents. Med Clin (Barc). 1997;109:161.

    CAS  Google Scholar 

  967. Aouizerat BE, Allayee H, Bodnar J, et al. Novel genes for familial combined hyperlipidemia. Curr Opin Lipidol. 1999;10:113.

    Article  PubMed  CAS  Google Scholar 

  968. Sasaki J. Familial combined hyperlipidemia. Nippon Rinsho. 1999;57:2776.

    PubMed  CAS  Google Scholar 

  969. East C, Bilheimer DW, Grundy SM. Combination drug therapy for familial combined hyperlipidemia. Ann Intern Med. 1988;109:25.

    PubMed  CAS  Google Scholar 

  970. Fredrickson DS, Goldstein JS, Brown MS. The familial hyperlipoproteinemias. In: Stanbury JB, Wyngaarden JB, Fredrickson DS, editors. The metabolic basis of inherited disease. 4th ed. New York: McGraw-Hill, Inc; 1978. p. 604.

    Google Scholar 

  971. Bergeron J, Normand T, Bharucha A, et al. Prevalence, geographical distribution and genealogical investigations of mutation 188 of lipoprotein lipase gene in French Canadian population of Quebec. Clin Genet. 1992;41:206.

    Article  PubMed  CAS  Google Scholar 

  972. Wilson DE, Emi M, Iverius P-H, et al. Phenotypic expression of heterozygous lipoprotein lipase deficiency in the extended pedigree of a proband homozygous for a missense mutation. J Clin Invest. 1990;86:735.

    Article  PubMed  CAS  Google Scholar 

  973. Breckenridge WC, Little JA, Steiner G, et al. Hypertriglyceridemia associated with deficiency of apolipoprotein C-II. N Engl J Med. 1978;298:1265.

    Article  PubMed  CAS  Google Scholar 

  974. Brunzell JD, Miller NE, Alaupovic P, et al. Familial Chylomicronemia due to a circulating inhibitor of lipoprotein lipase activity. J Lipid Res. 1983;24:12.

    PubMed  CAS  Google Scholar 

  975. Beaumont JL, Carlson LA, Cooper GR, et al. Classification of hyperlipidemias and hyperlipoproteinemias. Bull World Health Organ. 1971;43:891.

    Google Scholar 

  976. Greenberg BH, Blackwelder WC, Levy RI. Primary type V hyperlipoproteinemia. A descriptive study of 32 families. Ann Intern Med. 1977;87:526.

    PubMed  CAS  Google Scholar 

  977. Chait A, Robertson HT, Brunzell JD. Chylomicronemia syndrome in diabetes mellitus. Diabetes Care. 1981;4:343.

    Article  PubMed  CAS  Google Scholar 

  978. Chait A, Brunzell JD. Severe Hypertriglyceridemia: role of familial and acquired disorders. Metabolism. 1983;32:209.

    Article  PubMed  CAS  Google Scholar 

  979. Brunzell JD, Chait A. Lipoprotein metabolism. In: Rifkin H, Porte Jr D, editors. Ellenberg and Rifkin’s diabetes mellitus. New York: Elsevier; 1989.

    Google Scholar 

  980. Brunzell JD, Bierman EL. Chylomicronemia syndrome: interaction of genetic and acquired hypertriglyceridemia. Med Clin North Am. 1982;66:455.

    PubMed  CAS  Google Scholar 

  981. Brunzell JD, Schrott HG. The interaction of familial and secondary causes of hypertriglyceridemia: role of pancreatitis. Trans Assoc Am Physicians. 1973;86:245.

    PubMed  CAS  Google Scholar 

  982. Brunzell JD, Schrott HG, Motulsky AG, Bierman EL. Myocardial infarction in the familial forms of hypertriglyceridemia. Metabolism. 1976;25:313–20.

    Article  PubMed  CAS  Google Scholar 

  983. Fredrickson DS, Levy RI, Lees KS. Fat transport in lipoproteins – an integrated approach to mechanisms and disorders. N Engl J Med. 1967;276:34.

    Article  PubMed  CAS  Google Scholar 

  984. Morganroth J, Levy RI, Fredrickson DS. The biochemical, clinical, and genetic features of type III hyperlipoproteinemia. Ann Intern Med. 1975;82:158.

    PubMed  CAS  Google Scholar 

  985. Mahley RW, Apolipoprotein E. Cholesterol transport protein with expanding role in cell biology. Science. 1988;240:622.

    Article  PubMed  CAS  Google Scholar 

  986. Havel RJ. Familial dysbetalipoproteinemia. New aspects of pathogenesis and diagnosis. Med Clin North Am. 1982;66:441.

    PubMed  CAS  Google Scholar 

  987. Mahley RW, Weisgraber KH, Innerarity TL, Rall Jr SC. Genetic defects in lipoprotein metabolism: elevation of atherogenic lipoproteins caused by impaired catabolism. JAMA. 1991;265:78.

    Article  PubMed  CAS  Google Scholar 

  988. Mahley RW, Hussain MM. Chylomicron and chylomicrons remnant catabolism. Curr Opin Lipidol. 1991;2:170.

    Article  CAS  Google Scholar 

  989. Rall Jr SC, Mahley RW. The role of apolipoprotein E genetic variants in lipoprotein disorders. J Intern Med. 1992;231:653.

    Article  PubMed  CAS  Google Scholar 

  990. Hazzard WR, Bierman EL. Aggravation of broad-ß disease (type 3 hyperlipoproteinemia) by hypothyroidism. Arch Intern Med. 1972;130:822.

    Article  PubMed  CAS  Google Scholar 

  991. Feussner G, Ziegler R. Expression of type III hyperlipoproteinemia in a subject with secondary hypothyroidism bearing the apolipoprotein E2/2 phenotype. J Intern Med. 1991;230:183.

    Article  PubMed  CAS  Google Scholar 

  992. Brown MS, Goldstein JL. Lipoprotein receptors in the liver. Control of signals for plasma cholesterol traffic. J Clin Invest. 1983;72:743.

    Article  PubMed  CAS  Google Scholar 

  993. Angelin B, Raviola CA, Innerarity TL, Mahley RW. Regulation of hepatic lipoprotein receptors in the dog. Rapid regulation of apolipoprotein B, E receptors, but not of apolipoprotein E receptors, by intestinal lipoproteins and bile acids. J Clin Invest. 1983;71:816.

    Article  PubMed  CAS  Google Scholar 

  994. Myant NB. Cholesterol metabolism, LDL, and IDL receptors. San Diego: Academic; 1990.

    Google Scholar 

  995. Havel RJ, Goldstein JL, Brown MS. Lipoproteins and lipid transport. In: Bondy PK, Rosenberg LE, editors. Metabolic control and disease. 8th ed. Philadelphia: Saunders; 1980. p. 393.

    Google Scholar 

  996. Mahley RW, Hui DY, Innerarity TL, Weisgraber KH. Two independent lipoprotein receptors on hepatic membranes of dog, swine, and man. Apo-B,E and apo-E receptors. J Clin Invest. 1981; 68:1197.

    Article  PubMed  CAS  Google Scholar 

  997. Falko JM, Schonfeld G, Witztum JL, et al. Effects of estrogen therapy on apolipoprotein E in type III hyperlipoproteinemia. Metabolism. 1979;78:1171.

    Article  Google Scholar 

  998. Kushwaha RS, Hazzard WR, Gagne C, et al. Type III hyperlipoproteinemia: paradoxical hypolipidemic response to estrogen. Ann Intern Med. 1977;87:517.

    PubMed  CAS  Google Scholar 

  999. Thompson GR, Soutar AK, Spengel FA, et al. Defects of receptor-mediated low density lipoprotein catabolism in homozygous familial hypercholesterolemia and hypothyroidism in vivo. Proc Natl Acad Sci USA. 1981;78:2591.

    Article  PubMed  CAS  Google Scholar 

  1000. Hopkins PN, Wu LL, Schumacher MC, et al. Type III dyslipoproteinemia in patients heterozygous for familial hypercholesterolemia and apolipoprotein E2. Evidence for a gene-gene interaction. Arterioscler Thromb. 1991;11:1137.

    Article  PubMed  CAS  Google Scholar 

  1001. Hazzard WR, Warnick GR, Utermann G, Albers JJ. Genetic transmission of isoapolipoprotein E phenotypes in a large kindred: Relationship to dysbetalipoproteinemia and hyperlipidemia. Metabolism. 1981;30:79.

    Article  PubMed  CAS  Google Scholar 

  1002. Chait A, Albers JJ, Brunzell JD. Very low density lipoprotein overproduction in genetic forms of hypertriglyceridaemia. Eur J Clin Invest. 1980;10:17.

    PubMed  CAS  Google Scholar 

  1003. Tall A, Granot E, Brocia R, et al. Accelerated transfer of cholesteryl esters in dyslipidemic plasma. Role of cholesteryl ester transfer protein. J Clin Invest. 1987;79:1217.

    Article  PubMed  CAS  Google Scholar 

  1004. Wardell MR, Weisgraber KH, Havekes LM, Rall Jr SC. Apolipoprotein E 3-Leiden contains a ­seven-amino acid insertion that is a tandem repeat of residues 121 to 127. J Biol Chem. 1989;264:21205.

    PubMed  CAS  Google Scholar 

  1005. van den Maagdenberg AMJM, de Kuijff P, Stalenhoef AFH, et al. Apolipoprotein E 3-Leiden allele results from a partial gene duplication in exon 4. Biochem Biophys Res Commun. 1989;165:851.

    Article  PubMed  Google Scholar 

  1006. Horie Y, Fazio S, Westerlund JR, et al. The functional characteristics of a human apolipoprotein E variant (cysteine at residue 142) may explain its association with dominant expression of type III hyperlipoproteinemia. J Biol Chem. 1992;267:1962.

    PubMed  CAS  Google Scholar 

  1007. Fazio S, Horie Y, Weisgraber KH, et al. Preferential association of apolipoproteins E Leiden with very low density lipoproteins of human plasma. J Lipid Res. 1993;34:447.

    PubMed  CAS  Google Scholar 

  1008. Ji Z-S, Fazio S, Mahley RW. Variable heparan sulfate proteoglycan binding of apolipoprotein E variants may modulate the expression of type III hyperlipoproteinemia. J Biol Chem. 1994;269:13421.

    PubMed  CAS  Google Scholar 

  1009. Weisgraber KH, Rall Jr SC, Mahley RW, et al. Human apolipoprotein E. Determination of the heparin binding sites of apolipoprotein E 3. J Biol Chem. 1986;261:2608.

    Google Scholar 

  1010. Parker F. Xanthomas and hyperlipidemias. J Am Acad Dermatol. 1985;13:1.

    Article  PubMed  CAS  Google Scholar 

  1011. Haber C, Kwiterovich Jr PO. Dyslipoproteinemia and xanthomatosis. Pediatr Dermatol. 1984;1:261.

    Article  PubMed  CAS  Google Scholar 

  1012. Borrie P. Type III hyperlipoproteinaemia. Br Med J. 1969;2:665.

    Article  PubMed  CAS  Google Scholar 

  1013. Mishkel MA. Type III hyperlipoproteinaemia with xanthomatosis. In: Peters H, editor. Protides of the biological fluids. Oxford: Pergamon; 1972. p. 283.

    Google Scholar 

  1014. Vermeer BJ, Van Gent CM, Goslings B, Polano MK. Xanthomatosis and other clinical findings in patients with elevated levels of very low density lipoproteins. Br J Dermatol. 1979;100:657.

    Article  PubMed  CAS  Google Scholar 

  1015. Stuyt PMJ, Van’t Laar A. Clinical features of type III hyperlipoproteinaemia. Neth J Med. 1983;26:104.

    PubMed  CAS  Google Scholar 

  1016. Norum KR, Gjone E. Familial plasma lecithin:cholesterol acyltransferase deficiency. Biochemical study of a patient with a new inborn error of metabolism. Scand J Clin Lab Invest. 1967;20:231.

    Article  CAS  Google Scholar 

  1017. Gjone E, Norum KR. Familial serum-cholesterol ester deficiency: clinical study of a patient with a new syndrome. Acta Med Scand. 1968;183:387.

    PubMed  Google Scholar 

  1018. Torsvik H, Gjone E, Norum KR. Familial plasma cholesterol ester deficiency: clinical studies in a family. Acta Med Scand. 1968;183:107.

    Google Scholar 

  1019. Carlson LA, Philipson B. Fish-eye disease. A new familial condition with massive corneal opacities and dyslipoproteinemia. Lancet. 1979;2:921.

    Article  Google Scholar 

  1020. Carlson LA. Fish eye disease: a new family condition with massive corneal opacities and dyslipoproteinaemia. Eur J Clin Invest. 1982;12:41.

    Article  PubMed  CAS  Google Scholar 

  1021. Gjone E. Familial lecithin:cholesterol acyltransferase deficiency: a clinical survey. Scand J Clin Lab Invest. 1974;33 Suppl 137:73.

    Google Scholar 

  1022. Assmann G, Von Eckardstein A, Funke H. Lecithin:cholesterol acyltransferase deficiency and fish eye disease. Curr Opin Lipidol. 1991;2:110.

    Article  CAS  Google Scholar 

  1023. Glomset JA, Norum KR. The metabolic role of lecithin:cholesterol acyltransferase: perspectives from pathology. Adv Lipid Res. 1973;11:1.

    CAS  Google Scholar 

  1024. Klein H-G, Santamarina-Fojo S, Duverger N, et al. Fish-eye syndrome: a molecular defect in the lecithin:cholesterol acyltransferase (LCAT) gene associated with normal alpha-LCAT-specific activity: implications for classification and prognosis. J Clin Invest. 1993;92:479.

    Article  PubMed  CAS  Google Scholar 

  1025. Forte TM, Carlson LA. Electron microscopic structure of serum lipoproteins from patients with fish eye disease. Arteriosclerosis. 1984;4:130.

    Article  PubMed  CAS  Google Scholar 

  1026. Tybjaerg-Hansen A, Nordestgaard BG, Gerdes LU, et al. Genetic markers in the apo A1-CIII-AIV gene cluster for combined hyperlipidemia, hypertriglyceridemia, and predisposition to atherosclerosis. Atherosclerosis. 1993;100:157.

    Article  PubMed  CAS  Google Scholar 

  1027. Moennig G, Wiebusch H, Enbergs A, et al. Detection of missense mutations in the genes for lipoprotein lipase and hepatic triglyceride lipase in patients with dyslipidemia undergoing coronary angiography. Atherosclerosis. 2000;149:395.

    Article  PubMed  CAS  Google Scholar 

  1028. Holzl B, Kraft HG, Wiebusch H, et al. Two novel mutations in the lipoprotein lipase gene in a family with marked hypertriglyceridemia in heterozygous carriers. Potential interaction with the polymorphic marker D1S104 on chromosome 1q21-q23. J Lipid Res. 2000;41:234.

    Google Scholar 

  1029. Ordovas JM, Civeira F, Genest Jr J, et al. Restriction fragment length polymorphisms of the apolipoprotein A-1, C-III, A-IV gene locus. Relationships with lipids, apolipoproteins, and premature coronary artery disease. Atherosclerosis. 1991;87:75.

    Article  PubMed  CAS  Google Scholar 

  1030. Rees A, Shoulders CC, Stocks J, et al. DNA polymorphism adjacent to human apoprotein A-1 gene: relation to hypertriglyceridemia. Lancet. 1983;1:444.

    Article  PubMed  CAS  Google Scholar 

  1031. Aalto-Setala K, Kontula K, Sane T, et al. DNA polymorphisms of apolipoprotein A-1/C-III and insulin genes in familial hypertriglyceridemia and coronary heart disease. Atherosclerosis. 1987;66:145.

    Article  PubMed  CAS  Google Scholar 

  1032. Hayden MR, Kirk H, Clark C, et al. DNA polymorphisms in and around the apo A1-CIII genes and genetic hyperlipidemias. Am J Hum Genet. 1987;40:421.

    PubMed  CAS  Google Scholar 

  1033. Rees A, Stocks J, Sharpe CR, et al. Deoxyribonucleic acid polymorphism in the apolipoprotein A-1-C-III gene cluster. Association with hypertriglyceridemia. J Clin Invest. 1985;76:1090.

    Article  PubMed  CAS  Google Scholar 

  1034. Chamberlain JC, Thorn JA, Oka K, et al. DNA polymorphisms at the lipoprotein lipase gene: association in normal and hypertriglycerideaemic subjects. Atherosclerosis. 1989;79:85.

    Article  PubMed  CAS  Google Scholar 

  1035. Dammerman M, Sandkuijl LA, Halaas JL, et al. An apolipoprotein CIII haplotype protective against hypertriglyceridemia is specified by promoter and 3’ untranslated region polymorphisms. Proc Natl Acad Sci USA. 1993;90:4562.

    Article  PubMed  CAS  Google Scholar 

  1036. Needham EW, Mattu RK, Rees A, et al. A polymorphism in the human apolipoprotein A1 promoter region: a study in hypertriglyceridaemic patients. Hum Hered. 1994;44:94.

    Article  PubMed  CAS  Google Scholar 

  1037. Barre DE, Guerra R, Verstraete R, et al. Genetic analysis of a polymorphism in the human apolipoprotein A-1 gene promoter: effect on plasma HDL cholesterol levels. J Lipid Res. 1994;35:1292.

    PubMed  CAS  Google Scholar 

  1038. Tsai MY, Hanson NQ, Copeland KR, et al. Determination of a T/G polymorphism at nucleotide 3206 of the apolipoprotein CIII gene by amplification refractory mutation system. Clin Chem. 1994;40:2235.

    PubMed  CAS  Google Scholar 

  1039. Zeng Q, Dammerman M, Takada Y, et al. An apolipoprotein CIII marker associated with hypertriglyceridemia in Caucasians also confers increased risk in a west Japanese population. Hum Genet. 1995;95:371.

    Article  PubMed  CAS  Google Scholar 

  1040. Zhang Q, Liu Y, Liu BW, et al. Common genetic variants of lipoprotein lipase and apolipoproteins A1-CIII that relate to coronary artery disease: a study in Chinese and European subjects. Mol Genet Metab. 1998;64:177.

    Article  PubMed  CAS  Google Scholar 

  1041. Zhang Q, Liu B, Liu Y, et al. DNA polymorphisms of apolipoprotein A1 gene in Chinese endogenous hypertriglyceridemics. Hua His I Ko Ta Hsueh Hsueh Pao. 1997;28:233.

    Google Scholar 

  1042. Schonfeld G, George PK, Miller J, et al. Apolipoprotein C-II and C-III levels in hyperlipoproteinemia. Metabolism. 1979;28:1001.

    Article  PubMed  CAS  Google Scholar 

  1043. Ghiselli G, Schaefer EJ, Zech LA, et al. Increased prevalence of apolipoprotein E4 in type V hyperlipoproteinemia. J Clin Invest. 1982;70:474.

    Article  PubMed  CAS  Google Scholar 

  1044. Kuusi T, Taskinen M-R, Solakivi T, Kauppinen-Makelin R. Role of apolipoproteins E and C in type V hyperlipoproteinemia. J Lipid Res. 1988;29:293.

    PubMed  CAS  Google Scholar 

  1045. Hegele RA, Breslow JL. Apolipoprotein genetic variation in the assessment of atherosclerosis susceptibility. Genet Epidemiol. 1987;4:163.

    Article  PubMed  CAS  Google Scholar 

  1046. Fox IH, John D, De Bruyne S, et al. Hyperuricemia and hypertriglyceridemia: metabolic basis for the association. Metabolism. 1985;34:741.

    Article  PubMed  CAS  Google Scholar 

  1047. Giacomello A, Sciascio N, Quaratino CP. Relation between serum triglyceride level, serum urate concentration, and fractional urate excretion. Metabolism. 1977;46:1085.

    Article  Google Scholar 

  1048. Tinahones JF, Perez-Lindon G, C-Soriguer FJ, et al. Dietary alterations in plasma very low density lipoprotein levels modify renal excretion of urates in hyperuricemic-hypertriglyceridemic patients. J Clin Endocrinol Metab. 1997;82:1188.

    Article  PubMed  CAS  Google Scholar 

  1049. Matsubara K, Matsuzawa Y, Jiao S, et al. Relationship between hypertriglyceridemia and uric acid production in primary gout. Metabolism. 1989;38:698.

    Article  PubMed  CAS  Google Scholar 

  1050. Tinahones FJ, Collantes E, C-Soriguer FJ, et al. Increased VLDL levels and diminished renal excretion of uric acid in hyperuricaemic-hypertriglyceridaemic patients. Br J Rheumatol. 1995;34:920.

    Article  PubMed  CAS  Google Scholar 

  1051. Timar O, Sester F, Levy E. Metabolic syndrome X: a review. Can J Cardiol. 2000;16:779.

    PubMed  CAS  Google Scholar 

  1052. Wassef GN. Lipoprotein (a) in android obesity and NIDDM: a new member in “the metabolic syndrome”. Biomed Pharmacother. 1999;53:462.

    Article  PubMed  CAS  Google Scholar 

  1053. Miccoli R, Ceraudo AM, Manfredi SG, et al. Atherogenic dyslipidemia, metabolic syndrome and cardiovascular risk. Cardiologia. 1999;44:885.

    PubMed  CAS  Google Scholar 

  1054. Huth K, Burkard M, Goebel T. Dyslipoproteinemia and diabetes mellitus in a metabolic syndrome. Fortschr Med. 1992;110:200.

    PubMed  CAS  Google Scholar 

  1055. Vuorinen-Markkola H, Yki-Jaarvinen H. Hyperuri­cemia and insulin resistance. J Clin Endocrinol Metab. 1994;78:25.

    Article  PubMed  CAS  Google Scholar 

  1056. Steinmetz A, Schafer JR. Secondary disorders of lipid metabolism, metabolic syndrome and familial combined hyperlipidemia. Wien Med Wochenschr. 1994;144:299.

    PubMed  CAS  Google Scholar 

  1057. Reaven GM. The kidney: an unwilling accomplice in syndrome X. Am J Kidney Dis. 1997;30:928.

    Article  PubMed  CAS  Google Scholar 

  1058. Grundy SM. Hypertriglyceridemia, atherogenic dyslipidemia and the metabolic syndrome. Am J Cardiol. 1998;81:18B.

    Article  PubMed  CAS  Google Scholar 

  1059. Wasada T, Katsumori K, Saeki A, Iwatani M. Hyperuricemia and insulin resistance. Nippon Rinsho. 1996;54:3293.

    PubMed  CAS  Google Scholar 

  1060. Rathmann W, Funkhouser E, Dyer AR, Roseman JM. Relations of hyperuricemia with the various components of the insulin resistance syndrome in young black and white adults: the CARDA study. Coronary Artery Risk Development in Young Adults. Ann Epidemiol. 1998;8:250.

    Article  PubMed  CAS  Google Scholar 

  1061. Dessein PH, Shipton EA, Stanwix AE, et al. Beneficial effects of weight loss associated with moderate calorie/carbohydrate restriction, and increased proportional intake of protein and unsaturated fat on serum urate and lipoprotein levels in gout: a pilot study. Ann Rheum Dis. 2000;59:539.

    Article  PubMed  CAS  Google Scholar 

  1062. Gerhardt U, Grosse Huttmann M, Hohage H. Influence of hyperglycemia and hyperuricemia on long-term transplant survival in kidney transplant recipients. Clin Transplant. 1999;13:375.

    Article  PubMed  CAS  Google Scholar 

  1063. Gravholt CH, Juul S, Naeraa RW, Hansen J. Morbidity in Turner syndrome. J Clin Epidemiol. 1998;51:147.

    Article  PubMed  CAS  Google Scholar 

  1064. Iannello S, Cavaliere G, Ferro G, et al. Tophaceous gout in plurimetabolic syndrome. Minerva Med. 1998;89:419.

    PubMed  CAS  Google Scholar 

  1065. Wien YT, Chan CS, Liu CS. Hyperuricaemia and type 2 diabetes mellitus. Diabetes Nutr Metab. 1999;12:286.

    Google Scholar 

  1066. Lai SW, Tan CK, Ng KC. Epidemiology of hyperglycemia in elderly persons. J Geront A Biol Sci Med Sci. 2000;55:M257.

    Article  CAS  Google Scholar 

  1067. Wyngaarden JB, Kelley WN. Gout. In: Stanbury JB, Wyngaarden JB, Fredrickson DS, editors. The metabolic basis of inherited disease. 4th ed. New York: McGraw-Hill, Inc; 1978. p. 916.

    Google Scholar 

  1068. Wyngaarden JB, Kelley WN. Gout and hyperuricemia. New York: Grune & Stratton; 1976. p. 32.

    Google Scholar 

  1069. Cannon PJ, Stason WB, Demartini FE. Hyperuricemia in primary and renal hypertension. N Engl J Med. 1966;275:457.

    Article  PubMed  CAS  Google Scholar 

  1070. Garrick R, Bauer GE, Evan CE. Serum uric acid in normal and hypertensive Australian subjects: from a continuing epidemiological survey on hypertension commenced in 1955. Aust N Z J Med. 1972;2:351.

    Article  PubMed  CAS  Google Scholar 

  1071. Breckenridge A. Hypertension and hyperuricemia. Lancet. 1966;1:15.

    Article  PubMed  CAS  Google Scholar 

  1072. Saggiani F, Pilati S, Targher G, et al. Serum uric acid and related factors in 500 hospitalized patients. Metabolism. 1996;45:1557.

    Article  PubMed  CAS  Google Scholar 

  1073. Kannel WB, Wilson PW, Zhang TJ. The epidemiology of impaired glucose intolerance and hypertension. Am Heart J. 1991;121:1268.

    Article  PubMed  CAS  Google Scholar 

  1074. Zanchetti A. Hyperlipidemia in the hypertensive patient. Am J Med. 1994;96:35.

    Article  Google Scholar 

  1075. Berchtod P, Berger M, Jorgens V, et al. Cardiovascular risk factors and HDL-cholesterol levels in obesity. Int J Obes. 1981;5:1.

    Google Scholar 

  1076. Dollery CT. Risk predictors, risk indicators, and benefit factors in hypertension. Am J Med. 1987;82:2.

    Article  PubMed  CAS  Google Scholar 

  1077. Heyden S, Borhani NO, Tyroler HA, et al. The relationship of weight change to changes in blood pressure, serum uric acid, cholesterol and glucose in the treatment of hypertension. J Chronic Dis. 1985;38:281.

    Article  PubMed  CAS  Google Scholar 

  1078. Johnson RJ, Kivlighn SD, Kim YG, et al. Reappraisal of the pathogenesis and consequences of hyperuricemia in hypertension, cardiovascular disease, and renal disease. Am J Kidney Dis. 1999;33:225.

    Article  PubMed  CAS  Google Scholar 

  1079. Messerli FH, Frohlich ED, Dreslinski GR, et al. Serum uric acid in essential hypertension: an indicator of renal vascular involvement. Ann Intern Med. 1980;93:817.

    PubMed  CAS  Google Scholar 

  1080. Saito I, Saruta T, Kondo K. Serum uric acid and the renin-angiotensin system in hypertension. J Am Geriatr Soc. 1978;26:241.

    PubMed  CAS  Google Scholar 

  1081. Prebis JW, Gruskin AB, Polinsky MS. Uric acid in childhood essential hypertension. J Pediatr. 1981;98:702.

    Article  PubMed  CAS  Google Scholar 

  1082. Simon NM, Smucker JE, O’Connor Jr VJ. Differential uric acid excretion in essential and renal hypertension. Circulation. 1969;39:121.

    Article  PubMed  CAS  Google Scholar 

  1083. Donskov AS, Balkarov IM, Fadina ZM, et al. Urate affection of kidneys and metabolic disturbances in hypertensive patients. Ter Arkh. 1999;71:53.

    PubMed  CAS  Google Scholar 

  1084. Ruilope LM, Rodicio JL. Renal surrogates in essential hypertension. Clin Exp Hypertens. 1999;21:609.

    Article  PubMed  CAS  Google Scholar 

  1085. Nishioka K, Mikanagi K. A retrospective study of the cause of death, in Japan, of patients with gout. Ryumachi. 1981;21:29.

    PubMed  Google Scholar 

  1086. Brand FN, McGee DL, Kannel WB, et al. Original contributions: hyperuricemia as a risk factor of coronary heart disease: the Framingham study. Am J Epidemiol. 1985;121:11. Peterson B, Trell E. Raised serum urate concentrations as risk factor for premature mortality in middle aged men. Br Med J. 1983;287:7.

    Google Scholar 

  1087. Reunanen A, Takkunen H, Knekt P, Aromaa A. Hyperuricemia as a risk factor for cardiovascular mortality. Acta Med Scand. 1982;668:49.

    CAS  Google Scholar 

  1088. Beard JT. Serum uric acid and coronary heart disease. Am Heart J. 1983;106:397.

    Article  PubMed  Google Scholar 

  1089. Peterson B, Trell E. Raised serum urate concentrations as a risk factor for premature mortality in middle aged men. Br Med J. 1983;287:7.

    Article  Google Scholar 

  1090. Tsutsumi Z, Yamamoto T, Takahashi S, et al. Gout and atherosclerosis. Nippon Rinsho. 1996;54:3297.

    PubMed  CAS  Google Scholar 

  1091. Ames BN, Cathcart R, Schwiers E, Hochstein P. Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis. Proc Natl Acad Sci USA. 1981;78:6858.

    Article  PubMed  CAS  Google Scholar 

  1092. Cutler RG. Urate and ascorbate: their possible roles as antioxidants in determining longevity of mammalian species. Arch Gerontol Geriatr. 1984;3:321.

    Article  PubMed  CAS  Google Scholar 

  1093. Sevanian A, Davies KJ, Hochstein P. Conservation of vitamin C by uric acid in blood. J Free Radic Biol Med. 1985;1:117.

    Article  PubMed  CAS  Google Scholar 

  1094. Davies KJ, Sevanian A, Muakkassah-Kelly SF, Hochstein P. Uric acid-iron ion complexes. A new aspect of the antioxidant functions of uric acid. Biochem J. 1986;235:747.

    PubMed  CAS  Google Scholar 

  1095. Wayner DD, Burton GW, Ingold KU, et al. The relative contributions of vitamin E, urate, ascorbate, and proteins to the total peroxyl radical-trapping antioxidant activity of human blood plasma. Biochim Biophys Acta. 1987;924:408.

    Article  PubMed  CAS  Google Scholar 

  1096. Maples KR, Mason RP. Free radical metabolite of uric acid. J Biol Chem. 1988;263:1709.

    PubMed  CAS  Google Scholar 

  1097. Peden DB, Hohman R, Brown ME, et al. Uric acid is a major antioxidant in human nasal airway secretions. Proc Natl Acad Sci USA. 1990;87:7638.

    Article  PubMed  CAS  Google Scholar 

  1098. Sevanian A, Davies KJ, Hochstein P. Serum urate as an antioxidant for ascorbic acid. Am J Clin Nutr. 1991;54(suppl):1129S.

    PubMed  CAS  Google Scholar 

  1099. Becker BF. Towards the physiological function of uric acid. Free Radic Biol Med. 1993;14:615.

    Article  PubMed  CAS  Google Scholar 

  1100. Leyton ME, Wood JG, Yan ZY, Forster J. Ischemia/reperfusion alters uric acid and ascorbic acid levels in liver. J Surg Res. 1996;64:1.

    Article  Google Scholar 

  1101. Sahnown Z, Jamoussi K, Zeghal KM. Free radicals and antioxidants: human physiology, pathology and therapeutic aspects. Therapie. 1997;52:251.

    Google Scholar 

  1102. Rosell M, Regnstrom J, Kallner A, Hellenius ML. Serum urate determines antioxidant capacity in middle-aged men – a controlled, randomized diet and exercise intervention study. J Intern Med. 1999;246:219.

    Article  PubMed  CAS  Google Scholar 

  1103. Skinner KA, White CR, Patel R, et al. Nitrosation of uric acid by peroxynitrite Formation of a vasoactive nitric oxide donor. J Biol Chem. 1998;273:24491.

    Article  PubMed  CAS  Google Scholar 

  1104. Holvoet P. Endothelial dysfunction, oxidation of low-density lipoprotein, and cardiovascular disease. Ther Apher. 1999;3:287.

    Article  PubMed  CAS  Google Scholar 

  1105. Navab M, Berliner JA, Watson AD, et al. The yin and yang of oxidation in the development of the fatty streak: a review based on the 1994 George Lyman Duff Memorial Lecture. Arterioscler Thromb Vasc Biol. 1996;16:831.

    Article  PubMed  CAS  Google Scholar 

  1106. Parhami F, Fang ZT, Fogelman AM, et al. Minimally modified low density lipoprotein-induced inflammatory responses in endothelial cells are mediated by cyclic adenosine monophosphate. J Clin Invest. 1993;92:471.

    Article  PubMed  CAS  Google Scholar 

  1107. Henriksen T, Mahoney EM, Steinberg D. Enhanced macrophage degradation of low density lipoprotein previously incubated with cultured endothelial cells: recognition by receptors for acylated low density lipoproteins. Proc Natl Acad Sci USA. 1981;78:6499.

    Article  PubMed  CAS  Google Scholar 

  1108. Kaplan M, Aviram M. Oxidized low density ­lipoprotein: atherogenic and proinflammatory ­characteristics during macrophage foam cell formation. An inhibitory role for nutritional antioxidants and serum paraoxonase. Clin Chem Lab Med. 1999;37:777.

    Article  PubMed  CAS  Google Scholar 

  1109. Quinn MT, Parthasarathy S, Steinberg D. Lysophosphatidylcholine: a chemotactic factor for human monocytes and its potential role in atherogenesis. Proc Natl Acad Sci USA. 1988;85:2805.

    Article  PubMed  CAS  Google Scholar 

  1110. Frostegard J, Haegerstrand A, Gidlund M, Nilsson J. Biologically modified LDL increases the adhesive properties of endothelial cells. Atherosclerosis. 1991;90:119.

    Article  PubMed  CAS  Google Scholar 

  1111. Quinn MT, Parthasarathy S, Fong LG, Steinberg D. Oxidatively modified low density lipoproteins: a potential role in recruitment and retention of monocyte/macrophages during atherogenesis. Proc Natl Acad Sci USA. 1987;84:2995.

    Article  PubMed  CAS  Google Scholar 

  1112. Schwartz CJ, Valente AJ, Sprague EA. The pathogenesis of atherosclerosis: an overview. Clin Cardiol. 1991;14(suppl):11.

    Google Scholar 

  1113. Cathcart MK, Morel DW, Chisholm III GM. Monocytes and neutrophils oxidize low density lipoprotein making it cytotoxic. J Leukoc Biol. 1985;38:341.

    PubMed  CAS  Google Scholar 

  1114. Palinski W, Rosenfeld ME, Yla-Herttuala S, et al. Low density lipoprotein undergoes oxidative modification in vivo. Proc Natl Acad Sci USA. 1989;86:1372.

    Article  PubMed  CAS  Google Scholar 

  1115. Salonen T, Yla-Herttuala S, Yamamoto R, et al. Autoantibody against oxidized LDL and progression of carotid atherosclerosis. Lancet. 1992;339:883.

    Article  PubMed  CAS  Google Scholar 

  1116. Holvoet P, Perez G, Zhao Z, et al. Malondialdehyde-modified low density lipoproteins in patients with atherosclerotic disease. J Clin Invest. 1995;95:2611.

    Article  PubMed  CAS  Google Scholar 

  1117. Abuja PM. Ascorbate prevents prooxidant effects of urate in oxidation of human low density lipoprotein. FEBS Lett. 1999;446:305.

    Article  PubMed  CAS  Google Scholar 

  1118. Schlotte V, Sevanian A, Hochstein P, Weithmann KU. Effect of uric acid and chemical analogues on oxidation of human low density lipoprotein in vitro. Free Radic Biol Med. 1998;25:839.

    Article  PubMed  CAS  Google Scholar 

  1119. Nieto FJ, Iribarren C, Gross MD, et al. Uric acid serum antioxidant capacity: a reaction to atherosclerosis? Atherosclerosis. 2000;148:131.

    Article  PubMed  CAS  Google Scholar 

  1120. Hasegawa T, Kuroda M. A new role of uric acid as an antioxidant in human plasma. Rinsho Byori. 1989;37:1020.

    PubMed  CAS  Google Scholar 

  1121. Boda D. Role of hyperuricemia in critically ill patients especially newborns. Acta Paediatr Hung. 1984;25:23.

    PubMed  CAS  Google Scholar 

  1122. Jabs CM, Sigurdsson GH, Neglen P. Plasma levels of high-energy compounds compared with severity of illness in critically ill patients in the intensive care unit. Surgery. 1998;124:65.

    Article  PubMed  CAS  Google Scholar 

  1123. MacKinnon KL, Molnar Z, Lowe D, et al. Measures of total free radical activity in critically ill patients. Clin Biochem. 1999;32:263.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Newcombe, D.S. (2013). Clinical Aspects of Gout and Associated Disease States. In: Robinson, D. (eds) Gout. Springer, London. https://doi.org/10.1007/978-1-4471-4264-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4264-5_5

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4263-8

  • Online ISBN: 978-1-4471-4264-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics