Skip to main content
Log in

Genetics of familial combined hyperlipidemia

  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Complex disorders are caused by several environmental factors that interact with multiple genes. These diseases are common at the population level and constitute a major health problem in Western societies. Familial combined hyperlipidemia (FCHL) is characterized by elevated levels of serum total cholesterol, triglycerides, or both. This disorder is estimated to be common in Western populations with a prevalence of 1% to 2%. In addition, 14% of patients with premature coronary heart disease (CHD) have FCHL, making this disorder one of the most common genetic dyslipidemias underlying premature CHD. Both genetic and environmental factors are suggested to affect the complex FCHL phenotype, but no specific susceptibility genes to FCHL have been identified. It is hoped that further analysis of the first FCHL locus and other new loci obtained in genome-wide scans will guide us to genes predisposing to this complex disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goldstein JL, Schrott HG, Hazzard WR, et al.: Hyperlipidemia in coronary heart disease II. Genetic analysis of lipid levels in 176 families and delineation of a new inherited disorder, combined hyperlipidemia. J Clin Invest 1973, 52:1544–1568.

    PubMed  CAS  Google Scholar 

  2. Nikkilä EA, Aro A: Family study of serum lipids and lipoproteins in coronary heart disease. Lancet 1973, 1:954–959.

    Article  PubMed  Google Scholar 

  3. Rose HG, Kranz P, Weinstock M, et al.: Inheritance of combined hyperlipoproteinemia: Evidence for a new lipoprotein phenotype. Am J Med 1973, 54:148–160.

    Article  PubMed  CAS  Google Scholar 

  4. Grundy SM, Chait A, Brunzell JD: Familial combined hyperlipidemia workshop. Arteriosclerosis 1987, 7:203–207.

    Google Scholar 

  5. Genest JJ Jr, Martin-Munley SS, McNamara JR, et al.: Familial lipoprotein disorders in patients with premature coronary artery disease. Circulation 1992, 85:2025–2033.

    PubMed  Google Scholar 

  6. Pajukanta P: The Search for Familial Combined Hyperlipidemia Susceptibility Genes. Helsinki: National Public Health Institute; 1998.

    Google Scholar 

  7. Pajukanta P, Nuotio I, Terwilliger JD, et al.: Linkage of familial combined hyperlipidemia to chromosome 1q21–q23. Nat Genet 1998, 18:369–373.

    Article  PubMed  CAS  Google Scholar 

  8. Cullen P, Farren B, Scott J, et al.: Complex segregation analysis provides evidence for a major gene acting on serum triglyceride levels in 55 British families with familial combined hyperlipidemia. Arterioscler Thromb 1994, 14:1233–1249.

    PubMed  CAS  Google Scholar 

  9. Jarvik GP, Brunzell JD, Austin MA, et al.: Genetic predictors of FCHL in four large pedigrees. Influence of apoB level major locus predicted genotype and LDL subclass phenotype. Arterioscler Thromb 1994, 14:1687–1694.

    PubMed  CAS  Google Scholar 

  10. Bredie SJH, Kiemeney LA, de Haan AFJ, et al.: Inherited susceptibility determines the distribution of low density lipoprotein subfraction profiles in familial combined hyperlipidemia. Am J Hum Genet 1996, 58:812–822.

    PubMed  CAS  Google Scholar 

  11. Juo S-HH, Bredie SJH, Kiemeney LA, et al.: A common genetic mechanism determines plasma apolipoprotein B levels and dense LDL subfraction distribution in familial combined hyperlipidemia. Am J Hum Genet 1998, 63:586–594.

    Article  PubMed  CAS  Google Scholar 

  12. Brunzell JD, Albers JJ, Chait A, et al.: Plasma lipoproteins in familial combined hyperlipidemia and monogenic familial hypertriglyceridemia. J Lipid Res 1983, 24:147–155.

    PubMed  CAS  Google Scholar 

  13. Kwiterovich PO Jr: Genetics and molecular biology of familial combined hyperlipidemia. Curr Opin Lipidol 1993, 4:133–143.

    Article  CAS  Google Scholar 

  14. Reymer PWA, Groenemeyer BE, Gagne E, et al.: A frequently occurring mutation in the lipoprotein lipase gene (Asn291Ser) contributes to the expression of familial combined hyperlipidemia. Hum Mol Genet 1995, 4:1543–1549.

    Article  PubMed  CAS  Google Scholar 

  15. Dallinga-Thie GM, Bu XD, van Linde-Sibenius Trip M, et al.: Apolipoprotein A-I/C-III/A-IV gene cluster in familial combined hyperlipidemia: Effects on LDL-cholesterol and apolipoproteins B and C-III. J Lipid Res 1996, 37:136–147.

    PubMed  CAS  Google Scholar 

  16. Pihlajamäki J, Rissanen J, Heikkinen S, et al.: Codon 54 polymorphism of the human intestinal fatty acid binding protein 2 gene is associated with dyslipidemias but not with insulin resistance in patients with familial combined hyperlipidemia. Arterioscler Thromb Vasc Biol 1997, 17:1039–1044.

    PubMed  Google Scholar 

  17. De Graaf J, Stalenhoef AFH: Defects of lipoprotein metabolism in familial combined hyperlipidaemia. Curr Opin Lipidol 1998, 9:189–196.

    Article  PubMed  Google Scholar 

  18. Chait A, Albers JJ, Brunzell JD: Very low density lipoprotein overproduction in genetic forms of hypertriglyceridemia. Eur J Clin Invest 1980, 10:17–22.

    PubMed  CAS  Google Scholar 

  19. Castro Cabezas M, de Bruin TWA, de Valk HW, et al.: Impaired fatty acid metabolism in familial combined hyperlipidemia. A mechanism associating hepatic apolipoprotein B overproduction and insulin resistance. J Clin Invest 1993, 92:160–168.

    PubMed  CAS  Google Scholar 

  20. Arner P: Is familial combined hyperlipidaemia a genetic disorder of adipose tissue? Curr Opin Lipidol 1997, 8:89–94.

    Article  PubMed  CAS  Google Scholar 

  21. Aitman TJ, Godsland IF, Farren B, et al.: Defects of insulin action on fatty acid and carbohydrate metabolism in familial combined hyperlipidemia. Arterioscler Thromb Vasc Biol 1997, 17:748–754.

    PubMed  CAS  Google Scholar 

  22. Vakkilainen J, Porkka KV, Nuotio I, et al.: Glucose intolerance in familial combined hyperlipidemia. Eur J Clin Invest 1998, 28:24–32.

    Article  PubMed  CAS  Google Scholar 

  23. Lander ES, Schork NJ: Genetic dissection of complex traits. Science 1994, 265:2037–2048.

    Article  PubMed  CAS  Google Scholar 

  24. Pajukanta P, Peltonen L: How to tackle genetic loci predisposing to atherosclerosis. Curr Opin Lipidol 1997, 8:95–100.

    Article  PubMed  CAS  Google Scholar 

  25. Babirak SP, Brown G, Brunzell JD: Familial combined hyperlipidemia and abnormal lipoprotein lipase. Arterioscler Thromb 1992, 12:1176–1183.

    PubMed  CAS  Google Scholar 

  26. Gagne E, Genest J, Zhang H, et al.: Analysis of DNA changes in the LPL gene in patients with familial combined hyperlipidemia. Arterioscler Thromb 1994, 14:1250–1257.

    PubMed  CAS  Google Scholar 

  27. Nevin DN, Brunzell JD, Deeb SS: The LPL gene in individuals with familial combined hyperlipidemia and decreased LPL-activity. Arterioscler Thromb 1994, 14:869–873.

    PubMed  CAS  Google Scholar 

  28. Marcil M, Boucher B, Gagne E, et al.: Lack of association of the apolipoprotein AI-CIII-AIV gene XmnI and SstI polymorphisms and of the lipoprotein lipase gene mutations in familial combined hyperlipoproteinemia in French Canadian subjects. J Lipid Res 1996, 37:309–319.

    PubMed  CAS  Google Scholar 

  29. Pajukanta P, Porkka KVK, Antikainen M, et al.: No evidence of linkage between familial combined hyperlipidemia and genes encoding lipolytic enzymes in Finnish families. Arterioscler Thromb Vasc Biol 1997, 17:841–850.

    PubMed  CAS  Google Scholar 

  30. De Bruin TWA, Mailly F, van Barlingen HHJJ, et al.: Lipoprotein lipase gene mutations D9N and N291S in four pedigrees with familial combined hyperlipidaemia. Eur J Clin Invest 1996, 26:631–639.

    PubMed  Google Scholar 

  31. Hoffer MJV, Bredie SJH, Boomsma DI, et al.: The lipoprotein lipase (Asn291 → Ser) mutation is associated with elevated lipid levels in families with familial combined hyperlipidaemia. Atherosclerosis 1996, 119:159–167.

    Article  PubMed  CAS  Google Scholar 

  32. Gehrisch S, Tesche R, Kostka H, et al.: Point mutations in the hepatic triglyceride lipase (HTGL) gene in familial combined hyperlipidemia (FCHL) [abstr]. Circulation 1995, 92 (suppl I):493.

    Google Scholar 

  33. Hayden MR, Kirk H, Clark C, et al.: DNA polymorphisms in and around the Apo-A1-CIII genes and genetic hyperlipidemias. Am J Hum Genet 1987, 40:421–430.

    PubMed  CAS  Google Scholar 

  34. Wojciechowski AP, Farrall M, Cullen P: Familial combined hyperlipidaemia linked to the apolipoprotein AI-CIII-AIV gene cluster on chromosome 11q23–q24. Nature 1991, 349:161–164.

    Article  PubMed  CAS  Google Scholar 

  35. Tybjaerg-Hansen A, Nordestgaard BG, Gerdes LU, et al.: Genetic markers in the apo AI-CIII-AIV gene cluster for combined hyperlipidemia, hypertriglyceridemia, and predisposition to atherosclerosis. Atherosclerosis 1993, 100:157–169.

    Article  PubMed  CAS  Google Scholar 

  36. Xu CF, Talmud P, Schuster H, et al.: Association between genetic variation at the APO AI-CIII-AIV gene cluster and familial combined hyperlipidaemia. Clin Genet 1994, 46:385–397.

    Article  PubMed  CAS  Google Scholar 

  37. Ribalta J, La Ville AE, Vallve JC, et al.: A variation in the apolipoprotein C-III gene is associated with an increased number of circulating VLDL and IDL particles in familial combined hyperlipidemia. J Lipid Res 1997, 38:1061–1069.

    PubMed  CAS  Google Scholar 

  38. Tahvanainen E, Pajukanta P, Porkka K, et al.: Haplotypes of the apoA-I/C-III/A-IV gene cluster and familial combined hyperlipidemia. Arterioscler Thromb Vasc Biol 1998, 18:1810–1817.

    PubMed  CAS  Google Scholar 

  39. Wijsman EM, Brunzell JD, Jarvik GP, et al.: Evidence against linkage of familial combined hyperlipidemia to the apolipoprotein AI-CIII-AIV gene complex. Arterioscler Thromb Vasc Biol 1998, 18:215–226.

    PubMed  CAS  Google Scholar 

  40. Dallinga-Thie GM, van Linde-Sibenius Trip M, Rotter JI, et al.: Complex genetic contribution of the apoAI-CIII-AIV gene cluster to familial combined hyperlipidemia. Identification of different susceptibility haplotypes. J Clin Invest 1997, 99:953–961.

    Article  PubMed  CAS  Google Scholar 

  41. Masucci-Magoulas L, Goldberg IJ, Bisgaier CL, et al.: A mouse model with features of familial combined hyperlipidemia. Science 1997, 275:391–394.

    Article  PubMed  CAS  Google Scholar 

  42. Nishina PM, Johnson JP, Naggert JK, et al.: Linkage of atherogenic lipoprotein phenotype to the low density lipoprotein receptor locus on the short arm of chromosome 19. Proc Natl Acad Sci U S A 1992, 89:708–712.

    Article  PubMed  CAS  Google Scholar 

  43. Rotter JI, Bu X, Cantor RM, et al.: Multilocus genetic determinants of LDL particle size in coronary artery disease families. Am J Hum Genet 1996, 58:585–594.

    PubMed  CAS  Google Scholar 

  44. Allayee H, Aouizerat BE, Cantor RM, et al.: Families with familial combined hyperlipidemia and families enriched for coronary heart disease share genetic determinants for the atherogenic lipoprotein phenotype. Am J Hum Genet 1998, 63:577–585.

    Article  PubMed  CAS  Google Scholar 

  45. Castellani LW, Weinreb A, Bodnar J, et al.: Mapping a gene for combined hyperlipidaemia in a mutant mouse strain. Nat Genet 1998, 18:374–377.

    Article  PubMed  CAS  Google Scholar 

  46. Lander E, Kruglyak L: Genetic dissection of complex traits: Guidelines for interpreting and reporting linkage results. Nat Genet 1995, 11:241–247.

    Article  PubMed  CAS  Google Scholar 

  47. Pajukanta P, Terwilliger JD, Perola M, et al.: Genome-wide scan for familial combined hyperlipidemia genes in Finnish families suggesting multiple susceptibility loci influencing triglyceride, cholesterol and apolipoprotein B levels. Am J Hum Genet 1999, in press.

  48. Collins FS, Patrinos A, Jordan E, et al.: New goals for the U.S. Human Genome Project: 1998-2003. Science 1998; 282:682–689.

    Article  PubMed  CAS  Google Scholar 

  49. Adams MD, Kelley JM, Gocayne JD, et al.: Complementary DNA sequencing: Expressed sequence tags and human genome project. Science 1991, 252:1651–1656.

    Article  PubMed  CAS  Google Scholar 

  50. Laan M, Pääbo S: Demographic history and linkage disequilibrium in human populations. Nat Genet 1997, 17:435–438.

    Article  PubMed  CAS  Google Scholar 

  51. Morton NE: Sequential tests for the detection of linkage. Am J Hum Genet 1955, 7:277–318.

    PubMed  CAS  Google Scholar 

  52. Suarez BK, Rice J, Reich T: The generalized sib pair IBD distribution: Its use in the detection of linkage. Ann Hum Genet 1978, 42:87–94.

    PubMed  CAS  Google Scholar 

  53. Terwilliger JD, Ott J: A haplotype-based ‘haplotype relative risk’ approach to detecting allelic associations. Hum Hered 1992, 42:337–346.

    Article  PubMed  CAS  Google Scholar 

  54. Spielman RS, McKinnis RE, Ewens WJ: Transmission test for linkage disequilibrium: The insulin gene region and insulin-depedndent diabetes mellitus (IDDM). Am J Hum Genet 1993, 52:506–516.

    PubMed  CAS  Google Scholar 

  55. Risch N, Merikangas K: The future of genetic studies of complex human diseases. Science 1996, 273:1516–1517.

    Article  PubMed  CAS  Google Scholar 

  56. Lander ES: The new genomics: Global views of biology. Science 1996, 265:536–539.

    Article  Google Scholar 

  57. Wang D, Fan J-B, Siao C-J, et al.: Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science 1998, 280:1077–1082.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pajukanta, P., Porkka, K.V.K. Genetics of familial combined hyperlipidemia. Curr Atheroscler Rep 1, 79–86 (1999). https://doi.org/10.1007/s11883-999-0053-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-999-0053-3

Keywords

Navigation