Skip to main content

Genome Size and the Role of Transposable Elements

  • Chapter
  • First Online:
Genetics and Genomics of Brachypodium

Abstract

The lack of correlation between genome size and organismal complexity was early on dubbed the “C-value Paradox;” it holds even when gene number is considered instead of overall organismal complexity. The sequencing of large eukaryotic genomes has now conclusively solved this conundrum with the demonstration that most nuclear DNA comprises various classes of repeats, primarily transposable elements (TEs). The inherent and variable capacity of the TEs for mobility and replication explains how genome size can vary so greatly on their account. The Class I TEs or retrotransposons have a replication cycle involving the copying of a transcribed, genomic RNA into dsDNA by reverse transcriptase. As a result of their replicative life cycle, the retrotransposons comprise most of large genomes among plants; differences in their prevalence explain most of the variation in genome size on the monoploid level. However, retrotransposons are not only gained through the propagative life cycle described above, but they also can be lost through a combination of progressive small deletions and truncations. The genome of Brachypodium distachyon, at ~372 Mb, is at the lower end of the distribution for flowering plants. The compactness of the B. distachyon genome is correlated with a relatively low number of retrotransposons, although it contains many recently inserted transposable elements. The B. distachyon genome appears to stay trim through recombinational shedding of retrotransposons, despite their continuing propagation. Nevertheless, the chromosomes show remarkable differences among them regarding the gain and loss of retrotransposons over time and the relative accumulation of the two superfamilies, Copia and Gypsy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AP:

Aspartic proteinase

BET:

Bromodomain and extraterminal domain

C :

DNA content of a haploid or monoploid genome

ERV:

Endogenous retrovirus

IN:

Integrase

LARD:

Large retrotransposon derivative

LINE:

Long interspersed nuclear element

LTR:

Long terminal repeat

MITE:

Miniature inverted repeat transposable element

MY:

Million years

MYA:

Million years ago

NLS:

Nuclear localization signal

PAV:

Presence-absence variation

RH:

RNase H

RT:

Reverse transcriptase

SINE:

Short interspersed nuclear element

TE:

Transposable element

TIR:

Terminal inverted repeat

VLP:

Virus-like particle

References

  • Anca IA, Fromentin J, Bui QT, Mhiri C, Grandbastien MA, Simon-Plas F. Different tobacco retrotransposons are specifically modulated by the elicitor cryptogein and reactive oxygen species. J Plant Physiol. 2014;171:1533–40.

    Article  CAS  PubMed  Google Scholar 

  • Ansari KI, Walter S, Brennan JM, Lemmens M, Kessans S, McGahern A, et al. Retrotransposon and gene activation in wheat in response to mycotoxigenic and non-mycotoxigenic-associated Fusarium stress. Theor Appl Genet. 2007;114:927–37.

    Article  CAS  PubMed  Google Scholar 

  • Antonius-Klemola K, Kalendar R, Schulman AH. TRIM retrotransposons occur in apple and are polymorphic between varieties but not sports. Theor Appl Genet. 2006;112:999–1008.

    Article  CAS  PubMed  Google Scholar 

  • Bachman N, Gelbart ME, Tsukiyama T, Boeke JD. TFIIIB subunit Bdp1p is required for periodic integration of the Ty1 retrotransposon and targeting of Isw2p to S. cerevisiae tDNAs. Genes Dev. 2005;19:955–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Beguiristain T, Grandbastien MA, Puigdomènech P, Casacuberta JM. Three Tnt1 subfamilies show different stress-associated patterns of expression in tobacco. Consequences for retrotransposon control and evolution in plants. Plant Physiol. 2001;127:212–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ben-David S, Yaakov B, Kashkush K. Genome-wide analysis of short interspersed nuclear elements SINES revealed high sequence conservation, gene association and retrotranspositional activity in wheat. Plant J. 2013;76:201–10.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bennett AB, Leitch AR. Nuclear DNA amounts in angiosperms: targets, trends and tomorrow. Ann Bot. 2011;107:467–590.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bennetzen JL, Wang H. The contributions of transposable elements to the structure, function, and evolution of plant genomes. Annu Rev Plant Biol. 2014;65:505–30.

    Article  CAS  PubMed  Google Scholar 

  • Biderre C, Pages M, Metenier G, Canning EU, Vivaras CP. Evidence for the smallest nuclear genome (2.9 Mb) in the microsporidium Encephalitozoon cuniculi. Mol Biochem Parasitol. 1995;74:229–31.

    Article  CAS  PubMed  Google Scholar 

  • Böhmdorfer G, Luxa K, Frosch A, Garber K, Tramontano A, Jelenic S, et al. Virus-like particle formation and translational start site choice of the plant retrotransposon Tto1. Virology. 2008;372:437–46.

    Article  CAS  Google Scholar 

  • Bossolini E, Wicker T, Knobel PA, Keller B. Comparison of orthologous loci from small grass genomes Brachypodium and rice: implications for wheat genomics and grass genome annotation. Plant J. 2007;49:704–17.

    Article  CAS  PubMed  Google Scholar 

  • Brady TL, Fuerst PG, Dick RA, Schmidt C, Voytas DF. Retrotransposon target site selection by imitation of a cellular protein. Mol Cell Biol. 2008;28:1230–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Butelli E, Licciardello C, Zhang Y, Liu J, Mackay S, Bailey P, et al. Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges. Plant Cell. 2012;24:1242–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cavrak VV, Lettner N, Jamge S, Kosarewicz A, Bayer LM, Mittelsten SO. How a retrotransposon exploits the plant’s heat stress response for its activation. PLoS Genet. 2014;10:e1004115.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chalopin D, Naville M, Plard F, Galiana D, Volff JN. Comparative analysis of transposable elements highlights mobilome diversity and evolution in vertebrates. Genome Biol Evol. 2015;7:567–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chang W, Schulman AH. BARE retrotransposons produce multiple groups of rarely polyadenylated transcripts from two differentially regulated promoters. Plant J. 2008;56:40–50.

    Article  CAS  PubMed  Google Scholar 

  • Chang W, Jääskeläinen M, Li S-P, Schulman AH. BARE retrotransposons are translated and replicated via distinct RNA pools. PLoS One. 2013;8:e72270.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen J, Huang Q, Gao D, Wang J, Lang Y, Liu T, et al. Whole-genome sequencing of Oryza brachyantha reveals mechanisms underlying Oryza genome evolution. Nat Commun. 2013;4:1595.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Choulet F, Wicker T, Rustenholz C, Paux E, Salse J, Leroy P, et al. Megabase level sequencing reveals contrasted organization and evolution patterns of the wheat gene and transposable element spaces. Plant Cell. 2010;22:1686–701.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ciuffi A, Bushman FD. Retroviral DNA integration: HIV and the role of LEDGF/p75. Trends Genet. 2006;22:388–95.

    Article  CAS  PubMed  Google Scholar 

  • De La Torre AR, Birol I, Bousquet J, Ingvarsson PK, Jansson S, Jones SJ, et al. Insights into conifer giga-genomes. Plant Physiol. 2014;166:1724–32.

    Article  CAS  Google Scholar 

  • Deragon J, Zhang X. Short Interspersed Elements (SINEs) in plants: origin, classification, and use as phylogenetic markers. Syst Biol. 2006;55:949–56.

    Article  PubMed  Google Scholar 

  • Devos KM, Brown JK, Bennetzen JL. Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res. 2002;12:1075–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Du J, Tian Z, Hans CS, Laten HM, Cannon SB, Jackson SA, et al. Evolutionary conservation, diversity and specificity of LTR-retrotransposons in flowering plants: insights from genome-wide analysis and multi-specific comparison. Plant J. 2010;63:584–98.

    Article  CAS  PubMed  Google Scholar 

  • El Baidouri M, Panaud O. Comparative genomic paleontology across plant kingdom reveals the dynamics of TE-driven genome evolution. Genome Biol Evol. 2013;5:954–65.

    Article  PubMed Central  PubMed  Google Scholar 

  • Estep MC, DeBarry JD, Bennetzen JL. The dynamics of LTR retrotransposon accumulation across 25 million years of panicoid grass evolution. Heredity. 2013;110:194–204.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fattash I, Rooke R, Wong A, Hui C, Luu T, Bhardwaj P, et al. Miniature inverted-repeat transposable elements: discovery, distribution, and activity. Genome. 2013;56:475–86.

    Article  CAS  PubMed  Google Scholar 

  • Fedoroff N, Wessler S, Shure M. Isolation of the transposable maize controlling elements Ac and Ds. Cell. 1983;35:235–42.

    Article  CAS  PubMed  Google Scholar 

  • Feschotte C, Mouches C. Evidence that a family of miniature inverted-repeat transposable elements (MITEs) from the Arabidopsis thaliana genome has arisen from a pogo-like DNA transposon. Mol Biol Evol. 2000;17:730–7.

    Article  CAS  PubMed  Google Scholar 

  • Feschotte C, Osterlund MT, Peeler R, Wessler SR. DNA-binding specificity of rice mariner-like transposases and interactions with Stowaway MITEs. Nucleic Acids Res. 2005;33:2153–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fleischmann A, Michael TP, Rivadavia F, Sousa A, Wang W, Temsch EM, et al. Evolution of genome size and chromosome number in the carnivorous plant genus Genlisea (Lentibulariaceae), with a new estimate of the minimum genome size in angiosperms. Ann Bot. 2014;114:1651–63.

    Article  PubMed Central  PubMed  Google Scholar 

  • Fukai E, Umehara Y, Sato S, Endo M, Kouchi H, Hayashi M, et al. Derepression of the plant Chromovirus LORE1 induces germline transposition in regenerated plants. PLoS Genet. 2010;6:e1000868.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gao X, Havecker ER, Baranov PV, Atkins JF, Voytas DF. Translational recoding signals between gag and pol in diverse LTR retrotransposons. RNA. 2003;9:1422–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gao X, Hou Y, Ebina H, Levin HL, Voytas DF. Chromodomains direct integration of retrotransposons to heterochromatin. Genome Res. 2008;18:359–69.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gaut BS, Ross-Ibarra J. Selection on major components of angiosperm genomes. Science. 2008;320:484–6.

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Orte E, Vicient CM, Martínez-Izquierdo JA. Grande retrotransposons contain an accessory gene in the unusually long 3′-internal region that encodes a nuclear protein transcribed from its own promoter. Plant Mol Biol. 2013;81:541–51.

    Article  PubMed  CAS  Google Scholar 

  • Goodier JL, Kazazian Jr HH. Retrotransposons revisited: the restraint and rehabilitation of parasites. Cell. 2008;135:23–35.

    Article  CAS  PubMed  Google Scholar 

  • Gorinsek B, Gubensek F, Kordiš D. Phylogenomic analysis of chromoviruses. Cytogenet Genome Res. 2005;110:543–52.

    Article  CAS  PubMed  Google Scholar 

  • Grandbastien MA. LTR retrotransposons, handy hitchhikers of plant regulation and stress response. Biochim Biophys Acta. 1849;2014:403–16.

    Google Scholar 

  • Grandbastien MA, Audeon C, Bonnivard E, Casacuberta JM, Chalhoub B, Costa AP, et al. Stress activation and genomic impact of Tnt1 retrotransposons in Solanaceae. Cytogenet Genome Res. 2005;110:229–41.

    Article  CAS  PubMed  Google Scholar 

  • Gregory TR. Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma. Biol Rev Camb Philos Soc. 2001;76:65–101.

    Article  CAS  PubMed  Google Scholar 

  • Gregory TR, Nicol JA, Tamm H, Kullman B, Kullman K, Leitch IJ, et al. Eukaryotic genome size databases. Nucleic Acids Res. 2007;35:D332–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hawkins JS, Kim H, Nason JD, Wing RA, Wendel JF. Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium. Genome Res. 2006;16:1252–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hawkins JS, Proulx SR, Rapp RA, Wendel JF. Rapid DNA loss as a counterbalance to genome expansion through retrotransposon proliferation in plants. Proc Natl Acad Sci U S A. 2009;106:17811–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Heitkam T, Holtgrawe D, Dohm JC, Minoche AE, Himmelbauer H, Weisshaar B, et al. Profiling of extensively diversified plant LINEs reveals distinct plant-specific subclades. Plant J. 2014;79:385–97.

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Pinzón I, Cifuentes M, Hénaff E, Santiago N, Espinás ML, Casacuberta JM. The Tnt1 retrotransposon escapes silencing in tobacco, its natural host. PLoS One. 2012;7:e33816.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hickman AB, Chandler M, Dyda F. Integrating prokaryotes and eukaryotes: DNA transposases in light of structure. Crit Rev Biochem Mol Biol. 2010;45:50–69.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hirsch CN, Foerster JM, Johnson JM, Sekhon RS, Muttoni G, Vaillancourt B, et al. Insights into the maize pan-genome and pan-transcriptome. Plant Cell. 2014;26:121–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • International Barley Genome Sequencing Consortium, Mayer KF, Waugh R, Brown JW, Schulman A, Langridge P, et al. A physical, genetic and functional sequence assembly of the barley genome. Nature. 2012;491:711–6.

    Google Scholar 

  • International Brachypodium Initiative. Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature. 2010;463:763–8.

    Article  CAS  Google Scholar 

  • International Wheat Genome Sequencing Consortium. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science. 2014;345:1251788.

    Article  CAS  Google Scholar 

  • Jääskeläinen M, Mykkänen A-H, Arna T, Vicient C, Suoniemi A, Kalendar R, et al. Retrotransposon BARE-1: expression of encoded proteins and formation of virus-like particles in barley cells. Plant J. 1999;20:413–22.

    Article  PubMed  Google Scholar 

  • Jääskeläinen M, Chang W, Moisy C, Schulman AH. Retrotransposon BARE displays strong tissue-specific differences in expression. New Phytol. 2013;200:1000–8.

    Article  PubMed  CAS  Google Scholar 

  • Jiang N, Bao Z, Zhang X, Hirochika H, Eddy SR, McCouch SR, et al. An active DNA transposon family in rice. Nature. 2003;421:163–7.

    Article  CAS  PubMed  Google Scholar 

  • Jones RN. McClintock’s controlling elements: the full story. Cytogenet Genome Res. 2005;109:90–103.

    Article  CAS  PubMed  Google Scholar 

  • Kalendar R, Tanskanen J, Immonen S, Nevo E, Schulman AH. Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc Natl Acad Sci U S A. 2000;97:6603–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kalendar R, Vicient CM, Peleg O, Anamthawat-Jonsson K, Bolshoy A, Schulman AH. LARD retroelements: novel, non-autonomous components of barley and related genomes. Genetics. 2004;166:1437–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kalendar R, Tanskanen JA, Chang W, Antonius K, Sela H, Peleg P, et al. Cassandra retrotransposons carry independently transcribed 5S RNA. Proc Natl Acad Sci U S A. 2008;105:5833–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Katinka MD, Duprat S, Cornillot E, Metenier G, Thomarat F, Prensier G, et al. Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature. 2001;414:450–3.

    Article  CAS  PubMed  Google Scholar 

  • Kovach A, Wegrzyn JL, Parra G, Holt C, Bruening GE, Loopstra CA, et al. The Pinus taeda genome is characterized by diverse and highly diverged repetitive sequences. BMC Genomics. 2010;11:420.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kramerov D, Vassetzky N. Short retroposons in eukaryotic genomes. Int Rev Cytol. 2005;247:165–221.

    Article  CAS  PubMed  Google Scholar 

  • Krishan A, Dandekar P, Nathan N, Hamelik R, Miller C, Shaw J. DNA index, genome size, and electronic nuclear volume of vertebrates from the Miami Metro Zoo. Cytometry A. 2005;65:26–34.

    Article  PubMed  CAS  Google Scholar 

  • Krishnan L, Engelman A. Retroviral integrase proteins and HIV-1 DNA integration. J Biol Chem. 2012;287:40858–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kronmiller BA, Wise RP. TE nest: automated chronological annotation and visualization of nested plant transposable elements. Plant Physiol. 2007;146:45–59.

    Article  PubMed  CAS  Google Scholar 

  • Lee SK, Potempa M, Swanstrom R. The choreography of HIV-1 proteolytic processing and virion assembly. J Biol Chem. 2012;287:40867–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li YH, Zhou G, Ma J, Jiang W, Jin LG, Zhang Z, et al. De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nat Biotechnol. 2014;32:1045–52.

    Article  CAS  PubMed  Google Scholar 

  • Mager DL, Goodchild NL. Homologous recombination between the LTRs of a human retrovirus-like element causes a 5-kb deletion in two siblings. Am J Hum Genet. 1998;45:848–54.

    Google Scholar 

  • Maumus F, Quesneville H. Deep investigation of Arabidopsis thaliana junk DNA reveals a continuum between repetitive elements and genomic dark matter. PLoS One. 2014;9:e94101.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • McClintock B. Mutable loci in maize. Year B Carnegie Inst Wash. 1948;47:155–69.

    Google Scholar 

  • McCue AD, Nuthikattu S, Reeder SH, Slotkin RK. Gene expression and stress response mediated by the epigenetic regulation of a transposable element small RNA. PLoS Genet. 2012;8:e1002474.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Michael TP, Jackson S. The first 50 plant genomes. Plant Genome. 2013. doi:10.3835/plantgenome2013.03.0001in.

    Google Scholar 

  • Moisy C, Garrison KE, Meredith CP, Pelsy F. Characterization of ten novel Ty1/copia-like retrotransposon families of the grapevine genome. BMC Genomics. 2008;9:469.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Montaño SP, Rice PA. Moving DNA around: DNA transposition and retroviral integration. Curr Opin Struct Biol. 2011;21:370–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Montaño SP, Pigli YZ, Rice PA. The μ transpososome structure sheds light on DDE recombinase evolution. Nature. 2012;491:413–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Morgante M, De Paoli E, Radovic S. Transposable elements and the plant pan-genomes. Curr Opin Plant Biol. 2007;10:149–55.

    Article  CAS  PubMed  Google Scholar 

  • Müllers E, Stirnnagel K, Kaulfuss S, Lindemann D. Prototype foamy virus gag nuclear localization: a novel pathway among retroviruses. J Virol. 2011;85:9276–85.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Neumann P, Koblízková A, Navrátilová A, Macas J. Significant expansion of Vicia pannonica genome size mediated by amplification of a single type of giant retroelement. Genetics. 2006;173:1047–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Neumann P, Navrátilová A, Koblížková A, Kejnovský E, Hřibová E, Hobza R, et al. Plant centromeric retrotransposons: a structural and cytogenetic perspective. Mob DNA. 2011;2:4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin YC, Scofield DG, et al. The Norway spruce genome sequence and conifer genome evolution. Nature. 2013;497:579–84.

    Article  CAS  PubMed  Google Scholar 

  • Ohno S. So much ‘junk’ in our genome. Brookhaven Symp Biol. 1972;23:366–70.

    CAS  PubMed  Google Scholar 

  • Park M, Jo S, Kwon JK, Park J, Ahn JH, Kim S, et al. Comparative analysis of pepper and tomato reveals euchromatin expansion of pepper genome caused by differential accumulation of Ty3/Gypsy-like elements. BMC Genomics. 2011;12:85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Park M, Park J, Kim S, Kwon JK, Park HM, Bae IH, et al. Evolution of the large genome in Capsicum annuum occurred through accumulation of single-type long terminal repeat retrotransposons and their derivatives. Plant J. 2012;69:1018–29.

    Article  CAS  PubMed  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, et al. The Sorghum bicolor genome and the diversification of grasses. Nature. 2009;457:551–6.

    Article  CAS  PubMed  Google Scholar 

  • Pereira V. Insertion bias and purifying selection of retrotransposons in the Arabidopsis thaliana genome. Genome Biol. 2004;5:R79.

    Article  PubMed Central  PubMed  Google Scholar 

  • Piegu B, Guyot R, Picault N, Roulin A, Saniyal A, Kim HI, et al. Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Res. 2006;16:1262–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Qi LL, Wu JJ, Friebe B, Qian C, Gu YQ, Fu DL, et al. Sequence organization and evolutionary dynamics of Brachypodium-specific centromere retrotransposons. Chromosome Res. 2013;21:507–21.

    Article  CAS  PubMed  Google Scholar 

  • Ramallo E, Kalendar R, Schulman AH, Martínez-Izquierdo JA. Reme1, a Copia retrotransposon in melon, is transcriptionally induced by UV light. Plant Mol Biol. 2008;66:137–50.

    Article  CAS  PubMed  Google Scholar 

  • Reinders J, Mirouze M, Nicolet J, Paszkowski J. Parent-of-origin control of transgenerational retrotransposon proliferation in Arabidopsis. EMBO Rep. 2013;14:823–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rosbash M, Ford PJ, Bishop JO. Analysis of the C-value paradox by molecular hybridization. Proc Natl Acad Sci U S A. 1974;71:3746–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sabot F, Schulman AH. Parasitism and the retrotransposon life cycle in plants: a hitchhiker’s guide to the genome. Heredity. 2006;97:381–8.

    Article  CAS  PubMed  Google Scholar 

  • Salazar M, Gonzalez E, Casaretto JA, Casacuberta JM, Ruiz-Lara S. The promoter of the TLC1.1 retrotransposon from Solanum chilense is activated by multiple stress-related signaling molecules. Plant Cell Rep. 2007;26:1861–8.

    Article  CAS  PubMed  Google Scholar 

  • Salse J, Bolot S, Throude M, Jouffe V, Piegu B, Quraishi UM, et al. Identification and characterization of shared duplications between rice and wheat provide new insight into grass genome evolution. Plant Cell. 2008;20:11–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • SanMiguel P, Tikhonov A, Jin YK, Motchoulskaia N, Zakharov D, Melake-Berhan A, et al. Nested retrotransposons in the intergenic regions of the maize genome. Science. 1996;274:765–8.

    Article  CAS  PubMed  Google Scholar 

  • SanMiguel P, Gaut BS, Tikhoniv A, Nakajima Y, Bennetzen JL. The paleontology of intergene retrotransposons in maize. Nat Genet. 1998;20:43–5.

    Article  CAS  PubMed  Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, et al. The B73 maize genome: complexity, diversity, and dynamics. Science. 2009;326:1112–5.

    Article  CAS  PubMed  Google Scholar 

  • Schulman AH. Hitching a ride: nonautonomous retrotransposons and parasitism as a lifestyle. In: Grandbastien M-A, Casacuberta JM, editors. Plant transposable elements. Topics in current genetics 24. Berlin: Springer Verlag; 2012. p. 71–88.

    Chapter  Google Scholar 

  • Schulman AH. Retrotransposon replication in plants. Curr Opin Virol. 2013;3:604–14.

    Article  CAS  PubMed  Google Scholar 

  • Schulman AH, Wicker T. A field guide to transposable elements. In: Fedoroff NV, editor. Plant transposons and genome dynamics in evolution. Hoboken, NJ: John Wiley and Sons; 2013. p. 15–40.

    Chapter  Google Scholar 

  • Sharma A, Larue RC, Plumb MR, Malani N, Male F, Slaughter A, et al. BET proteins promote efficient murine leukemia virus integration at transcription start sites. Proc Natl Acad Sci U S A. 2013;110:12036–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shirasu K, Schulman AH, Lahaye T, Schulze-Lefert P. A contiguous 66 kb barley DNA sequence provides evidence for reversible genome expansion. Genome Res. 2000;10:908–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Slotkin RK, Vaughn M, Borges F, Tanurdzić M, Becker JD, Feijó JA, et al. Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell. 2009;136:461–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Soleimani VD, Baum BR, Johnson DA. Quantification of the retrotransposon BARE-1 reveals the dynamic nature of the barley genome. Genome. 2006;49:389–96.

    Article  CAS  PubMed  Google Scholar 

  • Springer NM, Ying K, Fu Y, Ji T, Yeh CT, Jia Y, et al. Maize inbreds exhibit high levels of copy number variation (CNV) and presence/absence variation (PAV) in genome content. PLoS Genet. 2009;5:e1000734.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Staton SE, Bakken BH, Blackman BK, Chapman MA, Kane NC, Tang S, et al. The sunflower (Helianthus annuus L.) genome reflects a recent history of biased accumulation of transposable elements. Plant J. 2012;72(1):142–53.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki Y, Craigie R. The road to chromatin - nuclear entry of retroviruses. Nat Rev Microbiol. 2007;5:187–96.

    Article  CAS  PubMed  Google Scholar 

  • Swigonova Z, Lai J, Ma J, Ramakrishna W, Llaca V, Bennetzen JL, et al. On the tetraploid origin of the maize genome. Comp Funct Genomics. 2004;5(3):281–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tanskanen JA, Sabot F, Vicient C, Schulman AH. Life without GAG: the BARE-2 retrotransposon as a parasite’s parasite. Gene. 2007;390:166–74.

    Article  CAS  PubMed  Google Scholar 

  • Tian Z, Rizzon C, Du J, Zhu L, Bennetzen JL, Jackson SA, et al. Do genetic recombination and gene density shape the pattern of DNA elimination in rice long terminal repeat retrotransposons? Genome Res. 2009;19:2221–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tsukahara S, Kobayashi A, Kawabe A, Mathieu O, Miura A, Kakutani T. Bursts of retrotransposition reproduced in Arabidopsis. Nat Genet. 2009;461:423–6.

    CAS  Google Scholar 

  • Vassetzky NS, Kramerov DA. SINEBase: a database and tool for SINE analysis. Nucleic Acids Res. 2013;41:D83–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vicient CM, Kalendar R, Anamthawat-Jonsson K, Schulman AH. Structure, functionality, and evolution of the BARE-1 retrotransposon of barley. Genetica. 1999a;107:53–63.

    Article  CAS  PubMed  Google Scholar 

  • Vicient CM, Suoniemi A, Anamthawat-Jónsson K, Tanskanen J, Beharav A, Nevo E, et al. Retrotransposon BARE-1 and its role in genome evolution in the genus Hordeum. Plant Cell. 1999b;11(9):1769–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vicient CM, Kalendar R, Schulman AH. Variability, recombination, and mosaic evolution of the barley BARE-1 retrotransposon. J Mol Evol. 2005;61:275–91.

    Article  CAS  PubMed  Google Scholar 

  • Vitte C, Bennetzen JL. Analysis of retrotransposon structural diversity uncovers properties and propensities in angiosperm genome evolution. Proc Natl Acad Sci U S A. 2006;103:17638–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vitte C, Panaud O. LTR retrotransposons and flowering plant genome size: emergence of the increase/decrease model. Cytogenet Genome Res. 2005;110:91–107.

    Article  CAS  PubMed  Google Scholar 

  • Vitte C, Estep MC, Leebens-Mack J, Bennetzen JL. Young, intact and nested retrotransposons are abundant in the onion and asparagus genomes. Ann Bot. 2013;112:881–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang ZN, Huang XQ, Cloutier S. Recruitment of closely linked genes for divergent functions: the seed storage protein (Glu-3) and powdery mildew (Pm3) genes in wheat (Triticum aestivum L.). Funct Integr Genomics. 2010;10:241–51.

    Article  CAS  PubMed  Google Scholar 

  • Weber B, Heitkam T, Holtgräwe D, Weisshaar B, Minoche AE, Dohm JC, et al. Highly diverse chromoviruses of Beta vulgaris are classified by chromodomains and chromosomal integration. Mob DNA. 2013;4:8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wegrzyn JL, Lin BY, Zieve JJ, Dougherty WM, Martinez-Garcia PJ, Koriabine M, et al. Insights into the loblolly pine genome: characterization of BAC and fosmid sequences. PLoS One. 2013;8:e72439.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wei L, Xiao M, An Z, Ma B, Mason AS, Qian W, et al. New insights into nested long terminal repeat retrotransposons in Brassica species. Mol Plant. 2013;6:470–82.

    Article  CAS  PubMed  Google Scholar 

  • Wenke T, Holtgräwe D, Horn AV, Weisshaar B, Schmidt T. An abundant and heavily truncated non-LTR retrotransposon (LINE) family in Beta vulgaris. Plant Mol Biol. 2009;71:585–97.

    Article  CAS  PubMed  Google Scholar 

  • Wessler SR, Bureau TE, White SE. LTR-retrotransposons and MITEs: important players in the evolution of plant genomes. Curr Opin Genet Dev. 1995;5:814–21.

    Article  CAS  PubMed  Google Scholar 

  • Wicker T, Keller B. Genome-wide comparative analysis of copia retrotransposons in Triticeae, rice, and Arabidopsis reveals conserved ancient evolutionary lineages and distinct dynamics of individual copia families. Genome Res. 2007;17:1072–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wicker T, Stein N, Albar L, Feuillet C, Schlagenhauf E, Keller B. Analysis of a contiguous 211 kb sequence in diploid wheat (Triticum monococcum) reveals multiple mechanisms of genome evolution. Plant J. 2001;26(3):307–16.

    Article  CAS  PubMed  Google Scholar 

  • Wicker T, Sabot F, Hua-Van A, Bennetzen J, Capy P, Chalhoub B, et al. A unified classification system for eukaryotic transposable elements. Nat Rev Genet. 2007;8:973–82.

    Article  CAS  PubMed  Google Scholar 

  • Wicker T, Taudien S, Houben A, Keller B, Graner A, Platzer M, et al. A whole-genome snapshot of 454 sequences exposes the composition of the barley genome and provides evidence for parallel evolution of genome size in wheat and barley. Plant J. 2009;59:712–22.

    Article  CAS  PubMed  Google Scholar 

  • Witte CP, Le QH, Bureau T, Kumar A. Terminal-repeat retrotransposons in miniature (TRIM) are involved in restructuring plant genomes. Proc Natl Acad Sci U S A. 2001;98(24):13778–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu J, Gu YQ, Hu Y, You FM, Dandekar AM, Leslie CA, et al. Characterizing the walnut genome through analyses of BAC end sequences. Plant Mol Biol. 2012;78:95–107.

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi K, Kajikawa M, Okada N. Integrated mechanism for the generation of the 5′ junctions of LINE inserts. Nucleic Acids Res. 2014;42:13269–79.

    Article  PubMed Central  PubMed  Google Scholar 

  • Yieh G, Kassavetis EP, Geiduschek SB, Sandmeyer SB. The Brf and TATA-binding protein subunits of the RNA polymerase III transcription factor IIIB mediate position-specific integration of the gypsy-like element, Ty3. J Biol Chem. 2000;275:29800–7.

    Article  CAS  PubMed  Google Scholar 

  • Yin H, Du J, Li L, Jin C, Fan L, Li M, et al. Comparative genomic analysis reveals multiple long terminal repeats, lineage-specific amplification, and frequent interelement recombination for Cassandra retrotransposon in pear (Pyrus bretschneideri Rehd.). Genome Biol Evol. 2014;6:1423–36.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang S, Gu YQ, Singh J, Coleman-Derr D, Brar DS, Jiang N, et al. New insights into Oryza genome evolution: high gene colinearity and differential retrotransposon amplification. Plant Mol Biol. 2007;64:589–600.

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Cahan SH. A novel family of terminal-repeat retrotransposon in miniature (TRIM) in the genome of the red harvester ant, Pogonomyrmex barbatus. PLoS One. 2012;7:e53401.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zonneveld BJM. New record holders for maximum genome size in eudicots and monocots. J Bot. 2010;2010:527357.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan H. Schulman B.A., M.S., M.Phil., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schulman, A.H. (2015). Genome Size and the Role of Transposable Elements. In: Vogel, J. (eds) Genetics and Genomics of Brachypodium. Plant Genetics and Genomics: Crops and Models, vol 18. Springer, Cham. https://doi.org/10.1007/7397_2015_3

Download citation

Publish with us

Policies and ethics