Skip to main content
Log in

An abundant and heavily truncated non-LTR retrotransposon (LINE) family in Beta vulgaris

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

We describe a non-LTR retrotransposon family, BvL, of the long interspersed nuclear elements L1 clade isolated from sugar beet (Beta vulgaris). Characteristic molecular domains of three full-length BvL elements were determined in detail, showing that coding sequences are interrupted and most likely non-functionally. In addition, eight highly conserved endonuclease regions were defined by comparison with other plant LINEs. The abundant BvL family is widespread within the genus Beta, however, the vast majority of BvL copies are extremely 5′ truncated indicating an error-prone reverse transcriptase activity. The dispersed distribution of BvL copies on all sugar beet chromosomes with exclusion of most heterochromatic regions was shown by fluorescent in situ hybridization. The analysis of BvL 3′ end sequences and corresponding flanking regions, respectively, revealed the preferred integration of BvL into A/T-rich regions of the sugar beet genome, but no specific target sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218

    Article  CAS  Google Scholar 

  • Bennetzen JL (2000) Transposable element contributions to plant gene and genome evolution. Plant Mol Biol 42:251–269

    Article  PubMed  CAS  Google Scholar 

  • Birney E, Clamp M, Durbin R (2004) GeneWise and genomewise. Genome Res 14:988–995

    Article  PubMed  CAS  Google Scholar 

  • Desel C, Jung C, Cai D, Kleine M, Schmidt T (2001) High-resolution mapping of YACs and the single-copy gene Hs1(pro-1) on Beta vulgaris chromosomes by multi-colour fluorescence in situ hybridization. Plant Mol Biol 45:113–122

    Article  PubMed  CAS  Google Scholar 

  • Dombroski BA, Mathias SL, Nanthakumar E, Scott AF, Kazazian HH Jr (1991) Isolation of an active human transposable element. Science 254:1805–1808

    Article  PubMed  CAS  Google Scholar 

  • Fischer HE (1989) Origin of the “Weiße Schlesische Rübe” (white Silesian beet) and resynthesis of sugar beet. Euphytica 41:75–80

    Article  Google Scholar 

  • Flavell RB, Bennett MD, Smith JB, Smith DB (1974) Genome size and the proportion of repeated nucleotide sequence DNA in plants. Biochem Genet 12:257–269

    Article  PubMed  CAS  Google Scholar 

  • Flavell AJ, Pearce SR, Kumar A (1994) Plant transposable elements and the genome. Curr Opin Genet Dev 4:838–844

    Article  PubMed  CAS  Google Scholar 

  • Gindullis F, Dechyeva D, Schmidt T (2001) Construction and characterization of a BAC library for the molecular dissection of a single wild beet centromere and sugar beet (Beta vulgaris) genome analysis. Genome 44:846–855

    Article  PubMed  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis programm for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hans de Jong J, Fransz P, Zabel P (1999) High resolution FISH in plants – techniques and applications. Trends Plant Sci 4:258–263

    Article  PubMed  Google Scholar 

  • Hawkins JS, Kim H, Nason JD, Wing RA, Wendel JF (2006) Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium. Genome Res 16:1252–1261

    Article  PubMed  CAS  Google Scholar 

  • Heitkam T, Schmidt T (2009) BNR – a LINE family from Beta vulgaris contains an RRM domain in open reading frame 1 and defines a L1 subclade present in diverse plant genomes. Plant J. doi: 10.1111/j.1365-1313X.2009.03923.x

  • Helm J (1957) Versuch einer morphologisch-systematischen Gliederung der Art Beta vulgaris L. Theor Appl Genet 27:203–222

    Article  Google Scholar 

  • Henikoff S, Henikoff JG (1992) Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci USA 89:10915–10919

    Article  PubMed  CAS  Google Scholar 

  • Heslop-Harrison JS (2000) Comparative genome organization in plants: from sequence and markers to chromatin and chromosomes. Plant Cell 12:617–636

    Article  PubMed  CAS  Google Scholar 

  • Higashiyama T, Noutoshi Y, Fujie M, Yamada T (1997) Zepp, a LINE-like retrotransposon accumulated in the Chlorella telomeric region. EMBO J 16:3715–3723

    Article  PubMed  CAS  Google Scholar 

  • Hill P, Burford D, Martin DM, Flavell AJ (2005) Retrotransposon populations of Vicia species with varying genome size. Mol Genet Genomics 273:371–381

    Article  PubMed  CAS  Google Scholar 

  • Hohmann U, Jacobs G, Telgmann A, Gaafar RM, Alam S, Jung C (2003) A bacterial artificial chromosome (BAC) library of sugar beet and a physical map of the region encompassing the bolting gene B. Mol Genet Genomics 269:126–136

    PubMed  CAS  Google Scholar 

  • Jiang J, Gill BS (2006) Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome 49:1057–1068

    Article  PubMed  CAS  Google Scholar 

  • Kadereit G, Hohmann S, Kadereit JW (2006) A synopsis of Chenopodiaceae subfam. Betoidae and notes on the taxonomy of Beta. Willdenowia 36:9–19

    Article  Google Scholar 

  • Khan H, Smit A, Boissinot S (2006) Molecular evolution and tempo of amplification of human LINE-1 retrotransposons since the origin of primates. Genome Res 16:78–87

    Article  PubMed  CAS  Google Scholar 

  • Komatsu M, Shimamoto K, Kyozuka J (2003) Two-step regulation and continuous retrotransposition of the rice LINE-type retrotransposon Karma. Plant Cell 15:1934–1944

    Article  PubMed  CAS  Google Scholar 

  • Kubis S, Schmidt T, Heslop-Harrison JS (1998a) Repetitive DNA elements as a major component of plant genomes. Ann Bot 82:45–55

    Article  CAS  Google Scholar 

  • Kubis SE, Heslop-Harrison JS, Desel C, Schmidt T (1998b) The genomic organization of non-LTR retrotransposons (LINEs) from three Beta species and five other angiosperms. Plant Mol Biol 36:821–831

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Bennetzen JL (1999) Plant retrotransposons. Annu Rev Genet 33:479–532

    Article  PubMed  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  PubMed  CAS  Google Scholar 

  • Le QH, Wright S, Yu Z, Bureau T (2000) Transposon diversity in Arabidopsis thaliana. Proc Natl Acad Sci USA 97:7376–7381

    Article  PubMed  CAS  Google Scholar 

  • Leeton PRJ, Smyth DR (1993) An abundant line-like element amplified in the genome of Lilium-Speciosum. Mol Gen Genet 237:97–104

    Article  PubMed  CAS  Google Scholar 

  • Letschert JPW (1993) Beta section Beta: biographical patterns of variation and taxonomy. Dissertation 93-1, Wageningen Agricultural University

  • Loeb DD, Padgett RW, Hardies SC, Shehee WR, Comer MB, Edgell MH, Hutchison CA 3rd (1986) The sequence of a large L1Md element reveals a tandemly repeated 5′ end and several features found in retrotransposons. Mol Cell Biol 6:168–182

    PubMed  CAS  Google Scholar 

  • Luan DD, Korman MH, Jakubczak JL, Eickbush TH (1993) Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72:595–605

    Article  PubMed  CAS  Google Scholar 

  • Marillonnet S, Wessler SR (1997) Retrotransposon insertion into the maize waxy gene results in tissue-specific RNA processing. Plant Cell 9:967–978

    Article  PubMed  CAS  Google Scholar 

  • Martin SL, Li WLP, Furano A, Boissinot S (2005) The structures of mouse and human L1 elements reflect their insertion mechanism. Cytogenet Genome Res 110:223–228

    Article  PubMed  CAS  Google Scholar 

  • McGrath JM, Shaw RS, de los Reyes BG, Weiland JJ (2004) Construction of a sugar beet BAC library from a hybrid with diverse traits. Plant Mol Biol Rep 22:23–28

    Article  CAS  Google Scholar 

  • Menzel G, Dechyeva D, Wenke T, Holtgräwe D, Weisshaar B, Schmidt T (2008) Diversity of a complex centromeric satellite and molecular characterization of dispersed sequence families in sugar beet (Beta vulgaris). Ann Bot 102:521–530

    Article  PubMed  CAS  Google Scholar 

  • Morgenstern B (2004) DIALIGN: multiple DNA and protein sequence alignment at BiBiServ. Nucl Acids Res 32:W33–W36

    Article  PubMed  CAS  Google Scholar 

  • Müller J, Müller K (2004) TREEGRAPH: automated drawing of complex tree figures using an extensible tree description format. Mol Ecol Notes 4:786–788

    Article  Google Scholar 

  • Noma K, Ohtsubo E, Ohtsubo H (1999) Non-LTR retrotransposons (LINEs) as ubiquitous components of plant genomes. Mol Gen Genet 261:71–79

    Article  PubMed  CAS  Google Scholar 

  • Noma K, Ohtsubo H, Ohtsubo E (2000) ATLN elements, LINEs from Arabidopsis thaliana: identification and characterization. DNA Res 7:291–303

    Article  PubMed  CAS  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  PubMed  CAS  Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81:8014–8018

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto K, Ohmido N, Fukui K, Kamada H, Satoh S (2000) Site-specific accumulation of a LINE-like retrotransposon in a sex chromosome of the dioecious plant Cannabis sativa. Plant Mol Biol 44:723–732

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sassaman DM, Dombroski BA, Moran JV, Kimberland ML, Naas TP, DeBerardinis RJ, Gabriel A, Swergold GD, Kazazian HH Jr (1997) Many human L1 elements are capable of retrotransposition. Nat Genet 16:37–43

    Article  PubMed  CAS  Google Scholar 

  • Saze H, Kakutani T (2007) Heritable epigenetic mutation of a transposon-flanked Arabidopsis gene due to lack of the chromatin-remodeling factor DDM1. EMBO J 26:3641–3652

    Article  PubMed  CAS  Google Scholar 

  • Schmidt T (1999) LINEs, SINEs and repetitive DNA: non-LTR retrotransposons in plant genomes. Plant Mol Biol 40:903–910

    Article  PubMed  CAS  Google Scholar 

  • Schmidt T, Heslop-Harrison JS (1998) Genomes, genes and junk: the large-scale organization of plant chromosomes. Trends Plant Sci 3:195–199

    Article  Google Scholar 

  • Schmidt T, Schwarzacher T, Heslop-Harrison JS (1994) Physical mapping of rRNA genes by fluorescent in situ hybridization and structural analysis of 5S rRNA genes and intergenic spacer sequences in sugar beet (Beta vulgaris). Theor Appl Genet 88:629–636

    Article  CAS  Google Scholar 

  • Schmidt T, Kubis S, Heslop-Harrison JS (1995) Analysis and chromosomal localization of retrotransposons in sugar beet (Beta Vulgaris L.): LINEs and Ty1-copia-like elements as major components of the genome. Chromosom Res 3:335–345

    Article  CAS  Google Scholar 

  • Schulte D, Cai DG, Kleine M, Fan LJ, Wang S, Jung C (2006) A complete physical map of a wild beet (Beta procumbens) translocation in sugar beet. Mol Genet Genomics 275:504–511

    Article  PubMed  CAS  Google Scholar 

  • Schwarzacher T, Heslop-Harrison P (2000) Practical in situ hybridization. BIOS Scientific Publishers, Oxford

    Google Scholar 

  • Schwarz-Sommer Z, Leclerq L, Goebel E, Saedler H (1987) Cin4, an insert altering the structure of the A1 gene in Zea mays, exhibits properties of nonviral retrotransposons. EMBO J 6:3873–3880

    PubMed  CAS  Google Scholar 

  • Szak ST, Pickeral OK, Makalowski W, Boguski MS, Landsman D, Boeke JD (2002) Molecular archeology of L1 insertions in the human genome. Genome Biol 3:1–18

    Article  Google Scholar 

  • Thomas CA (1971) Genetic organization of chromosomes. Annu Rev Genet 5:237–256

    Article  PubMed  CAS  Google Scholar 

  • Turcotte K, Srinivasan S, Bureau T (2001) Survey of transposable elements from rice genomic sequences. Plant J 25:169–179

    Article  PubMed  CAS  Google Scholar 

  • Vershinin AV, Druka A, Alkhimova AG, Kleinhofs A, Heslop-Harrison JS (2002) LINEs and gypsy-like retrotransposons in Hordeum species. Plant Mol Biol 49:1–14

    Article  PubMed  CAS  Google Scholar 

  • Weber B, Wenke T, Frömmel U, Schmidt T, Heitkam T (2009) The Ty1-copia families SALIRE and Cotzilla populating the Beta vulgaris genome show remarkable differences in abundance, chromosomal distribution and age. Gene (in press)

  • Wright DA, Ke N, Smalle J, Hauge BM, Goodman HM, Voytas DF (1996) Multiple non-LTR retrotransposons in the genome of Arabidopsis thaliana. Genetics 142:569–578

    PubMed  CAS  Google Scholar 

  • Xiong Y, Eickbush TH (1990) Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J 9:3353–3362

    PubMed  CAS  Google Scholar 

  • Yamashita H, Tahara M (2006) A LINE-type retrotransposon active in meristem stem cells causes heritable transpositions in the sweet potato genome. Plant Mol Biol 61:79–94

    Article  PubMed  CAS  Google Scholar 

  • Zuccolo A, Sebastian A, Talag J, Yu Y, Kim H, Collura K, Kudrna D, Wing RA (2007) Transposable element distribution, abundance and role in genome size variation in the genus Oryza. BMC Evol Biol 7:152

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank I. Walter for technical assistance on FISH experiments. This work is funded in part by the BMBF grant ‘Verbundprojekt GABI-Beet Physical map: Physikalische Genomkarte der Zuckerrübe zur Nutzung in der Pflanzenzüchtung’, sub-projects 0313127B and 0313127E.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Schmidt.

Additional information

Nucleotide sequences reported are available in EMBL database under the accession numbers FM993986, FM993987, FM994099-FM994113.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wenke, T., Holtgräwe, D., Horn, A.V. et al. An abundant and heavily truncated non-LTR retrotransposon (LINE) family in Beta vulgaris . Plant Mol Biol 71, 585–597 (2009). https://doi.org/10.1007/s11103-009-9542-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-009-9542-6

Keywords

Navigation