Skip to main content
Log in

OBPC Symposium: Maize 2004 & beyond—Plant regeneration, gene discovery, and genetic engineering of plants for crop improvement

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

The development of robust plant regeneration technology in cereals, dicots and ornamentals that is in turn coupled to a high-frequency DNA transfer technology is reported. Transgenic cereals that include maize, Tripsacum, sorghum, Festuca and Lolium, in addition to dicots that include soybean, cotton and various ornamentals such as petunia, begonia, and geranium have been produced following either somatic embryogenesis or direct organogenesis independent of genotype. Coupled with these regeneration protocols, we have also identified several interesting genes and promoters for incorporation into various crops and ornamentals. In addition, the phenomenon of direct in vitro flowering from cotyledonary nodes in soybean is described. In in vitro flowering, the formation of a plant body is suppressed and the cells of the cotyledonary node produce complete flowers from which fertile seed is recovered. This in vitro flowering technology serves as a complementary tool to chloroplast transformation for developing a new transgenic pollen containment strategy for crop species. Recently, the center has undertaken to screen the expression response of the 24 000 Arabidopsis genes to nitric oxide. This signaling molecule upregulated 342 genes and downregulated 80 genes. The object here was to identify a population of promoters that can be manipulated by using a signaling molecule. In addition, in keeping with the mission of enhancing greenhouse profitability for North West Ohio growers, we cloned a number of genes responsive for disease resistance from ornamentals that play an important role in disease management and abiotic stress. We have constructed a plant transformation vector with CBF3 gene under the rd29A promoter for engineering cold and freezing tolerance in petunia. Leaf dises of Petunia×hybrida v26 were used for Agrobacterium-mediated transformation, and 44 hygromycin-resistant T0 plants were obtained. The presence of CBF3 gene was confirmed in all the transgenic plants by PCR and Southern analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agarwal, P. K.; Ranu, R. S. Regeneration of plantlets from leaf and petiole explants of Pelargonium×hortorum. In Vitro Cell. Dev. Biol. Plant 36:392–397: 2000.

    Article  CAS  Google Scholar 

  • Altpeter, F.; Posselt, U. K. Improved plant regeneration from cell suspensions of commercial cultivars, breeding and inbred lines of perennial ryegrass (Lolium perenne L.). J. Plant Physiol. 156:790–796; 2000.

    CAS  Google Scholar 

  • Armstrong, C. L. The first decade of maize transformation: a review and future perspective. Maydica 44:101–109; 1999.

    Google Scholar 

  • Armstrong, C. L.; Green, C. E. Establishment and maintenance of friable, embryogenic maize callus and the involvement of l-proline. Planta 164:207–214; 1985.

    Article  CAS  Google Scholar 

  • Asay, K. H.; Frakes, R. V.; Buckner, R. C. Breeding and cultivars. In: Buckner, R. C.; Bush, L. P., eds., Tall fescue. Madison, WI: American Society of Agronomy; 1979:111–139.

    Google Scholar 

  • Austin, M. J.; Muskett, P.; Kaln, K.; Feys, B. J.; Jones, J. D. G.; Parker, J. E. Regulatory role of SGTI in early R gene-mediated plant defenses. Science 295:2077–2080; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Azevedo, C.; Sadanandom, A.; Kitagawa, K.; Freialdenhoven, A.; Shirasu, K.; Schulze-Lefert, P. The RARI interactor SGTI, an essential component of R gene-triggered disease resistance. Science 295:2073–2076; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Barwale, U. B.; Meyer, M. M.; Widholm, J. M. Screening of Glycine max (L.) Merr. and G. soja Sieb and Zucc. genotypes for multiple shoot formation at the cotyledonary node. Theor. Appl. Genet. 72:423–428; 1986.

    Article  CAS  Google Scholar 

  • Bettany, A. J. E.; Dalton, S. J.; Timms, E.; Manderyck, B.; Dhanoa, M. S.; Morris, P. Agrobacterium tumefaciens-mediated transformation of Festuca arundinacea (Schreb.) and Lolium muiltiflorum (Lam). Plant Cell Rep. 21:437–444; 2003.

    PubMed  CAS  Google Scholar 

  • Bhaskaran, S.; Smith, R. Regeneration in cereal tissue culture: a review. Crop Sci. 30:1328–1336; 1990.

    Article  CAS  Google Scholar 

  • Bhat, S.; Kuruvinashetti, M. S. Callus induction and plantlet regeneration from immature inflorescence in some maintainer (B) lines of Kharifsorghum (Sorghum bicolor (L.) Moench. Karnataka J. Agric. Sci. 7:387–390; 1994.

    Google Scholar 

  • Birch, R. G. Plant transformation: problems and strategies for practical application. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48:297–326; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Birch, R. G.; Franks, T. Development and optimization of microprojectile systems for plant genetic transformation. Aust. J. Plant Physiol. 18:453–469; 1991.

    CAS  Google Scholar 

  • Boase, M. R.; Bradely, J. M.; Borst, N. K. An improved method for transformation of regal pelargonium (Pelargonium × domesticum Dubonnet) by Agrobacterium tumefaciens. Plant Sci. 139:59–69; 1998.

    Article  CAS  Google Scholar 

  • Brettell, R. I. S.; Wernicke, W.; Thomas, E. Embryogenesis from cultured immature inflorescences of Sorghum bicolor (L.) Protoplasma 104:141–148; 1980.

    Article  Google Scholar 

  • Cai, T.; Butler, L. Plant regeneration from embryogenic callus initiated from immature inflorescences of several high tannin sorghums Plant Cell. Tiss. Organ Cult. 20:101–110; 1990.

    Article  Google Scholar 

  • Casas, A. M.; Knonnowitz, A. K.; Haa, T. G.; Zhang, L.; Tomes, D. T.; Axtell, J. D.; Butler, L. G.; Bressan, R. A.; Hasegawa, P. M. Transgenic sorghum plants obtained after microprojectile bombardment of immature inflorescences. In Vitro Cell. Dev. Biol. Plant 33:92–100; 1997.

    Google Scholar 

  • Casas, A. M.; Knonnowitz, A. K.; Zehr, U. B.; Tomes, D. T.; Axtell, J. D.; Butler, L. G.; Bressan, R. A.; Hasegawa, P. M. Transgenic sorghum plants via microprojectile bombardment. Proc. Natl Acad. Sci. USA 90:11212–11216; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Castillo, B.; Smith, M. A. L. Direct somatic embryogenesis from Begonia gracilis explants. Plant Cell Rep. 16:385–388; 1997.

    CAS  Google Scholar 

  • Christou, P. Genetic transformation of crop plants using microprojectile bombardment. Plant J. 2:275–281; 1992.

    Article  CAS  Google Scholar 

  • Christou, P. Strategies for variety independent genetic transformation of important cereals, legumes and woody species utilizing particle bombardment. Euphytica 85:13–27; 1995.

    Article  Google Scholar 

  • Collins, G. B.; Shephard, R. J., eds. Engineering plants for commercial products and applications. Ann. NY Acad. Sci. 792; 1996.

  • Dalton, S. J.; Bettany, A. J. E.; Tumms, E.; Morris, P. Co-transformed, diploid Lolium perenne (perennial rye grass), Lolium multiflorum (Italian ryegrass) and Lolium temulentum (damel) plants produced by microprojectile bombardment. Plant Cell Rep. 18:721–726; 1999.

    Article  CAS  Google Scholar 

  • De Block, M.; Herrera-Estrella, L.; Van Montagu, M.; Schell, J.; Zamnryski, P. Expression of foreign genes in regenerated plants and their progeny. EMBO J. 3:1681–1689; 1984.

    PubMed  Google Scholar 

  • Delzer, B. W.; Somers, D. A.; Orf, J. H. Agrobacterium susceptibility and plant regeneration of 10 soybean genotypes in maturity groups 00 to II. Crop Sci. 30:320–322; 1990.

    Article  Google Scholar 

  • Delledonne, M.; Xia, Y.; Dixon, R. A.; Lamb, C. Nitric oxide functions as a signal in plant disease resistance. Nature 394:585–588; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Donaldson, P. A.; Simmonds, D. H. Susceptibility of Agrobacterium tumefaciens and cotyledonary node transformation in short season soybean. Plant Cell. Rep. 19:478–484; 2000.

    Article  CAS  Google Scholar 

  • Doskotch, R. W.; Makik, M. Y.; Beal, J. L. The isolation and characterization of the antitumor principle from Begonia tuberhybrida. Lloydia 31:424; 1968.

    Google Scholar 

  • Dunbar, K. B.; Stephens, C. T. Shoot regeneration of hybrid seed geranium (Pelargonium × hortorum) and regal geranium (Pelargonium × domesticum) from primary callus cultures. Plant Cell Tiss. Organ. Cult. 19:13–21; 1989.

    Article  Google Scholar 

  • Elkonia, L. A.; Lopushanskaya, R. F.; Pakhomova, N. V. Initiation and maintenance of friable, embryogenic callus of sorghum (Sorghum bicolor (L.) Moench) by amino acids. Maydica 40:153–157; 1995.

    Google Scholar 

  • Espino, F. J.; Linacero, R.; Rueda, J.; Vasquez, A. M. Shoot regeneration in four Begonia genotypes. Biol. Plant. 48:101–104; 2004.

    Article  CAS  Google Scholar 

  • Falco, S. C.; Guida, T.; Locke, M.; Mauvais, J.; Sanders, C.; Ward, R. T.; Webber, P. Trangenic canola and soybean seeds with increased lysine. Bio/Technology 13:577–582; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Finer, J. J.; Cheng, T. S.; Verma, D. P. S. Soybean transformation: technologies and progress. Soybean Genet. Mol. Biol. Biotechnnol. 11:249–262; 1996.

    Google Scholar 

  • Finer, J. J.; McMullen, M. D. Transformation of cotton (Gossypium hirsutum L.) via particle bombardment. Plant Cell. Rep. 8:586–590; 1990.

    Article  Google Scholar 

  • Finer, J. J.; Nagasawa, A. Development of an embryogenic suspension culture of soybean (Glycine max Merrill.) Plant Cell Tiss. Organ Cult. 15:125–136; 1988.

    Article  CAS  Google Scholar 

  • Finer, J. J.; Vain, P.; Jones, M. W.; McMullen, M. D. Development of particle inflow gun for DNA delivery to plant cells. Plant Cell Rep. 11:323–328; 1992.

    Article  CAS  Google Scholar 

  • Firoozabady, E.; De Boer, D. L.; Merlo, D. J.; Halk, E. L.; Amerson, L. N.; Rashka, K. E. Transformation of cotton (Gossypium hirsutum L.) by Agrobacterium tumefaciens and regeneration of transgenic plants. Plant Mol. Biol. 10:105–116; 1987.

    Article  CAS  Google Scholar 

  • Franklin, G.; Carpenter, L.; Davis, E.; Reddy, C. S.; Al-Abed, D.; Abou Alaiwi, W.; Parani, M.; Smith, B.; Goldman, S. L.; Sairam, R. V. Factors influencing regeneration of soybean from mature and immature cotyledons. Plant Growth Regul. 43:73–79; 2004.

    Article  CAS  Google Scholar 

  • Gad, A. E.; Rosenberg, N.; Altman, A. Liposome mediated gene delivery into plant cells. Physiol. Plant. 79:177–183; 1990.

    Article  CAS  Google Scholar 

  • Gamborg, O. L.; Shyluk, J. P.; Brar, D. S.; Constabel, F. Morphogenesis and plant regeneration from callus of immature embryos of sorghum. Plant Sci. Lett. 10:67–74; 1977.

    Article  CAS  Google Scholar 

  • Ganesan, S.; Rathore, K. S. Transgenic cotton: factors influencing Agrobacterium mediated transformation and regeneration. Mol. Breed. 8:37–52; 2001.

    Article  Google Scholar 

  • George, L.; Eapen, S. Callus growth and plant regeneration in some Indian cultivars of Sorghum. Curr. Sci. 58:308–310; 1989.

    Google Scholar 

  • Gilmour, S. J.; Zarka, D. G.; Stockinger, E. J.; Salazar, M. P.; Houghton, J. M.; Thomashow, M. F. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J. 16:433–442; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Godwin, I. D. Sorghum genetic engineering: current status and prospects. In: Scetharama, N.; Godwin, L., eds. Sorghum tissue culture and transformation. Enfield, NH: Science Publishers, Inc.; 2004:1–8.

    Google Scholar 

  • Gordon-Kamm, W. J.; Spencer, T. M.; Mangano, M. I.; Adams, T. R.; Daines, R. J.; Start, W. G.; O'Brien, J. V.; Chambers, S. A.; Adams, W. R. Jr.; Willetts, N. G.; Rice, T. B.; Mackey, C. J.; Krueger, R. W.; Kausch, A. P.; Lemaux, P. G. Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2:603–618; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Gould, J.; Devey, M.; Hasegawa, O.; Ulian, E. C.; Peterson, G.; Smith, R. H. Transformation of Zea mays L. using Agrobacterium tumefaciens and the shoot apex. Plant Physiol. 95:426–434; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Gould, J. H.; Smith, R. H. Transformation systems for corn. In: Wilkinson, D., ed. Proceedings of the Forty-Fourth Annual Corn and Sorghum Industry Research Conf. Washington, DC: American Seed Trade Association, Inc.; 1989:1–10.

    Google Scholar 

  • Gray, S. J.; Zhang, S.; Rathus, C.; Lemzaux, P. G.; Godwin, I. D. Development of sorghum transformation: organogenic regeneration and gene transfer methods. In: Seetharama, N.; Godwin, I., eds. Sorghum tissue culture and transformation. Enfield, NH: Science Publishers, Inc.: 2004:35–44.

    Google Scholar 

  • Gustavo, A.; de la Riva; Joel, G. C.; Roberto, V. P.; Camilo, A. P. Agrobacterium tumefaciens: a natural tool for plant transformation. Nat. Biotechnol. 1:1–19; 1998.

    Google Scholar 

  • Ha, S. B.; Wu, F. S.; Thorne, T. K. Transgenic turf type tall fescue (Festuca arundinaceae Schreb) obtained by direct gene transfer to protoplasts. Plant Cell Rep. 11:601–604; 1992.

    Article  CAS  Google Scholar 

  • Harms, C. T.; Lorz, H.; Potrykus, I. Regeneration of plantlets from callus cultures of Zea mays. Z. Pflanzenzuecht. 77:347–351; 1976.

    Google Scholar 

  • Harney, P. M. Tissue culture propagation of some herbaceous horticultural plants. In: Tomes, D. T.; Ellis, B. E.; Harney, P. M.; Kasha, K. J.; Peterson, R. L., eds. Application of plant cell tissue culture to agriculture and industry. Guelph, Ontario: University of Guelph; 1982:187–208.

    Google Scholar 

  • Haydu, Z.; Vasil, I. K. Somatic embryogenesis and plant regeneration from leaf tissue and anthers of Pennisetum purpureum. Theor. Appl. Genet. 59:275–280; 1981.

    Article  Google Scholar 

  • Hinchee, M. A. W.; Conor-Ward, D. V.; Newell, C. A.; McDonnell, R. E.; Sato, S. J.; Gasser, C. S.; Fischhoff, D. A.; Re, D. B.; Fraley, R. T.; Horsch, R. B. Production of transgenic soybean plants using Agrobacterium mediated DNA transfer. Bio/Technology 6:915–922; 1988.

    Article  CAS  Google Scholar 

  • Hooykaas, P. J. J.; Schilperoort, R. A. Agrobacterium and plant genetic engineering. Plant Mol. Biol. 19:15–38; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Horsch, R. B. Commercialization of genetically engineered crops. Phil. Trans. R. Soc. Lond. Ser. B 342:287–291; 1993.

    Article  CAS  Google Scholar 

  • Huang, X.; von Rad, U.; Durner, J. Nitric oxide induces transcriptional activation of the nitric oxide-tolerant alternative oxidase in Arabidopsis suspension cells. Planta 215:914–923; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Hughes, M. A.; Dunn, M. A. The molecular biology of plant acclimation to low temperature. J. Exp. Bot. 47:291–305; 1996.

    Article  CAS  Google Scholar 

  • Hutchinson, M. J.; Krishnaraj, S.; Saxena, P. K. Inhibitory effect of GA3 on the development of thidiazuron induced somatic embryogenesis in geranium (Pelargonium × hortorum Bailey) hypocotyl cultures. Plant Cell Rep. 16:435–438; 1997.

    CAS  Google Scholar 

  • Iida, T.; Yabe, K.; Washida, S.; Sakurai, Y. Propagation of tuberous begonia by tissue culture. Res. Bull. Aich Agric. Res. Cent. 18:186–190; 1986 (in Japanese).

    Google Scholar 

  • Jaglo-Ottosen, K. R.; Gilmour, S. J.; Zarka, D. G.; Schabenberger, O.; Thomashow, M. F. Arabidopsis CBFI over expression induces COR genes and enhances freezing tolerance. Science 280:104–106; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Jahne, A.; Becker, D. Lorz. Genetic engineering of cereal crop plants: a review. Euphytica 85:35–44; 1995.

    Article  Google Scholar 

  • Jauhar, P. P. Cytogenetics of the Festuca-Lolium complex. Relevance to breeding. In: Frankel, R.; Grossman, M.; Linskens, H. F.; Maliga, P.; Riley, R., eds. Monographs on theoretical and applied genetics, vol. 18. Berlin: Springer; 1993.

    Google Scholar 

  • Kasuga, M.; Liu, Q.; Miura, S.; Yagamuchi, S.; Shinozaki, K. Improving plant drought, salt and freezing tolerance by gene transfer of a single stress-inducible transcription factor. nature Biotechnol. 17:287–291; 1999.

    Article  CAS  Google Scholar 

  • Kidinger, B.; Dewald, C. L. The reproductive versatility of Eastern gamagrass. Crop Sci. 37:1351–1360; 1997.

    Article  Google Scholar 

  • Kidinger, B.; Vierling, R. A. Method to enhance germination of eastern gamagrass. Maydica 39:1–4; 1994.

    Google Scholar 

  • Kishimoto, S.; Aida, R.; Shibata, M. Agrobacterium tumefaciens mediated transformation of eliator begonia (Begonia × hiemalis Fotsch. Plant Sci. 162:697–703; 2002.

    Article  CAS  Google Scholar 

  • Kitagawa, K.; Skowyra, D.; Elledge, S. J.; Harper, J. W.; Hieter, P. SGTI encodes an essential component of the yeast kinetochore assembly pathway and a novel subumit of the SCF ubiquitin ligase complex. Mol. Cell. 4:21–33; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Kiyokawa, S.; Kikuchi, Y.; Kamada, H.; Harada, H. Transgenic Begonia. In: Bajaj, Y. P. S., ed. Biotechnology in agriculture and forestry, vol. 48. Transgenic crops III. Berlin: Springer-Verlag; 2001:43–54.

    Google Scholar 

  • Klein, T. M.; Jones, T. J. Methods of genetic transformation: the gene gun. In: Vasil, I. K., ed. Molecular improvement of cereal crops. Dordrecht: Kluwer Academic Publishers; 1999:21–42.

    Google Scholar 

  • Komatsuda, T.; Lee, W.; Oka, S. Maturation and germination of somatic embryos as effected by sucrose and plant growth regulators in soybeans Glycine gracillis Skvortz and Glycine max (L.) Merr. Plant Cell Tiss. Organ Cult. 28:103–113; 1992.

    Article  CAS  Google Scholar 

  • Krishnaraj, S.; Bi, Y.; Saxena, P. K. Somatic embryogenesis and Agrobacterium mediated transformation system for scented geranium (Pelargonium sp. Fensham). Planta 201:434–440; 1997.

    Article  CAS  Google Scholar 

  • Kumar, D.; Klessig, D. F. Differential induction of tobacco MAP kinases by the defense signals nitric oxide, salicylic acid, ethylene, and jasmonic acid. Mol. Plant-Microbe Interact. 13:347–351; 2000.

    PubMed  CAS  Google Scholar 

  • Laferriere, J. E. Begonia as food and medicine. Econ. Bot. 46:114–116; 1992.

    Google Scholar 

  • Langridge, P., Bretschneider, P.; Lazzeri, P.; Iyer, L. M.; Li, G.; Hall, T. C. Transformation of cereals via Agrobacterium and the pollen pathway. A critical assessment. Plant J. 2:631–638; 1992.

    Article  CAS  Google Scholar 

  • Leier, L.; Jedlitschky, G.; Buchholz, U.; Center, M.; Cole, S. P.; Deeley, R. G.; Keppler, D. ATP-dependent glutathione disulphide transport mediated by the MRP gene-encoded conjugate export pump. Biochem. J. 314:433–437; 1996.

    PubMed  CAS  Google Scholar 

  • Linsmaier, E. M.; Skoog, F. Organic growth factor requirements of tobacco tissue cultures. Physiol. Plant 18:100–128; 1965.

    Article  CAS  Google Scholar 

  • Livingstone, D. M.; Birch, R. G. Plant regeneration and microprojectile-mediated gene transfer in embryonic leaflets of peanut (Arachis hypogea L.). Aust. J. Plant Physiol. 22:585–591; 1995.

    Article  CAS  Google Scholar 

  • Lu, C.; Vasil, I. K.; Somatic embryogenesis and plant regeneration from leaf tissues of Panicum maximium. Jacq. Theor. Appl. Genet. 59:275–280; 1981.

    Article  Google Scholar 

  • Lu, C.; Vasil, V.; Vasil, I. K. Improved efficiency of somatic embryogenesis in tissue culture of maize (Zea mays L.). Theor. Appl. Genet. 66:285–289; 1983.

    Article  Google Scholar 

  • Ma, H.; Gu, M.; Liang, G. H. Plant regeneration from cultured immature embryos of Sorghum bicolor (L.) Moench. Theor. Appl. Genet. 73:389–394; 1987.

    Article  CAS  Google Scholar 

  • Madakadze, R. M.; Senaratna, T. Effect of growth regulators on maturation of geranium (Pelargonium × hortorum) somatic embryos. Plant Growth Regul. 30:55–60; 2000.

    Article  CAS  Google Scholar 

  • Maleck, K.; Levine, A.; Eulgem, T.; Morgan, A.; Schmid, J.; Lawton, K. A.; Dangl, J. L.; Dietrich, R. A. The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat. Genet. 26:403–410; 2000.

    Article  PubMed  CAS  Google Scholar 

  • McCabe, D. E.; Martinell, B. J. Transformation of elite cotton cultivars via particle bombardment of meristems. Bio/Technology 11:596–598;1993.

    Article  Google Scholar 

  • McCabe, D. E.; Swain, W. F.; Martinell, B. J.; Christou, P. Stable transformation of soybean (Glycine max) by particle acceleration. Bio/Technology 6:325–329; 1988.

    Article  Google Scholar 

  • Meurer, C. A.; Dinkins, R. D.; Collins, G. B. Factors affecting soybean cotyledonary transformation. Plant Cell Rep. 18:180–186; 1998.

    Article  CAS  Google Scholar 

  • Mishra, R.; Wang, H. Y.; Yadav, N. R.; Wilkins, T. A. Development of a highly regenerable elite Acala Cotton (Gossypium hirsutum cv. Maxxa) — a step towards genotype independent regeneration. Plant Cell Tiss. Organ Cult. 73:21–35; 2003.

    Article  CAS  Google Scholar 

  • Mithila, J.; Murch, S. J.; Krishnaraj, S.; Saxena P. Recent advances in Pelargonium in vitro regeneration systems. Plant Cell. Tiss. Organ Cult. 67:1–9; 2001.

    Article  CAS  Google Scholar 

  • Morrish, F. M.; Fromm, M. F. Cereal transformation methods. Curr. Opin. Biotechnol. 3:141–146; 1992.

    Article  CAS  Google Scholar 

  • Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–497; 1962.

    Article  CAS  Google Scholar 

  • Mythili, P. K.; Rani, T. S.; Sairam, R. V.; Reddy, V. D.; Harshavardhan, D.; Seetharama, N.; Sorghum tissue culture and transformation research. In: Seetharama, N.; Godwin, I. eds. Sorghum tissue culture and transformation. Enfield, NH: Science Publishers, Inc.; 2004:51–56.

    Google Scholar 

  • Nakano, M.; Nimi, Y.; Kobayashi, D.; Watanabe, A. Adventitious shoot regeneration and micropropagation of hybrid tuberous begonia (Begonia × tuberhybrida Voss). Sci. Hort. 79:245–251; 1999.

    Article  CAS  Google Scholar 

  • Neuhaus, G.; Spangenberg, G. Plant transformation by microinjection techniques. Physiol. Plant. 79:213–217; 1990.

    Article  CAS  Google Scholar 

  • Olhoft, P. M.; Lin, K.; Galbraith, J.; Nielsen, N. C. The role of thiol compounds in increasing Agrobacterium-mediated transformation of soybean cotyledonary-node cells. Plant Cell Rep. 20:731–737; 2001.

    Article  CAS  Google Scholar 

  • Olhoft, P. M.; Somers, D. A. l-Cysteine increases Agrobacterium-mediated T-DNA delivery into soybean cotyledonary-node cells. Plant Cell Rep. 20:706–711; 2001.

    Article  CAS  Google Scholar 

  • Parani, M.; Sairam, R. V.; Meyers, V.; Weirich, H.; Smith, B.; Leaman, D. W.; Goldman, S. L. Microarray analysis of nitric oxide responsive transcript in Arabidopsis. Plant Biotechnol. J. 2:359–366; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Parrott, W. A.; Hoffman, L. M.; Hilderbrand, D. F.; Williams, E. G.; Collins, G. B. Recovery of primary transformants of soybean. Plant Cell. Rep. 7:615–617; 1989a.

    CAS  Google Scholar 

  • Parrott, W. A.; Williams, E.; Hilderbrand, D. F.; Collins, G. B. Effects of genotype on somatic embryogenesis from immature cotyledons of soybean. Plant Cell Tiss. Organ Cult. 16:15–21; 1989b.

    Article  Google Scholar 

  • Paszkowski, J.; Shillito, R. D.; Saul, M.; Mandak, V.; Hohn, T. Direct gene transfer to plants. EMBO J. 3:2717–2722; 1984.

    PubMed  CAS  Google Scholar 

  • Peart, J. R.; Lu, R.; Sadanandom, A.; Malcuit, L.; Moffett, P.; Brice, D. C.; Schauser, L.; Jaggard, D. A. W.; Xiao, S.; Coleman, M. J.; Dow, M.; Jones, J. D. G.; Shirasu, K.; Baulcombe, D. C. Ubiquitin ligaseassociated protein SGT1 is required for host and nonhost disease resistance in plants. Proc. Natl Acad. Sci. USA 99:10865–10869; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Peck, D. E.; Cumming, B. G. In vitro propagation of Begonia tuberhybrida from leaf sections. HortScience 19:395–397; 1984.

    Google Scholar 

  • Perlak, F. J.; Deaton, R. W.; Armstrong, T. A.; Fuchs, R. L.; Sims, S. R.; Greenplate, J. T.; Fischoff, D. A. Insect resistant cotton plants. Bio/Technology 8:939–943; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Phillips, G. C. In vitro morphogenesis in plants — recent advances. In Vitro Cell. Dev. Biol. Plant 40:342–345; 2004.

    Article  CAS  Google Scholar 

  • Polverari, A.; Molesini, B.; Pezzotti, M.; Buonaurio, R.; Marte, M.; Delledonne, M. Nitric oxide-mediated transcriptional changes in Arabidopsis thaliana. Mol. Plant-Microbe Interact. 16:1094–1105; 2003.

    PubMed  CAS  Google Scholar 

  • Potrykus, I.; Harms, C. T.; Lorz, H.; Thomas, E. Callus formation from stem protoplasts of corn. Mol. Gen. Genet. 156:347–350; 1977.

    Article  CAS  Google Scholar 

  • Prioli, L. M.; Sondahl, M. R. Plant recognition and recovery of fertile plants from protoplasts of maize (Zea mays L.). Bio/Technology 7:589–594; 1989.

    Article  Google Scholar 

  • Pundir, N. S. Experimental embryology of Gossypium arboreum L. and Gossypium hirsulum and their reciprocal crosses. Bot. Gaz. 133:7–26; 1972.

    Article  Google Scholar 

  • Qureshi, J. A.; Saxena, P. K. Adventitious shoot induction and somatic embryogenesis with intact seedlings of several hybrid seed geranium (Pelargonium × hortorum Bailey) varieties. Plant Cell Rep. 11:443–448; 1992.

    Article  Google Scholar 

  • Rajasekharan, K.; Hudspeth, R. I.; Cary, J. W.; Anderson, D. M.; Cleveland, T. E. High frequency stable transformation of cotton (Gossypium hirsutum L) by particle bombardment of embryonic cell suspension cultures. Plant Cell Rep. 19:239–545; 2000.

    Google Scholar 

  • Rathus, C.; Nguyen, T.; Able, J. A.; Gray, S. J.; Godwin, I. D. Optimizing sorghum transformation technology via somatic embryogenesis. In: Seetharama, N.; Godwin, I., eds. Sorghum tissue culture and transformation. Enfield, NH: Science Publishers, Inc.; 2004:25–34.

    Google Scholar 

  • Repellin, A.; Båga, M.; Jauhar, P. P.; Chibbar, R. N. Genetic enrichment of cereal crops via alien gene transfer: new challenges. Rev. Plant Biotechnol. Plant Cell Tiss. Organ Cult. 64:159–183; 2001.

    Article  CAS  Google Scholar 

  • Rhodes, C. A.; Pierce, D. A.; Mettler, I. J.; Mascarenhas, D.; Detmer, J. J. Genetically transformed maize plants from protoplasts. Science 240:204–207; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Rohini, V. K.; Sankara Rao, K. Transformation of peanut (Arachis hypogaea L.): a non-tissue culture based approach for generating transgenic plants. Plant Sci. 150:41–49; 2000.

    Article  CAS  Google Scholar 

  • Sairam, R. V.; Franklin, G.; Hassel, R.; Wilber, C.; Smith, B.; Meeker, K.; Kashikar, N.; Parani, M.; AlAbed, D.; Ismail, S.; Berry, K.; Goldman, S. L. A study on the effect of genotypes, plant growth regulators and sugars promoting plant regeneration via organogenesis from soybean cotyledonary nodal callus. Plant Cell Tiss. Organ Cult. 75:79–85; 2003a.

    Article  CAS  Google Scholar 

  • Sairam, R. V.; Parani, M.; Franklin, G.; Lifeng, Z.; Smith, B.; MacDougall, J.; Wilber, C.; Sheikhi, H.; Kashikar, N.; Meeker, K.; Al-Abed, D.; Berry, K.; Vierling, R.; Goldman, S. L. Shoot meristem: an ideal explant for Zea mays L. transformation. Genome 46:323–329; 2003b.

    Article  PubMed  CAS  Google Scholar 

  • Sairam, R. V.; Seetharama, N.; Devi, P. S.; Verma, A.; Murty, U. R.; Potrykus, I. Regeneration from mesophyll protoplasts of Sorghum bicolor (L.) Moench. Plant Cell Rep. 18:972–977; 1999.

    Article  CAS  Google Scholar 

  • Sairam, R. V.; Seetharama, N.; Shyamala, T.; Devi, P. S. Plant regeneration from scutella of immature embryos of diverse sorghum genotypes. Cereal Res. Commun. 28:279–285; 2000.

    Google Scholar 

  • Sairam, R. V.; Wilber, C.; Franklin, J.; Smith, B.; Bazil, J.; Hassel, R.; Whaling, D.; Frutger, K.; Blakey, C. A.; Vierling, R.; Goldman, S. L. High frequency callus induction and plant regeneration in Tripsacum dactyloides (L.). In Vitro Cell. Dev. Biol. Plant 38:435–440; 2002.

    Article  Google Scholar 

  • Samoylov, V. M.; Tucker, D. M.; Parrott, W. A. Soybean (Glycine max (L.) Merrill) embryogeneic cultures. The role of sucrose and total nitrogen content on proliferation. In Vitro Cell. Dev. Biol. Plant 34:8–13; 1998.

    CAS  Google Scholar 

  • Santarén, E. R.; Finer, J. J. Transformation of soybean (Glycine max (L.) Merrill) using proliferative embryogenic tissue maintained on semi-solid medium. In Vitro Cell. Dev. Biol. Plant 35:451–455; 1999.

    Google Scholar 

  • Satyavathi, V. V.; Prasad, V.; Gita Lakshmi, B.; Lakshmi Sita, G. High efficiency transformation protocol for three Indian Cotton varieties via Agrobacterium tumefaciens. Plant Sci. 162:215–233; 2002.

    Article  CAS  Google Scholar 

  • Seetharama, N.; Sairam, R. V.; Rani, T. S. Regeneration of sorghum from shoot tip cultures and field performance of the progeny. Plant Cell. Tiss. Organ Cult. 61:169–173; 2000.

    Article  Google Scholar 

  • Shetty, K.; Asano, Y.; Oosawa, K. Stimulation of in vitro shoot organogenesis in Glycine max (L.) Merrill by allantoin and amides. Plant Sci. 81:245–251; 1992.

    Article  CAS  Google Scholar 

  • Simmonds, J. A.; Werry, T. Liquid shake culture for improved micropropagation of Begonia × hiemalis. HortScience 22:122–124; 1987.

    CAS  Google Scholar 

  • Spangenberg, G.; Wang, Z. Y.; Nagel, J.; Iglesias, V. A.; Potrykus, I. Transgenic tall fescue (Festuca arundinaceae) and red fescue (Festuca rubra) plants from microprojectile bombardment of embryogenic suspension cells. J. Plant Physiol. 145:693–701; 1995.

    CAS  Google Scholar 

  • Spangenberg, G.; Wang, Z. Y.; Nagel, J.; Potrykus, I. Protoplast culture and generation of transgenic plants in red fescue (Festuca rubra L.). Plant Sci. 97:83–94; 1994.

    Article  CAS  Google Scholar 

  • Spangenberg, G.; Wang, Z. Y.; Potrykus, I. Biotechnology in forage and turf grass improvement. In: Frankel, R.; Grossman, M.; Linskens, H. F.; Maliga, P.; Riley, R., eds. Monographs on theoretical and applied genetics, vol. 23. Berlin; Springer; 1998.

    Google Scholar 

  • Steponkus, P. L.; Uemura, M.; Joseph, R. A.; Gilmour, S. J.; Thomashow, M. F. Mode of action of the COR15a gene on the freezing tolerance of Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 95:14570–14575; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Takayama, S.; Begonia In: Ammirato, P. V.; Evans, D. A.; Sharp, W. R.; Bajaj, Y. P. S., eds. Handbook of plant tissue culture. New York: Macmillan; 1990:253–283.

    Google Scholar 

  • Terrell, E. E. Taxonomic implications of genetics in ryegrasses (Lolium). Bot. Rev. 32:138–164; 1966.

    Google Scholar 

  • Thomas, J. C.; Adams, D. G.; Keppenne, V. D.; Wassmann, C. C.; Brown, J. K.; Kanost, M. R.; Bohnert, H. J. Protease inhibitors of Monduca sexta expressed in transgenic cotton. Plant Cell Rep. 14:758–762; 1995.

    Article  CAS  Google Scholar 

  • Thomashow, M. F. Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Mode of action of the COR15a gene on the freezing tolerance of Arabidopsis thaliana. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50:571–599; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Thorpe, T. A. Physiological and biochemical aspects of organogenesis in vitro. In: Thorpe, T. A., ed. Frontiers of plant tissue culture 1978. Proc. 4th Int. Congr. Plant Tissue and Cell Culture. Calgary: IAPTC-University of Calgary Printing Service; 1978:49–58.

    Google Scholar 

  • Thorpe, T. A. Organogenesis in vitro: structural, physiological and biochemical aspects. In: Vasil, I. K., ed. Perspectives in plant cell and tissue culture. Int. Rev. Cytol., Suppl. 11A. New York: Academic Press; 1980:71–111.

    Google Scholar 

  • Thorpe, T. A. ed. In vitro embryogenesis in plants. Dordrecht: Kluwer Academic Publishers; 1995.

    Google Scholar 

  • Thorpe, T. A. To root or not to root, that is the question: reflections of a developmental plant physiologist. In Vitro Cell. Dev. Biol. Plant 40:128–142; 2004.

    Article  Google Scholar 

  • Thorpe, T. A.; Murashige, T. Starch accumulation in shoot-forming tobacco callus cultures. Science 160:421–422; 1968.

    Article  PubMed  CAS  Google Scholar 

  • Tomes, D. T.; Smith, O. S. The effect of parental genotype on initiation of embryogenic callus from elite maize (Zea mays L.) germplasm. Theor. Appl. Genet. 70:505–509; 1985.

    Article  Google Scholar 

  • Tor, M.; Gordon, P.; Cuzick, A.; Eulgen, T.; Sinapidou, E.; Mert-Turk, F.; Can, C.; Dangl, J. L.; Holub, E. B. Arabidopsis SGT1b is required for defense signaling conferred by several downy mildew resistance genes. Plant Cell 14:993–1003; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Umbeck, P.; Johnson, G.; Barton, K.; Swain, W. Genetically transformed cotton (Gossypium hirsutum L.) plants. Bio/Technology 5:263–266; 1987.

    Article  CAS  Google Scholar 

  • Vain, P.; De Buyser, J.; Trang, B. V.; Haicour, R.; Henry, Y. Foreign gene delivery into monocotyledonous species. Biotechnol. Adv. 13:653–671; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Vasil, I. K. Somatic embryogenesis and plant regeneration in cereals and grasses. In: Fujiwara, A., ed. Plant tissue culture. Tokyo: Maruzen; 1982:101–104.

    Google Scholar 

  • Vasil, I. K. Developing cell and tissue culture systems for the improvement of cereal and grass crops. J. Plant Physiol. 128:193–197; 1987.

    Google Scholar 

  • Vasil, V.; Vasil, I. K. Formation of callus and somatic embryos from protoplasts of commercial hybrids of maize (Zea mays L.). Theor. Appl. Genet. 73:793–798; 1987.

    Article  Google Scholar 

  • Vasil, V.; Vasil, I. K. Isolation and culture of cereal protoplasts. II. Embryogenesis and plantlet formation from protoplasts of Pennisetum americanum. Theor. Appl. Genet. 56:97–99; 1980.

    Article  Google Scholar 

  • Vasil, V.; Vasil, I. K.; Lu, C. Somatic embryogenesis in long-term callus cultures of Zea mays L. (Gramineae). Am. J. Bot. 71:158–161; 1984.

    Article  Google Scholar 

  • Viseur, J.; Lievens, C. In vitro propagation and regeneration of plants from calluses of Begonia × tuberhybrida. Acta. Hort. 212:705–709; 1987.

    Google Scholar 

  • Walters, D. A.; Vetsch, C. S.; Potts, D. E.; Lundquist, R. C. Transformation and inheritance of hygromycin phosphotransferase gene in maize. Plant Mol. Biol. 18:189–200; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Wernicke, W.; Brettel, R. Somatic embryogenesis from Sorghum bicolor leaves. Nature 287:138–139; 1980.

    Article  Google Scholar 

  • Wilkins, T.; Rajasekharan, K.; Anderson, D. M. Cotton biotechnology. Crit. Rev. Plant Sci. 19:511–550; 2000.

    Article  CAS  Google Scholar 

  • Ye, X.; Wang, Z. Y.; Wu, X.; Potrykus, I.; Spangenberg, G. Transgenic Italian ryegrass (Lolium multiflorum) plants from microprojectile bombardment of embryogenic suspension cells. Plant Cell Rep. 16:379–384; 1997.

    CAS  Google Scholar 

  • Zaghmout, O. M. F.; Torello, W. A. Restoration of regeneration potential of long term cultures of red fescue (Festuca rubra L.) by elevated sucrose levels. Plant Cell Rep. 11:142–145; 1992.

    Article  CAS  Google Scholar 

  • Zapata, C.; Park, S. H.; El-Zik, K. M.; Smith, R. H. Transformation of a Texas cotton cultivar using Agrobacterium and the shoot apex. Theor. Appl. Genet. 98:252–256; 1999.

    Article  Google Scholar 

  • Zhang, S.; Myeong, C.; Phillip, B.; Lemaux, P. Methods and compositions for transformation of cereals using cultured shoot meristematic tissue. Ontario, Patent # WO 99/15003; 1999.

  • Zhang, Z.; Xing, A.; Staswick, P.; Clemente, T. E. The use of glufosinate as a selective agent in Agrobacterium-mediated transformation of soybean. Plant Cell Tiss. Organ Cult. 56:37–47; 1999.

    Article  CAS  Google Scholar 

  • Zhong, H.; Wang, W.; Sticklen, M. B. In vitro morphogenesis of Sorghum bicolor L. Moench: efficient plant regeneration from shoot apices. J. Plant. Physiol. 153:719–726; 1998.

    CAS  Google Scholar 

  • Zhu, H.; Muthukrishnan, S.; Krishnaveni, S.; Wilde, G.; Jeoung, J. M.; Liang, G. H. Biolistic transformation of sorghum using a rice chitinase gene. J. Genet. Breed. 52:243–252; 1998.

    CAS  Google Scholar 

  • Zupan, J. R.; Zambryski, P. Transfer of T-DNA from Agrobacterium to the plant cell. Plant Physiol. 107:1041–1047; 1995.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Goldman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sairam, R., Chennareddy, S., Parani, M. et al. OBPC Symposium: Maize 2004 & beyond—Plant regeneration, gene discovery, and genetic engineering of plants for crop improvement. In Vitro Cell.Dev.Biol.-Plant 41, 411–423 (2005). https://doi.org/10.1079/IVP2005662

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1079/IVP2005662

Key words

Navigation