Skip to main content
Log in

Strategies for variety-independent genetic transformation of important cereals, legumes and woody species utilizing particle bombardment

  • Published:
Euphytica Aims and scope Submit manuscript

Summary

The limiting component in the creation of transgenic crops has been the lack of effective means to introduce foreign genes into elite germplasm. However, the development of novel direct DNA transfer methodology, by-passing limitations imposed by Agrobacterium-host specificity and cell culture constraints, has allowed the engineering of almost all major crops, including formerly recalcitrant cereals, legumes and woody species. The creation of transgenic rice, wheat, maize, barley, oat, soybean, phaseolus, peanut, poplar, spruce, cotton and others, in an efficient and in some cases, variety-independent fashion, is a significant step towards the routine application of recombinant DNA methodology to the improvement of most important agronomic crops. In this review we will focus on key elements and advantages of particle bombardment technology in order to evaluate its impact on the accelerated commercialization of products based on agricultural biotechnology and its utility in studying basic plant developmental processes and function through transgenesis. Fundamental differences between conventional gene transfer methods, utilizing Agrobacterium vectors or protoplast/suspension cultures, and particle bombardment will be discussed in depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amrhein N., D. Johanning, J. Schab & A. Schulz, 1983. Biochemical basis for glyphosate tolerance in a bacterium and a plant tissue culture. FEBS Letts. 157: 191–196.

    Article  CAS  Google Scholar 

  • Baldes R., M. Moos & K. Geider, 1987. Transformation of soybean protoplasts from permanent suspension cultures by cocultivation with cells of Agrobacterium tumefaciens. Plant Mol. Biol. 9: 135–141.

    Article  CAS  Google Scholar 

  • Barton K.A., A.N. Binns, A.J.M. Matzke & M.D. Chilton, 1983. Regeneration of intact tobacco plants containing full length copies of genetically engineered T-DNA and transmission of T-DNA to R1 progeny. Cell 32: 1033–1043.

    Article  PubMed  CAS  Google Scholar 

  • Barton K.A. & W.J. Brill, 1983. Prospects in Plant Genetic Engineering. Science 219: 671–676.

    Article  PubMed  CAS  Google Scholar 

  • Bidney D., C. Scelonge, J. Martich, M. Burrus, L. Sims & G. Huffman, 1992. Microprojectile bombardment of plant tissues increases transformation frequency by Agrobacterium tumefaciens. Plant Mol. Biol. 18: 301–303.

    Article  PubMed  CAS  Google Scholar 

  • Beck E., E.A. Ludwig, B. Reiss & H. Schaller, 1982. Nucleotide sequence and exact localization of the neomycin phosphotransferase gene from transposon Tn5. Gene 19: 327–336.

    Article  PubMed  CAS  Google Scholar 

  • Binns A.N., 1988. Cell biology of Agrobacterium infection and transformation of plants. Ann. Rev. Microbiol. 42: 575–606.

    Article  CAS  Google Scholar 

  • Birch R.G. & T. Franks, 1991. Development and optimization of microprojectile systems for plant genetic transformation. Aust. J. Plant Physiol. 18: 453–469.

    CAS  Google Scholar 

  • Bower R. & R. Birch, 1992. Transgenic sugarcane plants via microprojectile bombardment. Plant J. 2: 409–416.

    Article  CAS  Google Scholar 

  • Borlaug N.E., 1984. Plant breeding goals and strategies for the 80s. In: D.A. Evans, W.R. Sharp & P. Ammirato (Eds). Handbook of Plant Cell Culture. Vol. 4, pp. 3–11. MacMilland Publishing Co., New York.

    Google Scholar 

  • Brar, G.S., B.A. Cohen & C.L. Vick, 1992. Germline transformation of peanut (Arachis hypogaea L.) utilizing electric discharge particle acceleration (ACCELLTM) technology. Proceedings of the American Peanut Research and Education Soc., Inc. Norfolk, Virginia. Vol. 24, p. 21.

  • Brar G.S., B.A. Cohen, C.L. Vick & G.W. Johnson, 1994. Recovery of transgenic peanut (Arachis hypogaea L.) plant from elite cultivars utilizing Accell technology. Plant J. 5: 745–753.

    Article  Google Scholar 

  • Caplan A., L. Herrera-Estrella, D. Inze, E.van Haute, M.van Montagu, J. Schell & P. Zambryski, 1983. Introduction of genetic material into plant cells. Science 220: 815–821.

    Article  Google Scholar 

  • Chan M.T., H.H. Chang, S.L. Ho, W.F. Tong & S.M. Yu, 1993. Agrobacterium-mediated production of transgenic rice plants expressing a chimeric a-amylase promoter/β-glucuronidase gene. Plant Mol. Biol 22: 491–506.

    Article  PubMed  CAS  Google Scholar 

  • Christou P., J.E. Murphy & W.F. Swain, 1987. Stable transformation of soybean by electroporation and root formation from transformed callus. Proc. Natl. Acad. Sci. USA 84: 3962–3966.

    Article  PubMed  CAS  Google Scholar 

  • Christou P., 1990. Morphological description of transgenic soybean chimeras created by the delivery, integration and expression of foreign DNA using electric discharge particle acceleration. Ann. Bot. 66: 379–386.

    CAS  Google Scholar 

  • Christou P., D.E. McCabe, B.J. Martinell & W.F. Swain, 1990. Soybean genetic engineering-Commercial production of transgenic plants. Trends Biotech. 8: 145–151.

    Article  CAS  Google Scholar 

  • Christou P., T. Ford & M. Kofron, 1991. Production of transgenic rice (Oryza sativa L.) plants from agronomically important indica and japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos. Bio/Technol. 9: 957–962.

    Article  Google Scholar 

  • Christou P., 1992. Genetic transformation of crop plants using microprojectile bombardment. Plant J. 2: 275–281.

    Article  CAS  Google Scholar 

  • Christou P., T.L. Ford & M. Kofron, 1992. The development of a variety-independent gene-transfer method for rice. Trends Biotech. 10: 239–246.

    Article  Google Scholar 

  • Christou P. & D.E. McCabe 1992. Prediction of germline transformation events in chimeric R0 transgenic soybean plantlets using tissue specific expression patterns. Plant J. 2: 283–290.

    Article  CAS  Google Scholar 

  • Cullis C.A., 1987. Biotechnology and plant productivity. Ohio J. Sci. 87: 143–147.

    Google Scholar 

  • Datta S.K., A. Peterhans, K. Datta & I. Potrykus, 1990. Genetically engineered fertile Indica-rice recovered from protoplasts. Bio/Technol. 8: 736–740.

    Article  CAS  Google Scholar 

  • Datta S.K., K. Datta, N. Soltanifar, G. Donn & I. Potrykus, 1992. Herbicide-resistant Indica rice plants from IRRI breeding line IR72 after PEG-mediated transformation of protoplasts. Plant Mol. Biol. 20: 619–629.

    Article  PubMed  CAS  Google Scholar 

  • Dayton-Wilde H., R.B. Meagher & S.A. Merkle, 1992. Expression of foreign genes in transgenic yellow-poplar plants. Plant Physiol. 98: 114–120.

    Article  Google Scholar 

  • De Block M., J. Botterman, M. Vandewiele, J. Dockx, C. Thoen, V. Gossele, N. Rao Movva, C. Thompson, M.Van Montagu & J. Leemans, 1987. Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO 6: 2513–2518.

    Google Scholar 

  • Dekeyser R.A., B. Claes, R.M.U.De Rycke, M.E. Habets, M.Van Montagu & A.B. Caplan, 1990. Transient gene expression in intact and organized rice tissues. Plant Cell 2: 591–602.

    Article  PubMed  CAS  Google Scholar 

  • Depicker A., S. Stachel, P. Dhaese, P. Zambryski & H.M. Goodman, 1982. Nopaline synthase transcript mapping and DNA sequence. J. Mol. Appl. Gen. 1: 561–568.

    CAS  Google Scholar 

  • D'Halluin K., E. Bonne, M. Bossut, M.De Beuckeleer & J. Leemans, 1992. Transgenic maize plants by tissue electroporation. Plant Cell 4: 1495–1505.

    Article  PubMed  Google Scholar 

  • Ellis D.D., D.E. McCabe, S. McInnis, R. Ramachandran, D.R. Russell, K.M. Wallace, B.J. Martinell, D.R. Roberts, K.F. Raffa & B.H. McCown, 1993. Stable transformation of Picea glauca by particle acceleration-A model system for conifer transformation. Bio/Technol. 11: 84–89.

    Article  CAS  Google Scholar 

  • Finer J.J. & M.D. McMullen, 1990. Transformation of cotton (Gossypium hirsutum L.) via particle bombardment. Plant Cell Rep. 8: 586–589.

    Article  Google Scholar 

  • Finer J.J., P. Vain, M.W. Jones & M.D. McMullen, 1992. Development of particle inflow gun for DNA delivery to plant cells. Plant Cell Rep. 11: 323–328.

    Article  CAS  Google Scholar 

  • Firoozabady E., D.L. DeBoer, D.J. Merlo, E.L. Halk, L. Amerson, K.E. Rashka & E.E. Murray, 1987. Transformation of cotton (Gossypium hirsutum L.) by Agrobacterium tumefaciens and regeneration of transgenic plants. Plant Mol. Biol. 10: 105–116.

    Article  CAS  Google Scholar 

  • Fitch M.M.M., R.M. Manshardt, D. Gonsalves, J.L. Slightom & J.C. Sanford, 1990. Stable transformation of papaya via microprojectile bombardment. Plant Cell Rep. 9: 189–194.

    CAS  Google Scholar 

  • Fitch M.M.M., R.M. Manshardt, D. Gonsalves, J.L. Slightom & J.C. Sanford, 1992. Virus resistant papaya plants derived from tissues bombarded with coat protein gene of papaya ringspot virus. Bio/Technol. 10: 1466–1472.

    Article  CAS  Google Scholar 

  • Franks T. & R. Birch, 1991. Gene transfer into intact sugarcane cells using microprojectile bombardment. Austr. J. Plant Physiol. 18: 471–480.

    Article  CAS  Google Scholar 

  • Fromm M.E., F. Morrish, C. Armstrong, R. Williams, J. Thomas & T.M. Klein, 1990. Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Bio/Technol. 8: 833–844.

    Article  CAS  Google Scholar 

  • Gardner R., A. Howarth, P. Hahn, M. Brown-Luedi, R. Shepherd & J. Messing, 1981. The complete nucleotide sequence of an infectious clone of Cauliflower mosaic virus by M13mp7 shotgun sequencing. Nucl. Acids Res. 9: 2871–2882.

    Article  PubMed  CAS  Google Scholar 

  • Goodman R.M., H. Hauptly, A. Crossway & V.C. Knauf, 1987. Gene transfer in crop improvement. Science 236: 48–54.

    Article  PubMed  CAS  Google Scholar 

  • Gordon-Kamm W.J., T.M. Spencer, M.L. Mangano, T.R. Adams, R.J. Daines, W.G. Start, J.V. O'Brien, S.A. Chambers, W.R. Adams, N.G. Willetts, T.B. Rice, C.J. Mackey, R.W. Krueger, A.P. Kausch & P.G. Lemaux, 1990. Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2: 603–618.

    Article  PubMed  CAS  Google Scholar 

  • Gordon-Kamm W.J., T.M. Spencer, M.L. Mangano, T.R. Adams, R.J. Daines, W.G. Start, J.V. O'Brien, S.A. Chambers, A.P. Adams, N.G. Willetts, C.J. Mackey, R.W. Krueger, S.J. Zachwieja, A.P. Kausch & P.G. Lemaux, 1991. Transformation of maize using microprojectile bombardment: an update and perspective. In Vitro Cell. Dev. Biol. 27: 21–27.

    Article  Google Scholar 

  • Grimsley N., T. Hohn, J.W. Davies & B. Hohn, 1987. Agrobacterium-mediated delivery of infectious maize streak virus into maize plants. Nature 325: 177–179.

    Article  CAS  Google Scholar 

  • Hartke S. & H.J. Lorz, 1989. Somatic embryogenesis and plant regeneration from various indica rice (Oryza sativa L.) genotypes. J. Genet. Breed. 43: 205–214.

    Google Scholar 

  • Herrera-Estrella L., A. Depicker, M.Van Montague & J. Schell, 1983. Expression of chimeric genes transferred into plant cells using a Ti-plasmid-derived vector. Nature 303: 209–213.

    Article  CAS  Google Scholar 

  • Iida A., T. Yamashida, Y. Yamada & H. Morikawa, 1991. Efficiency of particle bombardment-mediated transformation is influenced by cell cycle stage in synchronized cultured cells of tobacco. Plant Physiol. 97: 1585–1587.

    Article  PubMed  CAS  Google Scholar 

  • Iida A., M. Seki, M. Kamada, Y. Yamada & H. Morikawa, 1990. Gene delivery into cultured plant cells by DNA-coated gold particles accelerated by a pneumatic particle gun. Theor. Appl. Genet. 80: 813–816.

    Article  Google Scholar 

  • Jefferson R.A., T.A. Kavanagh & M.W. Bevan, 1987. GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO 6: 3901–3907.

    CAS  Google Scholar 

  • Klein T.M., E.D. Wolf, R. Wu & J.C. Sanford, 1987. High-velocity microprojectiles for delivering nucleic acids into living cells. Nature 327: 70–73.

    Article  CAS  Google Scholar 

  • Klein T.M., R. Arentzen, P.A. Lewis & S. Fitzpatrick-McElligott, 1992. Transformation of microbes, plants and animals by particle bombardment. Bio/Technol. 10: 286–291.

    Article  CAS  Google Scholar 

  • Koziel M.G., G.L. Beland, C. Bowman, N.B. Carozzi, R. Crenshaw, L. Crossland, J. Dawson, N. Desai, M. Hill, S. Kadwell, K. Launis, K. Lewis, D. Maddox, K. McPherson, M.R. Meghji, E. Merlin, R. Rhodes, G.W. Warren, M. Wright & S.V. Evola, 1993. Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Bio/Technol. 11: 194–200.

    Article  CAS  Google Scholar 

  • Lianzheng W., Y. Guangchu, L. Jiaofen, L. Bojun, W. Jian, Y. Zhenchun, L. Xiulan, S. Qiquan, J. Xingcun & Z. Zeqi, 1984. A study on tumor formation of soybean and gene transfer. Scientia Sinica B. 27: 391–397.

    Google Scholar 

  • Li L., R. Qu, A.de Kochko, C. Fauquet & R.N. Beachy, 1993. An improved rice transformation system using the biolistic method. Plant Cell Rep. 12: 250–255.

    Article  Google Scholar 

  • Lin W., J.T. Odell & R.M. Schreiner, 1987. Soybean protoplast culture and direct gene uptake and expression by cultured soybean protoplasts. Plant Physiol. 84: 856–861.

    Article  PubMed  CAS  Google Scholar 

  • McCabe D.E., W.F. Swain, B.J. Martinell & P. Christou, 1988. Stable transformation of soybean (Glycine max) by particle acceleration. Bio/Technol. 6: 923–926.

    Article  Google Scholar 

  • McCabe D.E. & P. Christou, 1993. Direct DNA transfer using electric discharge particle acceleration (ACCELL technology). Plant Cell Tissue Organ Cult. 33: 227–236.

    Article  CAS  Google Scholar 

  • McCabe D.E. & B.J. Martinell, 1993. Transformation of elite cotton cultivars via particle bombardment of meristems. Bio/Technol. 11: 596–598.

    Article  Google Scholar 

  • McCown B., D. McCabe, D. Russell, D. Robinson, K. Barton & K. Raffa, 1991. Stable transformation of Populus and incorporation of pest resistance by electric discharge particle acceleration. Plant Cell Rep. 9: 590–594.

    Article  CAS  Google Scholar 

  • Morikawa H. & Y. Yamada, 1985. Capillary microinjection into protoplasts and intranuclear localization of injected materials. Plant Cell Physiol. 26: 229–236.

    CAS  Google Scholar 

  • Moses P.B. & N.H. Chua, 1988. Light switches for plant gene. Sci. Amer. 1988: 88–118.

    Article  Google Scholar 

  • Neuhaus G., G. Spangenberg, O.M. Scheid & H.G. Schweiger, 1987. Transgenic rapeseed plants obtained by the microinjection of DNA into microspore-derived embryoids. Theor. Appl. Genet. 70: 30–36.

    Google Scholar 

  • Nisbet G.S. & K.J. Webb, 1990. Transformation in legumes. In: Y.P.S. Bajaj (Ed). Biotechnology in Agriculture and Forestry. Vol. 10. Legumes and Oilseed Crops I. pp. 38–48. Springer-Verlag, Berlin, Heidelberg.

    Google Scholar 

  • Ow D.W., K.V. Wood, M. Deluca, J.R.De Wet, D.R. Helinski & S.H. Howell, 1986. Transient and stable expression of the firefly luciferase gene inplant cells and transgenic plants. Science 234: 856–859.

    Article  PubMed  CAS  Google Scholar 

  • Owens L.D. & D.E. Cress, 1985. Genotypic variability of soybean response to Agrobacterium strains harboring the Ti or Ri plasmids. Plant Physiol. 77: 87–94.

    Article  PubMed  CAS  Google Scholar 

  • Potrykus I., 1990. Gene transfer to plants: assessment and perspectives. Physiol. Plant. 79: 125–134.

    Article  CAS  Google Scholar 

  • Pua E.C., A. Mehra-Palta, F. Nagy & N.H. Chua, 1987. Transgenic plants of Brassica napus L. Biotechnol. 5: 815–817.

    Article  Google Scholar 

  • Rhodes C.A., D.A. Pierce, I.J. Mettler, D. Mascarenthas & J.J. Detmer, 1988. Genetically transformed maize plants from protoplasts. Science 240: 204–207.

    Article  PubMed  CAS  Google Scholar 

  • Russell J.A., M.K. Roy & J.C. Sanford, 1992a. Physical trauma and tungsten toxicity reduce the efficiency of biolistic transformation. Plant Physiol. 98: 1050–1056.

    Article  CAS  Google Scholar 

  • Russell J.A., M.K. Roy & J.C. Sanford, 1992b. Major improvement in biolistic transformation of suspension-cultured tobacco cells. In Vitro Cell. Dev. Biol. 28: 97–105.

    Article  Google Scholar 

  • Russell D.R., K. Wallace, J. Bathe, B.J. Martinell & D.E. McCabe, 1993. Stable transformation of Phaseolus vulgaris via electricdischarge mediated particle acceleration. Plant Cell Rep. 12: 165–169.

    Article  CAS  Google Scholar 

  • Sanford J.C., 1988. The biolistic process. Trends Biotechnol. 6: 299–302.

    Article  CAS  Google Scholar 

  • Sanford J.C., T.M. Klein, E.D. Wolf & N.J. Allen, 1987. Delivery of substances into cells and tissues using a particle bombardment process. J. Part. Sci. Technol. 6: 559–563.

    Google Scholar 

  • Sanford J.C., M.J. Devit, J.A. Russell, F.D. Smith, P.R. Harpending, M.K. Roy & S.A. Johnston, 1991. An improved, helium driven biolistic device. Technique 3: 3–16.

    CAS  Google Scholar 

  • Sautter C., H. Waldner, G. Neuhaus-Url, A. Galli, G. Neuhaus & I. Potrykus, 1991. Micro-targeting: High efficiency gene transfer using a novel approach for the acceleration of micro-projectiles. Bio/Technol. 9: 1080–1085.

    Article  CAS  Google Scholar 

  • Serres R., E. Stang, D.E. McCabe, D. Russell, D. Mahr & B. McCown, 1992. Gene transfer using electric discharge particle bombardment and recovery of transformed cranberry plants. J. Amer. Soc. Hort. Sci. 117: 174–180.

    CAS  Google Scholar 

  • Somers D.A., H.W. Rines, W. Gu, H.F. Kaeppler & W.R. Bushnell, 1992. Fertile, transgenic oat plants. Bio/Technol. 10: 1589–1594.

    Article  CAS  Google Scholar 

  • Takeuchi Y., M. Dotson & N.T. Keen, 1992. Plant transformation: a simple particle bombardment device based on flowing helium. Plant Mol. Biol. 18: 835–839.

    Article  PubMed  CAS  Google Scholar 

  • Tomes D.T., A.K. Weissinger, M. Ross, R. Higgins, B.J. Drummond, S. Schaaf, J. Malone-Schoneberg, M. Staebell, P. Flynn, J. Anderson & J. Howard, 1990. Transgenic tobacco plants and their progeny derived from microprojectile bombardment of tobacco leaves. Plant Mol. Biol. 14: 261–268.

    Article  PubMed  CAS  Google Scholar 

  • Toriyama K., Y. Arimoto, H. Uchimiya & K. Hinata, 1988. Transgenic rice plants after direct gene transfer into protoplasts. Bio/Technol. 6: 1072–1074.

    Article  CAS  Google Scholar 

  • Umbeck P., G. Johnson, K. Barton & W. Swain, 1987. Genetically transformed cotton (Gossypium hirsutum L.) plants. Bio/Technol. 5: 263–266.

    Article  CAS  Google Scholar 

  • Vain P., M.D. McMullen & J.J. Finer, 1993. Osmotic treatment enhances particle bombardment-mediated transient and stable transformation of maize. Plant Cell Rep. 12: 84–88.

    Article  Google Scholar 

  • Van den Elzen M., J. Townsend, K. Lee & J. Bedbrook, 1985. A chimaeric hygromycin resistance gene as a selectable marker in plant cells. Plant Mol. Biol. 5: 299–302.

    Article  Google Scholar 

  • Vasil V., A.M. Castillo, M.E. Fromm & I. Vasil, 1992. Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Bio/Technol. 10: 667–674.

    Article  CAS  Google Scholar 

  • Wan Y. & P.G. Lemaux, 1994. Generation of large numbers of independently-transformed fertile barley plants. Plant Physiol. 104: 37–48.

    PubMed  CAS  Google Scholar 

  • Weeks T.J., O.D. Anderson & A.E. Blechl, 1993. Rapid production of multiple independentlines of fertile transgenic wheat (Triticum aestivum). Plant Physiol. 102: 1077–1084.

    PubMed  CAS  Google Scholar 

  • Widholm J.M., 1993a. Retraction. Plant Physiol. 102: 331.

    Google Scholar 

  • Widholm J.M., 1993b. Retraction. Physiol. Plant. 87: 199.

    Article  Google Scholar 

  • Widholm J.M., 1993c. Retraction. Plant Cell Rep. 12: 478.

    Google Scholar 

  • Yamashita T., A. Iida & H. Morikawa, 1991. Evidence that more than 90% of b-glucuronidase-expressing cells after particle bombardment directly receive the foreign gene in their nucleus. Plant Physiol. 97: 829–831.

    Article  PubMed  CAS  Google Scholar 

  • Zhang W. & R. Wu, 1988. Efficient regeneration of transgenic plants from rice protoplasts and correctly regulated expression of the foreign gene in the plants. Theor. Appl. Genet. 75: 835–840.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christou, P. Strategies for variety-independent genetic transformation of important cereals, legumes and woody species utilizing particle bombardment. Euphytica 85, 13–27 (1995). https://doi.org/10.1007/BF00023926

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00023926

Key words

Navigation