Skip to main content

Advertisement

Log in

Recent trends in bioethanol production from food processing byproducts

  • Review
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The widespread use of corn starch and sugarcane as sources of sugar for the production of ethanol via fermentation may negatively impact the use of farmland for production of food. Thus, alternative sources of fermentable sugars, particularly from lignocellulosic sources, have been extensively investigated. Another source of fermentable sugars with substantial potential for ethanol production is the waste from the food growing and processing industry. Reviewed here is the use of waste from potato processing, molasses from processing of sugar beets into sugar, whey from cheese production, byproducts of rice and coffee bean processing, and other food processing wastes as sugar sources for fermentation to ethanol. Specific topics discussed include the organisms used for fermentation, strategies, such as co-culturing and cell immobilization, used to improve the fermentation process, and the use of genetic engineering to improve the performance of ethanol producing fermenters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Agrawal M, Chen RR (2011) Discovery and characterization of a xylose reductase from Zymomonas mobilis ZM4. Biotechnol Lett 33:2127–2133

    Article  CAS  PubMed  Google Scholar 

  2. Abanoz K, Stark BC, Akbas MY (2012) Enhancement of ethanol production from potato-processing waste water by engineering Escherichia coli using Vitreoscilla haemoglobin. Lett Appl Microbiol 55:436–443

    Article  CAS  PubMed  Google Scholar 

  3. Ahring BK, Jensen K, Nielsen P, Bjerre AB, Schmidt AS (1996) Pretreatment of wheat straw and conversion of xylose and xylan to ethanol by thermophilic anaerobic bacteria. Bioresour Technol 58:107–113

    Article  CAS  Google Scholar 

  4. Ajibola FO, Edema MO, Oyewole OB (2012) Enzymatic production of ethanol from cassava starch using two strains of Saccharomyces cerevisiae. Niger Food J 30:114–121

    Article  Google Scholar 

  5. Akbas MY, Sar T, Ozcelik B (2014) Improved ethanol production from cheese whey, whey powder, and sugar beet molasses by “Vitreoscilla hemoglobin expressing’’ Escherichia coli. Biosci Biotech Biochem 78:687–694

    Article  CAS  Google Scholar 

  6. Almarsdottir AR, Sigurbjornsdottir MA, Orlygsson J (2012) Effects of various factors on ethanol yields from lignocellulosic biomass by Thermoanaerobacterium AK17. Biotechnol Bioeng 109:686–694

    Article  CAS  PubMed  Google Scholar 

  7. Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314:1565–1568

    Article  CAS  PubMed  Google Scholar 

  8. Alterthum F, Ingram LO (1989) Efficient ethanol production from glucose, lactose and xylose by recombinant Escherichia coli. Appl Environ Microbiol 55:1943–1948

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kivaisi A, Assefa B, Hashim S, Mshandete A (2010) Sustainable utilization of agro industrial waste through the integration of bioenergy and mushroom production. International Livestock Research Institute, Nairobi

    Google Scholar 

  10. Arapoglou D, Varzakas T, Vlyssides A, Israilides C (2010) Ethanol production from potato peel waste (PPW). Waste Manag 30:1898–1902

    Article  CAS  PubMed  Google Scholar 

  11. Arasaratnam V, Nihiyanantharajha K, Nithiyanantharajah N (2012) Recycling of yeast cells for simultaneous saccharification and fermentation of liquified starch of rice flour. J Exp Biol 2:127–134

    CAS  Google Scholar 

  12. Arnaldos M, Kunkel SA, Wang J, Pagilla KR, Stark BC (2012) Vitreoscilla hemoglobin enhances ethanol production by Escherichia coli in a variety of growth media. Biomass Bioenerg 37:1–8

    Article  CAS  Google Scholar 

  13. Arsova L (2010) Anaerobic digestion of food waste: current status, problems and an alternative product. M.S. Degree in Earth Resources Engineering, Columbia University

  14. Atthasampunna P, Somchai P, Eur-aree A, Artjariyasripong S (1987) Produce of fuel ethanol from cassava. World J Microb Biotechnol 3:135–142

    Article  CAS  Google Scholar 

  15. Bailey RB, Benitez T, Woodward A (1982) Saccharomyces cerevisiae mutants resistant to catabolite repression: use in cheese whey hydrolysate fermentation. Appl Environ Microb 44:631–639

    CAS  Google Scholar 

  16. Balat M, Balat HA (2008) Critical review of biodiesel as vehicular fuel. Energ Convers Manage 49:2727–2741

    Article  CAS  Google Scholar 

  17. Banat I, Marchant R (1995) Characterization and potential industrial applications of five novel, thermotolerant fermentative yeast strains. World J Microbiol Biotechnol 11:304–306

    Article  CAS  PubMed  Google Scholar 

  18. Barbosa MFS, Ingram LO (1994) Expression of the Zymomonas mobilis alcohol dehydrogenase II (adhB) and pyruvate decarboxylase (pdc) genes in Bacillus. Curr Microbiol 28:279–282

    Article  CAS  Google Scholar 

  19. Beall DK, Ohta K, Ingram LO (1991) Parametric studies of ethanol-production from xylose and other sugars by recombinant Escherichia coli. Biotechnol Bioeng 38:296–303

    Article  CAS  PubMed  Google Scholar 

  20. Beall DS, Ingram LO (1993) Genetic engineering of soft-rot bacteria for ethanol production from lignocellulose. J Ind Microbiol 1:151–155

    Article  Google Scholar 

  21. Binod P, Sindhu R, Singhania RR, Vikram S, Devi L et al (2010) Bioethanol production from rice straw: an overview. Bioresour Technol 101:4767–4774

    Article  CAS  PubMed  Google Scholar 

  22. Birch PRJ, Bryan G, Fenton B, Gilroy EM, Hein I, Jones JT, Prashar A, Taylor MA, Torrance L, Toth IK (2012) Crops that feed the word 8: potato: are the trends of increased global production sustainable? Food Security 4:477–508

    Article  Google Scholar 

  23. Borowski S, Kucner M (2015) Co-digestion of sewage sludge and dewatered residues from enzymatic hydrolysis of sugar beet pulp. J Air Waste Manag Assoc 65:1354–1364

    Article  CAS  PubMed  Google Scholar 

  24. Boudjema K, Fazouane-Naimi F, Hellal A (2015) Optimization of the bioethanol production on sweet cheese whey by Saccharomyces cerevisiae DIV13-Z087C0VS using response surface methodology (RSM). Rom Biotech Lett 20:10814–10825

    Google Scholar 

  25. Božanić R, Barukčić I, Jakopović KL, Tratnik L (2014) Possibilities of whey utilisation. Austin J Nutri Food Sci 2:1036

    Google Scholar 

  26. Bressani R (1979) Anti-physiological factors in coffee pulp. In: Braham JE, Bressani R (eds) Coffee pulp: composition, technology and utilization. Publication 108e. International Development Research Centre, Ottawa, pp 83–88

  27. Bressani R (1991) Coffee, coffee pulp. In: Göhl B (ed) Tropical feeds version 3.0a. FAO, Rome

    Google Scholar 

  28. Bringer S, Scollar M, Sahm H (1985) Zymomonas mobilis mutants blocked in fructose utilization. Appl Microbiol Biotechnol 23:134–139

    Article  Google Scholar 

  29. Cai Z, Zhang B, Li Y (2012) Engineering Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: reflections and perspectives. Biotechnol J 7:34–46

    Article  CAS  PubMed  Google Scholar 

  30. Cardona CA, Sanchez OJ (2007) Fuel ethanol production: process design trends and integration opportunities. Bioresour Technol 98:2415–2457

    Article  CAS  PubMed  Google Scholar 

  31. Carey VC, Ingram LO (1983) Lipid composition of Z. Mobilis: effects of ethanol and glucose. J Bacteriol 154:1291–1300

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Caspeta L, Nielsen J (2015) Thermotolerant yeast strains adapted by laboratory evolution show trade-off at ancestral temperatures and preadaptation to other stresses. Mbio 6:e00431–15

  33. Cazetta M, Celligoi M, Buzato J, Scarmino J (2007) Fermentation of molasses by Zymomonas mobilis: effects of temperature and sugar concentration on ethanol production. Bioresour Technol 98:2824–2828

    Article  CAS  PubMed  Google Scholar 

  34. Chaudhary N, Qazi JI, Irfan M (2016) Isolation and identification of cellulolytic and ethanologenic bacteria from soil, Iranian J Sci Technol (in press)

  35. Chen Y, Stevens MA, Zhu YM, Holmes J, Moxley G, Xu H (2012) Reducing acid in dilute acid pretreatment and the impact on enzymatic saccharification. J Ind Microbiol Biotechnol 39:691–700

    Article  CAS  PubMed  Google Scholar 

  36. Choi IS, Lee YG, Khanal SK, Park BJ, Bae HJ (2015) A low-energy, cost-effective approach to fruit and citrus peel waste processing for bioethanol production. Appl Energy 140:65–74

    Article  CAS  Google Scholar 

  37. Choonut A, Saejong M, Sangkharak K (2014) The production of ethanol and hydrogen from pineapple peel by Saccharomyces cerevisiae and Enterobacter aerogenes. Energy Procedia 52:242–249

    Article  CAS  Google Scholar 

  38. Chum HL, Zhang Y, Hill J, Tiffany DG, Morey RV, Goss Eng A, Haq Z (2014) Understanding the evolution of environmental and energy performance of the US corn ethanol industry: evaluation of selected metrics. Biofuel Bioprod Bior 8:224–240

    Article  CAS  Google Scholar 

  39. Çakar ZP (2009) Metabolic and evolutionary engineering research in Turkey and beyond. Biotechnol J 4:992–1002

    Article  PubMed  CAS  Google Scholar 

  40. da Silva GP, de Araújo EF, Silva DO, Guimarães WV (2005) Ethanolic fermentation of sucrose, sugarcane juice and molasses by Escherichia coli strain KO11 and Klebsiella oxytoca strain P2. Braz J Microbiol 36:395–404

    Article  Google Scholar 

  41. Deanda K, Zhang M, Eddy C, Picataggio S (1996) Development of an arabinose-fermenting Zymomonas mobilis strain by metabolic pathway engineering. Appl Environ Microb 62:4465–4470

    CAS  Google Scholar 

  42. De Figueiredo VL, de Mello VM, Reis VCB, Bon EPDS, Gonçalves Torres FA, Neves BC, Eleutherio ECA (2013) Functional expression of Burkholderia cenocepacia xylose isomerase in yeast increases ethanol production from a glucose-xylose blend. Bioresour Technol 128:792–796

    Article  CAS  Google Scholar 

  43. Diao L, Liu Y, Qian F, Yang J, Jiang Y, Yang S (2013) Construction of fast xylose-fermenting yeast based on industrial ethanol-producing diploid Saccharomyces cerevisiae by rational design and adaptive evolution. BMC Biotechnol 13:110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Díaz MJ, Cara C, Ruiz E, Romero I, Moya M, Castro E (2010) Hydrothermal pre-treatment of rapeseed straw. Bioresour Technol 101:2428–2435

    Article  PubMed  CAS  Google Scholar 

  45. Dien BS, Nichols NN, O’Bryan PJ, Rodney BJ (2000) Development of new ethanologenic Escherichia coli strains for fermentation of lignocellulosic biomass. Appl Biochem Biotechnol 84–86:181–196

    Article  PubMed  Google Scholar 

  46. Dien BS, Cotta MA, Jeffries TW (2003) Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63:258–266

    Article  CAS  PubMed  Google Scholar 

  47. Dodic S, Popov S, Dodic J, Rankovic J, Zavargo Z, Mucibabic RJ (2009) Bioethanol production from thick juice as intermediate of sugar beet processing. Biomass Bioenergy 33:822–827

    Article  CAS  Google Scholar 

  48. Dombek KM, Ingram LO (1987) Ethanol production during batch fermentation with Saccharomyces cerevisiae: changes in glycolytic enzymes and internal pH. Appl Environ Microbiol 53:1286–1291

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Domingues L, Guimarães PM, Oliveira C (2010) Metabolic engineering of Saccharomyces cerevisiae for lactose/whey fermentation. Bioeng Bugs 1:164–171

    Article  PubMed  Google Scholar 

  50. Domingues L, Lima N, Teixeira JA (2005) Aspergillus niger beta-galactosidase production by yeast in a continuous high cell density reactor. Process Biochem 40:1151–1154

    Article  CAS  Google Scholar 

  51. Doran JB, Aldrich HC, Ingram LO (1994) Saccharification and fermentation of sugar-cane bagasse by Klebsiella oxytoca P2 containing chromosomally integrated genes encoding the Zymomonas mobilis ethanol pathway. Biotechnol Bioeng 44:240–247

    Article  CAS  PubMed  Google Scholar 

  52. Doran JB, Ingram LO (1993) Fermentation of crystalline cellulose to ethanol by Klebsiella oxytoca containing chromosomally integrated Zymomonas mobilis genes. Biotechnol Prog 9:533–538

    Article  CAS  Google Scholar 

  53. Dragone G, Mussatto SI, Silva JB, Teixeira JA (2011) Optimal fermentation conditions for maximizing the ethanol production by Kluyveromyces fragilis from cheese whey powder. Biomass Bioenergy 35:1977–1982

    Article  CAS  Google Scholar 

  54. Duarte JC, Rodrigues JAR, Moran PJS, Valença GP, Nunhez JR et al (2013) Effect of immobilized cells in calcium alginate beads in alcoholic fermentation. AMB Express 3:31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Eberemu A, Amadi A, Sule J (2011) Desiccation effect on compacted tropical clay treated with rice husk ash. Geo-Frontiers 2011:1192–1201

    Google Scholar 

  56. Eiadpum A, Limtong S, Phisalaphong M (2012) High-temperature ethanol fermentation by immobilized co-culture of Kluyveromyces marxianus and Saccharomyces cerevisiae. J Biosci Bioeng 114:325–329

    Article  CAS  PubMed  Google Scholar 

  57. Erdei B, Barta Z, Sipos B, Réczey K, Galbe M, Zacchi G (2010) Ethanol production from mixtures of wheat straw and wheat meal. Biotechnol Biofuels 3:16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Ezebuiro V, Ogugbue CJ, Oruwari B, Ire FS (2015) Bioethanol production by an ethanol-tolerant Bacillus cereus strain GBPS9 using sugarcane bagasse and cassava peels as feedstocks. J Biotechnol Biomater 5:4

    Article  Google Scholar 

  59. Fadel M, Keera AA, Mouafi FE, Kahil T (2013) High level ethanol from sugar cane molasses by a new thermotolerant Saccharomyces cerevisiae strain in industrial scale. Biotechnol Res Int 2013:6

    Article  CAS  Google Scholar 

  60. Fadel M (2000) Alcohol production from potato industry starchy waste. Egypt J Microbiol 35:273–287

    Google Scholar 

  61. Fakruddin M, Abdul Quayum M, Ahmed MM, Choudhury N (2012) Analysis of key factors affecting ethanol production by Saccharomyces cerevisiae IFST-072011. Biotechnology 11:248–252

    Article  CAS  Google Scholar 

  62. FAO (2008) International year of the potato 2008. http://www.potato2008.org. Accessed 2 Feb 2016

  63. Feederle R, Pajatsch M, Kremmer E, Böck A (1996) Metabolism of cyclodextrins by Klebsiella oxytoca M5a1: purification and characterization of a cytoplasmically located cyclodextrinase. Arch Microbiol 165:206–212

    CAS  PubMed  Google Scholar 

  64. Fiedler G, Pajatsch M, Böck A (1996) Genetics of a novel starch utilization pathway present in Klebsiella oxytoca. J Mol Biol 256:279–291

    Article  CAS  PubMed  Google Scholar 

  65. Fonseca GG, Heinzle E, Wittmann C, Gombert AK (2008) The yeast Kluyveromyces marxianus and its biotechnological potential. Appl Microbiol Biotechnol 79:339–345

    Article  CAS  PubMed  Google Scholar 

  66. Franca AS, Oliveira LS (2009) Coffee processing solid wastes: current uses and future perspectives. In: Columbus F (ed) Agricultural wastes. Nova, New York

    Google Scholar 

  67. Gancedo JM (1998) Yeast carbon catabolite repression. Microbiol Mol Biol Rev 62:334–361

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Geddes CC, Nieves IU, Ingram LO (2011) Advances in ethanol production. Curr Opin Biotechnol 22:312–319

    Article  CAS  PubMed  Google Scholar 

  69. Georgieva TI, Mikkelsen MJ, Ahring BK (2008) Ethanol production from wet-exploded wheat straw hydrolysate by thermophilic anaerobic bacterium Thermoanaerobacter BG1L1 in a continuous immobilized reactor. Appl Biochem Biotechnol 145:99–110

    Article  CAS  PubMed  Google Scholar 

  70. Georgieva TI, Ahring BK (2007) Evaluation of continuous ethanol fermentation of dilute-acid corn stover hydrolysate using thermophilic anaerobic bacterium Thermoanaerobacter BG1L1. Appl Microbiol Biotechnol 77:61–68

    Article  CAS  PubMed  Google Scholar 

  71. Ghorbani F, Younesi H, Sari AE, Najafpour G (2011) Cane molasses fermentation for continuous ethanol production in an immobilized cells reactor by Saccharomyces cerevisiae. Renew Energ 36:503–509

    Article  CAS  Google Scholar 

  72. Gohel V, Gang D (2012) No-cook process for ethanol production using Indian broken rice and pearl millet. Int J Microbiol 680232:9

    Google Scholar 

  73. Gouvea BM, Torres C, Franca AS, Oliveira LS, Oliveira ES (2009) Feasibility of ethanol production from coffee husks. Biotechnol Lett 31:1315–1319

    Article  CAS  PubMed  Google Scholar 

  74. Gu H, Zhang J, Bao J (2014) Inhibitor analysis and adaptive evolution of Saccharomyces cerevisiae for simultaneous saccharification and ethanol fermentation from industrial waste corncob residues. Bioresour Technol 157:6–13

    Article  CAS  PubMed  Google Scholar 

  75. Guadix A, Sorensen E, Papageorgiou LG, Guadix EM (2004) Optimal design and operation of continuous ultra-filtration. J Memb Sci 235:131–138

    Article  CAS  Google Scholar 

  76. Guimarães PMR, Teixeira JA, Domingues L (2010) Fermentation of lactose to bio-ethanol by yeasts as part of integrated solutions for the valorisation of cheese whey. Biotech Adv 28:375–384

    Article  CAS  Google Scholar 

  77. Guimaraes WV, Dudey GL, Ingram LO (1992) Fermentation of sweet whey by ethanologenic Escherichia coli. Biotechnol Bioeng 40:41–45

    Article  CAS  PubMed  Google Scholar 

  78. Gunasekaran P, Kamini NR (1991) High ethanol productivity from lactose by immobilized cells of Kluyveromyces fragilis and Zymomonas mobilis. World J Microbiol Biotechnol 7:551–556

    Article  CAS  PubMed  Google Scholar 

  79. Guo X, Zhou J, Xiao D (2010) Improved ethanol production by mixed immobilized cells of Kluyveromyces marxianus and Saccharomyces cerevisiae from cheese whey powder solution fermentation. Appl Biochem Biotechnol 160:532–538

    Article  CAS  PubMed  Google Scholar 

  80. Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund MF, Lindén G, Zacchi G (2006) Bio-ethanol—the fuel of tomorrow from the residues of today. Trends Biotechnol 24:549–556

    Article  PubMed  CAS  Google Scholar 

  81. He MX, Wu B, Qin H, Ruan ZY, Tan FR, Wang JL, Shui ZX, Dai LC, Zhu QL, Pan K et al (2014) Zymomonas mobilis: a novel platform for future biorefineries. Biotechnol Biofuels 7:101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. He M, Feng H, Bai F, Li Y, Liu X, Zhang Y-Z (2009) Direct production of ethanol from raw sweet potato starch using genetically engineered Zymomonas mobilis. Afr J Microbiol Res 3:721–726

    CAS  Google Scholar 

  83. Heaton E, Voigt T, Long SP (2004) A quantitative review comparing the yields of two candidate C-4 perennial biomass crops in relation to nitrogen, temperature and water. Biomass Bioenergy 27:21–30

    Article  Google Scholar 

  84. Hickert LR, Da Cunha-Pereira F, De Souza-Cruz PB, Rosa CA, Ayub MAZ (2013) Ethanogenic fermentation of co-cultures of Candida shehatae HM 52.2 and Saccharomyces cerevisiae ICV D254 in synthetic medium and rice hull hydrolysate. Bioresour Technol 131:508–514

    Article  CAS  PubMed  Google Scholar 

  85. Higgins KT (2003) Flash dryers and potato waste. Food Engineering Magazine, 22 March. http://www.foodengineeringmag.com/articles/83689-flash-dryers-and-potato-waste. Accessed 1 Feb 2016

  86. Hinková A, Bubník Z (2001) Sugar beet as a raw material for bioethanol production. Czech J Food Sci 19:224–234

    Google Scholar 

  87. Icoz E, Tugrul KM, Saral A, Icoz E (2009) Research on ethanol production and use from sugar beet in Turkey. Biomass Bioenergy 33:1–7

    Article  Google Scholar 

  88. Ingale S, Joshi JS, Gupte A (2014) Production of bioethanol using agricultural waste: banana pseudo stem. Braz J Microbiol 45:885–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ingledew WM, Jones AM, Bhatty RS, Rossnagel BG (1995) Fuel alcohol production from hull-less barley. Cereal Chem 72:147–150

    CAS  Google Scholar 

  90. Ingram LO, Conway T (1988) Expression of different levels of ethanologenic enzymes from Zymomonas mobilis in recombinant strains of Escherichia coli. Appl Environ Microbiol 54:397–404

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Ingram LO, Conway T, Clark DP, Sewell GW, Preston JF (1987) Genetic engineering of ethanol production in Escherichia coli. Appl Environ Microbiol 53:2420–2425

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Ishola MM, Ylitervo P, Taherzadeh MJ (2015) Co-utilization of glucose and xylose for enhanced lignocellulosic ethanol production with reverse membrane bioreactors. Membranes 5:844–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ishola MM, Taherzadeh MJ (2014) Effect of fungal and phosphoric acid pretreatment on ethanol production from oil palm empty fruit bunches (OPEFB). Bioresour Technol 165:9–12

    Article  CAS  PubMed  Google Scholar 

  94. Izaguirre ME, Castillo FJ (1982) Selection of lactose-fermenting yeast for ethanol production from whey. Biotechnol Lett 4:257–262

    Article  CAS  Google Scholar 

  95. Izmirlioglu G, Demirci A (2015) Enhanced bio-ethanol production from industrial potato waste by statistical medium optimization. Int J Mol Sci 16:24490–24505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Izmirlioglu G, Demirci A (2012) Ethanol production from waste potato mash by using Saccharomyces cerevisiae. Appl Sci 2:738–753

    Article  CAS  Google Scholar 

  97. Janssens JH, Bernard A, Bailey RB (1984) Ethanol from whey continuous fermentation with cell recycle. Biotechnol Bioeng 26:1–5

    Article  CAS  PubMed  Google Scholar 

  98. Jeihanipour A, Taherzadeh MJ (2009) Ethanol production from cotton-based waste textiles. Bioresour Technol 100:1007–1010

    Article  CAS  PubMed  Google Scholar 

  99. Jelen P (2011) Utilization and products: whey processing. In: Fuquay JF (ed) Encyclopedia of dairy sciences, 2nd edn. Academic Press, An Imprint of Elsevier, pp 731–738

  100. Johnson FX, Rosillo-Calle F (2007) Biomass, livelihoods and international trade. SEI Climate and Energy Report 2007-01. Stockholm Environment Institute, Stockholm

  101. Jordan SN, Millen GJ (2007) Enzymatic hydrolysis of organic waste materials in a solid liquid system. Waste Manage 27:1820–1828

    Article  CAS  Google Scholar 

  102. Kamini NR, Gunasekaran P (1987) Simultaneous ethanol production from lactose by Kluyveromyces fragilis and Zymomonas mobilis. Curr Microbiol 16:153–157

    Article  CAS  Google Scholar 

  103. Karagoz P, Ozkan M (2014) Ethanol production from wheat straw by Saccharomyces cerevisiae and Scheffersomyces stipitis co-culture in batch and continuous system. Bioresour Technol 158:286–293

    Article  CAS  PubMed  Google Scholar 

  104. Kargi F, Ozmihci S (2006) Utilization of cheese whey powder (CWP) for ethanol fermentations: effects of operating parameters. Enzyme Microb Technol 38:711–718

    Article  CAS  Google Scholar 

  105. Kefale A, Redi M, Asfaw A (2012) Potential of bioethanol production and optimization test from agricultural waste: the case of wet coffee processing waste (pulp). Int J Renew Energy Res 2:446–450

    Google Scholar 

  106. Kim S, Dale BE (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 26:361–375

    Article  Google Scholar 

  107. Kim SB, Lee JH, Oh KK, Lee SJ, Lee JY, Kim JS, Kim SW (2011) Diluted acid pretreatment of barley straw and its saccharification and fermentation. Biotechnol Bioproc Eng 16:725–732

    Article  CAS  Google Scholar 

  108. Kirdponpattara S, Phisalaphong M (2013) Bacterial cellulose-alginate composite sponge as a yeast cell carrier for ethanol production. Biochem Engin J 77:103–109

    Article  CAS  Google Scholar 

  109. Kosikowski FV (1979) Whey utilization and whey products. J Dairy Sci 62:1149–1160

    Article  CAS  Google Scholar 

  110. Koushki M, Jafari M, Azizi M (2012) Comparison of ethanol production from cheese whey permeate by two yeast strains. J Food Sci Technol 49:614–619

    Article  CAS  PubMed  Google Scholar 

  111. Krishnarao RV, Subrahmanyam J, Jagadish Kumar T (2001) Studies on the formation of black particles in rice husk silica ash. J Eur Ceram Soc 21:99

    Article  CAS  Google Scholar 

  112. Lareo C, Ferrari MD, Guigou M, Fajardo L, Larnaudie V, Ramirez MB, Garreiro JM (2013) Evaluation of sweet potato for fuel bioethanol production: hydrolysis and fermentation. SpringerPlus 2:493

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Lashinky A, Schwartz ND (2006) How to beat the high cost of gasoline. Forever! http://money.cnn.com/magazines/fortune/fortune_archive/2006/02/06/8367959/index.htm?cnn=yesN. Accessed 1 Feb 2016

  114. Leiper KA, Schlee C, Tebble I, Stewart GG (2006) The fermentation of beet sugar syrup to produce bioethanol. J Inst Brew 112:122–133

    Article  CAS  Google Scholar 

  115. Leite AR, Guimarães WV, Araújo EF, Silva DO (2000) Fermentation of sweet whey by recombinant Escherichia coli KO11. Braz J Microbiol 31:212–215

    Article  CAS  Google Scholar 

  116. Limatainen H, Kuokkanen T, Kaariainen J (2004) Development of bioethanol production from waste potatoes. In: Pongracz E (ed) Proceedings of the waste minimization and resources use optimization conference. University of Oulu, Finland. Oulu University Press, Oulu, pp 123–129

  117. Ling KC (2008) Whey to ethanol: a biofuel role for dairy cooperatives? Research report 214, rural business and cooperative programs. USDA, USA

    Google Scholar 

  118. Madeira A, Leitão L, Soveral G, Dias P, Prista C, Moura T, Loureiro-Dias MC (2010) Effect of ethanol on fluxes of water and protons across the plasma membrane of Saccharomyces cerevisiae. FEMS Yeast Res 10:252–258

    Article  CAS  PubMed  Google Scholar 

  119. Magalhães-Guedes KT, Rodrigues AK, Gervasio IM, Gervasio I, Nascimento AP, Schwan RF (2013) Ethanol production from deproteinized cheese whey fermentations by co-cultures of Kluyveromyces marxianus and Saccharomyces cerevisiae. Afr J Microbiol Res 7:1121–1127

    Article  CAS  Google Scholar 

  120. Mariam I, Manzoor K, Ali S, Ul-Haq I (2009) Enhanced production of ethanol from free and immobilized Saccharomyces cerevisiae under stationary culture. Pak J Bot 41:821–833

    Google Scholar 

  121. Martin C, Galbe M, Wahlbom FC, Hahn-Hägerdal B, Jonsson LJ (2002) Ethanol production from enzymatic hydrolysates of sugar cane bagasse using recombinant xylose-utilising Saccharomyces cerevisiae. Enzyme Microb Technol 31:274–282

    Article  CAS  Google Scholar 

  122. Massoud MI, Abd El-Razek AM (2011) Suitability of sorghum bicolor L. stalks and grains for bioproduction of ethanol. Ann Agric Sci 56:83–87

    Google Scholar 

  123. Mawson AJ (1994) Bioconversions for whey utilization and waste abatement. Bioresour Technol 47:195–203

    Article  CAS  Google Scholar 

  124. Mehaia MA, Cheryan M (1990) Ethanol from hydrolyzed whey permeate using Saccharomyces cerevisiae in a membrane recycle bioreactor. Bioprocess Eng 5:57–61

    Article  CAS  Google Scholar 

  125. Milessi TSS, Antunes FAF, Chandel AK, Silva SS (2015) Hemicellulosic ethanol production by immobilized cells of Scheffersomyces stipitis: effect of cell concentration and stirring. Bioengineered 6:26–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Mohagheghi A, Evans K, Chou YC, Zhang M (2002) Cofermentation of glucose, xylose, and arabinose by genomic DNA-integrated xylose/arabinose fermenting strain of Zymomonas mobilis AX101. Appl Biochem Biotechnol 98–100:885–898

    Article  PubMed  Google Scholar 

  127. Mohagheghi A, Evans K, Finkelstein M, Zhang M (1998) Cofermentation of glucose, xylose, and arabinose by mixed cultures of two genetically engineered Zymomonas mobilis strains. Appl Biochem Biotechnol 70–72:285–299

    Article  PubMed  Google Scholar 

  128. Moon HC, Jeong HR, Kim DH (2012) Bioethanol production from acid-pretreated rice hull. Asia Pac J Chem Eng 7:206–211

    Article  CAS  Google Scholar 

  129. Morocoima JA, Bertsch A, Domínguez G, Mazzani C, Díaz I (2013) Optimization of Aspergillus niger and Saccharomyces cerevisiae co-culture for the production of ethanol from potato (Solanum tuberosum) agroindustrial processing wastes. Interciencia 38:305–309

    Google Scholar 

  130. Moukamnerd C, Kawahara H, Katakura Y (2013) Feasibility study of ethanol production from food wastes by consolidated continuous solid-state fermentation. J Sust Bioenergy Syst 3:143–148

    Article  CAS  Google Scholar 

  131. Munjal N, Mattam AJ, Pramanik D, Srivastava PS, Yazdani SS (2012) Modulation of endogenous pathways enhances bioethanol yield and productivity in Escherichia coli. Microb Cell Fact 11:145–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Moulin G, Boze H, Galzy P (1980) Inhibition of alcoholic fermentation by substrate and ethanol. Biotechnol Bioeng 22:2375–2381

    Article  CAS  Google Scholar 

  133. Mussatto SI, Dragone G, Guimaraes PMR, Silva JPA, Carneiro LM, Roberto IC, Vicente A, Domingues L, Teixeira JA (2010) Technological trends, global market, and challenges of bio-ethanol production. Biotechnol Adv 28:1873–1899

    Article  CAS  Google Scholar 

  134. Nagrale SD, Hajare H, Modak PR (2012) Utilization of rice husk ash. Int J Eng Res Appl 2:001–005

    Google Scholar 

  135. Nicholas NN, Dien BS, Wu Y, Cotta MA (2005) Ethanol fermentation of starch from field peas. J Cereal Chem 82:554–558

    Article  CAS  Google Scholar 

  136. Nieves IU, Geddes CC, Mullinnix MT, Hoffman RW, Tong Z, Castro E, Shanmugam KT, Ingram LO (2011) Injection of air into the headspace improves fermentation of phosphoric acid pretreated sugarcane bagasse by Escherichia coli MM170. Bioresour Technol 102:6959–6965

    Article  CAS  PubMed  Google Scholar 

  137. Nieves RA, Ehrman CI, Adney WS, Elander RT, Himmel ME (1998) Technical communication: survey and analysis of commercial cellulase preparations suitable for biomass conversion to ethanol. World J Microbiol Biotechnol 14:301–304

    Article  CAS  Google Scholar 

  138. Nikolić S, Mojović L, Pejin D, Rakin M, Vukašinović M (2010) Production of bioethanol from corn meal hydrolysates by free and immobilized cells of Saccharomyces cerevisiae var. ellipsoideus. Biomass Bioenergy 34:1449–1456

    Article  CAS  Google Scholar 

  139. Nishijima W, Gonzales HB, Sakashita H, Nakano Y, Okada M (2004) Improvement of biological solubilization and mineralization process for food waste. J Water Environ Tech 2:57–64

    Article  Google Scholar 

  140. Ohta K, Beall DS, Mejia JP, Shanmugam KT, Ingram LO (1991) Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II. Appl Environ Microbiol 57:893–900

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Ohta K, Beall DS, Mejia JP, Shanmugam KT, Ingram LO (1991) Metabolic engineering of Klebsiella oxytoca M5A1 for ethanol production from xylose and glucose. Appl Environ Microbiol 57:2810–2815

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Okuda N, Ninomiya K, Takao M, Katakura Y, Shioya S (2007) Microaeration enhances productivity of bioethanol from hydrolysate of waste house wood using ethanologenic Escherichia coli KO11. J Biosci Bioeng 4:350–357

    Article  CAS  Google Scholar 

  143. O’Leary VS, Green R, Sullivan BC, Holsinger VH (1977) Alcohol production by selected yeast strains in lactase-hydrolyzed acid whey. Biotechnol Bioeng 19:1019–1035

    Article  Google Scholar 

  144. Ozmihci S, Kargi F (2007) Comparison of yeast strains for batch ethanol fermentation of cheese-whey powder (CWP) solution. Lett Appl Microbiol 44:602–606

    Article  CAS  PubMed  Google Scholar 

  145. Ozmihci S, Kargi F (2007) Continuous ethanol fermentation of cheese whey powder solution: effects of hydraulic residence time. Bioprocess Biosyst Eng 30:79–86

    Article  CAS  PubMed  Google Scholar 

  146. Ozmihci S, Kargi F (2007) Effects of feed sugar concentration on continuous ethanol fermentation of cheese whey powder solution (CWP). Enzyme Microbiol Technol 41:876–880

    Article  CAS  Google Scholar 

  147. Ozmihci S, Kargi F (2007) Ethanol fermentation of cheese whey powder solution by repeated fed-batch operation. Enzyme Microbiol Technol 41:169–174

    Article  CAS  Google Scholar 

  148. Ozmihci S, Kargi F (2007) Kinetics of batch ethanol fermentation of cheese-whey powder (CWP) solution as function of substrate and yeast concentrations. Bioresour Technol 98:2978–2984

    Article  CAS  PubMed  Google Scholar 

  149. Ozmihci S, Kargi F (2008) Ethanol production from cheese whey powder solution in a packed column bioreactor at different hydraulic residence times. Biochem Eng J 42:180–185

    Article  CAS  Google Scholar 

  150. Ozmihci S, Kargi F (2009) Fermentation of cheese whey powder solution to ethanol in a packed column bioreactor: effects of feed sugar concentration. J Chem Technol Biotechnol 84:106–111

    Article  CAS  Google Scholar 

  151. Pacheco AM, Gondim DR, Gonçalves LRB (2010) Ethanol production by fermentation using immobilized cells of Saccharomyces cerevisiae in cashew apple bagasse. Appl Biochem Biotechnol 161:209–217

    Article  CAS  PubMed  Google Scholar 

  152. Parambil LK, Sarkar D (2015) In silico analysis of bioethanol over production by genetically modified microorganisms in co-culture fermentation. Biotechnol Res Int. 165:238082 Epub 2015 Feb 16

    Google Scholar 

  153. Park EY, Naruse K, Kato T (2012) One-pot bioethanol production from cellulose by co-culture of Acremonium cellulolyticus and Saccharomyces cerevisiae. Biotechnol Biofuels 5(1):64. doi:10.1186/1754-6834-5-64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Patel SJ, Onkarapp AR, Shobha KS (2007) Comparative study of ethanol production from microbial pretreated agricultural residues. J Appl Sci Environ Manage 11:137–141

    Google Scholar 

  155. Pavlecic M, Vranal I, Vibovec K, Santek MI, Horvat P, Santek B (2010) Ethanol production from different intermediates of sugar beet processing. Food Technol Biotech 48:362–367

    CAS  Google Scholar 

  156. Pecota DC, Rajgarhia V, Da Silva NA (2007) Sequential gene integration for the engineering of Kluyveromyces marxianus. J Biotechnol 127:408–416

    Article  CAS  PubMed  Google Scholar 

  157. Pimentel D, Marklein A, Toth MA, Karpoff M, Paul GS, McCormack R, Kyriazis J, Krueger T (2008) Biofuel impacts on world food supply: use of fossil fuel, land and water resources. Energies 1:41–78

    Article  Google Scholar 

  158. Popov S, Ranković J, Dodić J, Dodić S, Jokić A (2010) Bioethanol production from raw juice as intermediate of sugar beet processing: a response surface methodology approach. Food Technol Biotech 48:376–383

    CAS  Google Scholar 

  159. Porro D, Martegani E, Ranzi BM, Alberghina L (1992) Lactose/whey utilization and ethanol production by transformed Saccharomyces cerevisiae cells. Biotechnol Bioeng 39:799–805

    Article  CAS  PubMed  Google Scholar 

  160. Rabelo SC, Filhho RM, Costa AC (2009) Lime pretreatment of sugarcane bagasse for bioethanol production. Appl Biochem Biotechnol 53:139–150

    Article  CAS  Google Scholar 

  161. Radunz AE, Lardy GP, Bauer ML, Marchello MJ, Loe ER, Berg PT (2003) Influence of steam-peeled potato-processing waste inclusion level in beef finishing diets: effects on digestion, feedlot performance, and meat quality. J Anim Sci 81:2675–2685

    Article  CAS  PubMed  Google Scholar 

  162. Rath S, Singh AK, Masih H, Kumar Y, Peter JK, Mishra P (2014) Bioethanol production from waste potatoes as an environmental waste management and sustainable energy by using co-cultures Aspergillus niger and Saccharomyces cerevisiae. Int J Adv Res 2:553–563

    CAS  Google Scholar 

  163. Ratnavathi CV, Chakravarthy SK, Komala VV, Chavan UD, Patil JV (2011) Sweet sorghum as feedstock for bio-fuel production: a review. Sugar Tech 13:399–407

    Article  CAS  Google Scholar 

  164. Razmovski R, Vučurovıć V (2012) Bioethanol production from sugar beet molasses and thick juice using Saccharomyces cerevisiae immobilized on maize stem ground tissue. Fuel 92:1–8

    Article  CAS  Google Scholar 

  165. Razmovski R, Vučurović V (2011) Ethanol production from sugar beet molasses by S. cerevisiae entrapped in an alginate-maize stem ground tissue matrix. Enzyme Microb Tech 48:378–385

    Article  CAS  Google Scholar 

  166. RFA, Renewable Fuels Association (2015) World fuel ethanol production. http://ethanolrfa.org/pages/World-Fuel-Ethanol-Production. Accessed 3 Feb 2016

  167. RFA, Renewable Fuels Association (2009) Statistics. http://www.ethanolrfa. org/industry/statistics/. Accessed 2 Feb 2016

  168. Rodriguez LA, Toro ME, Vazquez F, Cerrea-Daneri ML, Gouriric SC, Vallejo MD (2010) Bioethanol production from grape and sugar beet pomaces by solid state fermentation. Int J Hydrogen Energy 201:5914–5917

    Article  CAS  Google Scholar 

  169. Roussos S, Aquıáhuatl MA, Trejo-Hernández MR, Perraud IG, Favela E, Ramakrishma M, Raimbault M, Viniegra-González G (1995) Biotechnological management of coffee pulp-isolation, screening, characterization, selection of caffeine-degrading fungi and natural microflora present in coffee pulp and husk. Appl Microbiol Biotechnol 42:756–762

    Article  CAS  Google Scholar 

  170. Rutto LK, Xu Y, Brandt M, Ren S, Kering MK (2013) Juice, ethanol, and grain yield potential of five sweet sorghum (Sorghum bicolor [L.] Moench) cultivars. J Sust Bioenergy Syst 3:113–118

    Article  CAS  Google Scholar 

  171. Sadik MW, Asmaa AH (2014) Production of ethanol from molasses and whey permeate using yeasts and bacterial strains. Int J Curr Microbiol App Sci 3:804–818

    CAS  Google Scholar 

  172. Saha B, Cotta M (2008) Lime pretreatment, enzymatic saccharification and fermentation of rice hulls to ethanol. Biomass Bioenergy 32:971–977

    Article  CAS  Google Scholar 

  173. Saha BC, Iten LB, Cotta MA, Wu YV (2005) Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem 40:3693–3700

    Article  CAS  Google Scholar 

  174. Sanchez OJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99:5270–5295

    Article  CAS  PubMed  Google Scholar 

  175. Sanny T, Arnaldos M, Kunkel SA, Pagilla KR, Stark BC (2010) Engineering of ethanolic E. coli with the Vitreoscilla hemoglobin gene enhances ethanol production from both glucose and xylose. Appl Microbiol Biotechnol 88:1103–1112

    Article  CAS  PubMed  Google Scholar 

  176. Sarkar N, Ghosh SK, Bannerjee S, Aikat K (2012) Bioethanol production from agricultural wastes: an overview. Renew Energy 37:19–27

    Article  CAS  Google Scholar 

  177. Scully SM, Orlygsson J (2015) Recent advances in second generation ethanol production by thermophilic bacteria. Energies 8:1–30

    Article  CAS  Google Scholar 

  178. Seboka Y, Getahun MA, Meskel YH (2009) Biomass energy for cement production: opportunities in Ethiopia. United Nations Development Program, New York

    Google Scholar 

  179. Sembiring KC, Mulyani H, Fitria AI, Dahnum D, Sudiyani Y (2013) Rice flour and white glutinous rice flour for use on immobilization of yeast cell in ethanol production. Energy Procedia 32:99–104

    Article  CAS  Google Scholar 

  180. Senthilkumar V, Gunasekaran P (2005) Bioethanol production from cellulosic substrates: engineered bacteria and process integration challenges. J Sci Ind Res 64:845–853

    CAS  Google Scholar 

  181. Shaw AJ, Podkaminer KK, Desai SG, Bardsley JS, Rogers SR et al (2008) Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. Proc Natl Acad Sci USA 105:13769–13774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Shi DJ, Wang CL, Wang KM (2009) Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 36:139–147

    Article  CAS  PubMed  Google Scholar 

  183. Shihadeh JK, Huang H, Rausch KD, Tumbleson ME, Singh V (2014) Vacuum stripping of ethanol during high solids fermentation of corn. Appl Biochem Biotechnol 173(2):486–500

    Article  CAS  PubMed  Google Scholar 

  184. Silva VFN, Arruda PV, Felipe MGA, Goncalves AR, Rocha GJM (2011) Fermentation of cellulosic hydrolysates obtained by enzymatic saccharification of sugarcane bagasse pretreated by hydrothermal processing. J Ind Microbiol Biotechnol 38:809–817

    Article  CAS  PubMed  Google Scholar 

  185. Singh A, Bajar S, Bishnoi NR (2014) Enzymatic hydrolysis of microwave alkali pretreated rice husk for ethanol production by Saccharomyces cerevisiae, Scheffersomyces stipitis and their co-culture. Fuel 116:699–702

    Article  CAS  Google Scholar 

  186. Singh A, Sharma P, Saran AK, Singh N, Bishnoi NR (2013) Comparative study on ethanol production from pretreated sugarcane bagasse using immobilized Saccharomyces cerevisiae on various matrices. Renew Energy 50:488–493

    Article  CAS  Google Scholar 

  187. Sipos B, Reczey J, Somorai Z, Kadar Z, Dienes D, Reczey K (2009) Sweet sorghum as feedstock for ethanol production: enzymatic hydrolysis of steam-pretreated bagasse. Appl Biochem Biotechnol 153:151–162

    Article  CAS  PubMed  Google Scholar 

  188. Siso MIG (1996) The biotechnological utilization of cheese whey—a review. Bioresour Tech 57:1–11

    Article  Google Scholar 

  189. Smithers GW (2008) Whey and whey proteins—from gutter to gold. Int Dairy J 18:695–704

    Article  CAS  Google Scholar 

  190. Soleimani S, Ghasemi MF, Shokri S (2012) Ethanol production by Zymomonas mobilis PTCC 1718 using low cost substrates. Afr J Microbiol Res 6:704–712

    Article  CAS  Google Scholar 

  191. Somda MK, Savadogo A, Ouattara CAT, Ouattara AS, Traore AS (2011) Thermotolerant and alcohol-tolerant yeasts targeted to optimize hydrolyzation from mango peel for high bioethanol production. Asian J Biotechnol 3:77–83

    Article  CAS  Google Scholar 

  192. Stambuk BU, Eleutherio ECA, Marina L, Maria FA, Bon EPS (2008) Brazilian potential for biomass ethanol: challenge of using hexose and pentose co- fermenting yeast strains. J Sci Ind Res 67:918–926

    CAS  Google Scholar 

  193. Stark BC, Dikshit KL, Pagilla KR (2012) The Biochemistry of Vitreoscilla hemoglobin. Computat Struct Biotechnol J 3:e201210002

    Google Scholar 

  194. Stark BC, Dikshit KL, Pagilla KR (2015) Recent applications of Vitreoscilla hemoglobin technology in bioproduct synthesis and bioremediation. Appl Microbiol Biotechnol 99:1627–1636

    Article  CAS  PubMed  Google Scholar 

  195. Sumer F, Stark BC, Akbas MY (2015) Efficient ethanol production from potato and corn processing industry waste using E. coli engineered to express Vitreoscilla haemoglobin. Environ Technol 36:2319–2327

    Article  CAS  PubMed  Google Scholar 

  196. Sveinsdottir M, Beck SRB, Orlygsson J (2009) Ethanol production from monosugars and lignocellulosic biomass by thermophilic bacteria isolated from Icelandic hot springs. Iceland Agr Sci 22:45–58

    Google Scholar 

  197. Szczodrak J, Szewczuk D, Rogalski J, Fiedurek J (1997) Selection of yeast strain and fermentation conditions for high-yield ethanol production from lactose and concentrated whey. Acta Biotechnol 17:51–61

    Article  CAS  Google Scholar 

  198. Taherzadeh MJ, Karimi K (2011) Fermentation inhibitors in ethanol processes and different strategies to reduce their effects. In: Pandey A, Larroche C, Ricke SC, Dussap C-G, Gnansounou E (eds) Biofuels: alternative feedstocks and conversion processes. Academic, Waltham, pp 287–311

    Chapter  Google Scholar 

  199. Tasić MB, Veljković VB (2011) Simulation of fuel ethanol production from potato tubers. Comput Chem Eng 35:2284–2293

    Article  CAS  Google Scholar 

  200. Taylor MP, Eley KL, Martin S, Tuffin MI, Burton SG, Cowan DA (2009) Thermophilic ethanologenesis: future prospects for second-generation bioethanol production. Trends Biotechnol 24:398–405

    Article  CAS  Google Scholar 

  201. Tesfaw A, Assefa F (2014) Co-culture: a great promising method in single cell protein production, a review. Biotechnol Mol Biol Rev 9:12–20

    Article  CAS  Google Scholar 

  202. Timilsina GR, Shrestha A (2011) How much hope should we have for biofuels? Energy 36:2055–2069

    Article  Google Scholar 

  203. Tomas-Pejo E, Ballesteros M, Oliva JM, Olsson L (2010) Adaptation of the xylose fermenting yeast Saccharomyces cerevisiae F12 for improving ethanol production in different fed-batch SSF processes. J Ind Microbiol Biotechnol 37:1211–1220

    Article  CAS  PubMed  Google Scholar 

  204. Tunick MH (2008) Whey protein production and utilization: a brief history. In: Onwulata CI, Huth PJ (eds) Whey processing, functionality and health benefits. IFT & Blackwell Publishing and Institute of Food Technologists, Ames, pp 1–15

    Chapter  Google Scholar 

  205. Underwood SA, Buszko ML, Shanmugam KT, Ingram LO (2002) Flux through citrate synthase limits the growth of ethanologenic Escherichia coli KO11 during xylose fermentation. Appl Environ Microbiol 68:1071–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Underwood SA, Zhou S, Causey TB, Yomano LP, Shanmugam KT, Ingram LO (2002) Genetic changes to optimize carbon partitioning between ethanol and biosynthesis in ethanologenic Escherichia coli. Appl Environ Microbiol 68:6263–6272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Urbaneja G, Ferrere J, Paeza G, Arenas L, Colina G (1996) Acid hydrolysis and carbohydrates characterization of coffee pulp. Renew Energy 9:1041–1044

    Article  CAS  Google Scholar 

  208. USDA (2015) United States Department of Agriculture. National Agricultural Statistics Service. Crop production 2014 Summary. http://www.usda.gov/nass/PUBS/TODAYRPT/cropan15.pdf. Accessed 1 Feb 2016

  209. USDA (2013) U.S. Bioenergy Statistics. United States Department of Agriculture. http://www.ers.usda.gov/data-products/us-bioenergy-statistics.aspx#.U6eiF_ldU6. Accessed 1 Feb 2016

  210. Wakabayashi S, Matsubara H, Webster DA (1986) Primary sequence of a dimeric bacterial hemoglobin from Vitreoscilla. Nature 322:481–483

    Article  CAS  PubMed  Google Scholar 

  211. Wang J, Liu W, Ding W, Zhang G, Liu J (2013) Increasing ethanol titer and yield in a gpd1Δ gpd2Δ strain by simultaneous overexpression of GLT1 and STL1 in Saccharomyces cerevisiae. Biotechnol Lett 5:1859–1864

    Article  CAS  Google Scholar 

  212. Wang D, Bean S, McLaren J, Seib P, Madl R, Tuinstra M, Shi Y, Lenz M, Wu X, Zhao R (2008) Grain sorghum is a viable feedstock for ethanol production. J Ind Microbiol Biotechnol 35:313–320

    Article  PubMed  CAS  Google Scholar 

  213. Wang S, Ingledew W, Thomas K, Sosulski K, Sosulski F (1999) Optimization of fermentation temperature and mash specific gravity for fuel alcohol production. Cereal Chem 76:82–86

    Article  CAS  Google Scholar 

  214. Wood BE, Aldrich HC, Ingram LO (1997) Ultrasound stimulates ethanol production during the simultaneous saccharification and fermentation of mixed waste office paper. Biotechnol Prog 13:232–237

    Article  CAS  PubMed  Google Scholar 

  215. Wood BE, Ingram LO (1992) Ethanol production from cellobiose, amorphous cellulose, and crystalline cellulose by recombinant Klebsiella oxytoca containing chromosomally integrated Zymomonas mobilis genes for ethanol production and plasmids expressing thermostable cellulase genes from Clostridium thermocellum. Appl Environ Microbiol 58:2103–2110

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Yamada S, Shinomiya N, Ohba K, Sekikiwa M, Yuji O (2009) Enzymatic hydrolysis and ethanol fermentation of by-products from potato processing plants. Food Sci Technol Res 15:633–658

    Article  Google Scholar 

  217. Yang ST, Zhu H, Li Y, Hong G (1994) Continous propionate production from whey permeate using a novel fibrous bed bioreactor. Biotechnol Bioeng 43:1124–1130

    Article  CAS  PubMed  Google Scholar 

  218. Yomano LP, York SW, Zhou S, Shanmugam KT, Ingram LO (2008) Re-engineering Escherichia coli for ethanol production. Biotechnol Lett 30:2097–2103

    Article  CAS  PubMed  Google Scholar 

  219. Yomano LP, York SW, Ingram LO (1998) Isolation and characterization of ethanol tolerant mutants of Escherichia coli KO11 for fuel ethanol production. J Ind Microbiol Biotechnol 20:132–138

    Article  CAS  PubMed  Google Scholar 

  220. Yoswathana N, Phuriphipat P (2010) Bioethanol production from rice straw. Ener Res J 1:26–31

    Article  Google Scholar 

  221. Zabed H, Faruq G, Sahu JN, Azirun MS, Hashim R, Nasrulhaq Boyce A (2014) Bioethanol production from fermentable sugar juice. Sci World J 2014:957102. doi:10.1155/2014/957102

  222. Zafar S, Owais M (2006) Ethanol production from crude whey by Kluyveromyces marxianus. Biochem Eng J 27:295–298

    Article  CAS  Google Scholar 

  223. Zaldivar J, Nielsen J, Olsson L (2001) Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol 56:17–34

    Article  CAS  PubMed  Google Scholar 

  224. Zhang M, Eddy C, Deanda K, Finkelstein M, Picataggio S (1995) Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science 267:240–243

    Article  CAS  PubMed  Google Scholar 

  225. Zhao J, Xia LM (2010) Ethanol production from corn stover hemicellulosic hydrolysate using immobilized recombinant yeast cells. Biochemical Eng J 49:28–32

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the Gebze Technical University, Turkey and Illinois Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meltem Yesilcimen Akbas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbas, M.Y., Stark, B.C. Recent trends in bioethanol production from food processing byproducts. J Ind Microbiol Biotechnol 43, 1593–1609 (2016). https://doi.org/10.1007/s10295-016-1821-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-016-1821-z

Keywords

Navigation