Skip to main content

Advertisement

Log in

Sweet Sorghum as Feedstock for Ethanol Production: Enzymatic Hydrolysis of Steam-Pretreated Bagasse

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Sweet sorghum is an attractive feedstock for ethanol production. The juice extracted from the fresh stem is composed of sucrose, glucose, and fructose and can therefore be readily fermented to alcohol. The solid fraction left behind, the so-called bagasse, is a lignocellulosic residue which can also be processed to ethanol. The objective of our work was to test sweet sorghum, the whole crop, as a potential raw material of ethanol production, i.e., both the extracted sugar juice and the residual bagasse were tested. The juice was investigated at different harvesting dates for sugar content. Fermentability of juices extracted from the stem with and without leaves was compared. Sweet sorghum bagasse was steam-pretreated using various pretreatment conditions (temperatures and residence times). Efficiency of pretreatments was characterized by the degree of cellulose hydrolysis of the whole pretreated slurry and the separated fiber fraction. Two settings of the studied conditions (190 °C, 10 min and 200 °C, 5 min) were found to be efficient to reach conversion of 85–90%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Negro, M. J., Solano, M. L., Ciria, P., & Carrasco, J. (1999). Bioresource Technology, 67, 89–92. doi:10.1016/S0960-8524(99)00100-5.

    Article  CAS  Google Scholar 

  2. Sree, N. K., Sridhar, M., Rao, L. V., & Pandey, A. (1999). Process Biochemistry, 34, 115–119. doi:10.1016/S0032-9592(98)00074-0.

    Article  CAS  Google Scholar 

  3. Worley, J. W., Vaughan, D. H., & Cundiff, J. S. (1992). Bioresource Technology, 40, 263–273. doi:10.1016/0960-8524(92)90153-O.

    Article  CAS  Google Scholar 

  4. Gnansounou, E., Dauriat, A., & Wyman, C. (2005). Bioresource Technology, 96, 985–1002. doi:10.1016/j.biortech.2004.09.015.

    Article  CAS  Google Scholar 

  5. Laopaiboon, L., Thanonkeo, P., Jaisil, P., & Laopaiboon, P. (2007). World Journal of Microbiology & Biotechnology, 23, 1497–1501. doi:10.1007/s11274-007-9383-x.

    Article  CAS  Google Scholar 

  6. Antonopoulou, G., Gavala, H. N., Skiadas, I. V., Angelopoulos, K., & Lyberatos, G. (2008). Bioresource Technology, 99, 110–119. doi:10.1016/j.biortech.2006.11.048.

    Article  CAS  Google Scholar 

  7. Schmidt, J., Sipocz, J., Kaszás, I., Szakács, G., Gyepes, A., & Tengerdy, R. P. (1997). Bioresource Technology, 60, 9–13. doi:10.1016/S0960-8524(97)00003-5.

    Article  CAS  Google Scholar 

  8. Monti, A., & Venturi, G. (2003). European Journal of Agronomy, 19, 35–43. doi:10.1016/S1161-0301(02)00017-5.

    Article  Google Scholar 

  9. Monti, A., Di Virgilio, N., & Venturi, G. (2008). Biomass and Bioenergy, 32, 216–223. doi:10.1016/j.biombioe.2007.09.012.

    Article  CAS  Google Scholar 

  10. Belayachi, L., & Delmas, M. (1997). Industrial Crops and Products, 6, 229–232. doi:10.1016/S0926-6690(97)00012-5.

    Article  Google Scholar 

  11. Palmqvist, E., Hahn-Hägerdal, B., Galbe, M., Larsson, S., Stenberg, K., Szengyel, Z., et al. (1996). Bioresource Technology, 58, 171–179. doi:10.1016/S0960-8524(96)00096-X.

    Article  CAS  Google Scholar 

  12. Martin, C., Galbe, M., Wahlbom, C. F., Hahn-Hägerhahl, B., & Jönsson, L. J. (2002). Enzyme and Microbial Technology, 31, 274–282. doi:10.1016/S0141-0229(02)00112-6.

    Article  CAS  Google Scholar 

  13. Sluiter, A. (2006). Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Protocol, National Renewable Energy Laboratory, Golden, CO.

  14. Sluiter, A. (2005). Determination of sugars, byproducts, and degradation products in liquid fraction process samples. Laboratory Analytical Protocol, National Renewable Energy Laboratory, Golden, CO.

  15. Veiga, M. C., Soto, M., Méndez, M., & Lema, J. M. (1990). Water Research, 24, 1551–1554. doi:10.1016/0043-1354(90)90090-S.

    Article  CAS  Google Scholar 

  16. Mandels, M., Andreotti, R., & Roche, C. (1976). Biotechnology and Bioengineering Symposium, 6, 21–33.

    CAS  Google Scholar 

  17. Berghem, L. E. R., & Pettersson, G. (1974). European Journal of Biochemistry, 46, 295–305. doi:10.1111/j.1432-1033.1974.tb03621.x.

    Article  CAS  Google Scholar 

  18. Hoffmann-Thoma, G., Hinkel, K., Nicolay, P., & Willenbrink, J. (1996). Physiologia Plantarum, 97, 277–284. doi:10.1034/j.1399-3054.1996.970210.x.

    Article  CAS  Google Scholar 

  19. Amaducci, S., Monti, A., & Venturi, G. (2004). Industrial Crops and Products, 20, 111–118. doi:10.1016/j.indcrop.2003.12.016.

    Article  CAS  Google Scholar 

  20. Kresovich, S., & Henderlong, P. R. (1984). Energia na Agricultura, 3, 145–153. doi:10.1016/0167-5826(84)90017-2.

    Article  CAS  Google Scholar 

  21. Overland, R. P., & Chornet, E. (1987). Philosophical Transactions of the Royal Society of London. Series A: Mathematical and Physical Sciences, 321, 523–536. doi:10.1098/rsta.1987.0029.

    Article  Google Scholar 

  22. Ballesteros, M., Oliva, J. M., Negro, M. J., Manzanares, P., & Ballesteros, I. (2004). Process Biochemistry, 39, 1843–1848. doi:10.1016/j.procbio.2003.09.011.

    Article  CAS  Google Scholar 

  23. Palmqvist, E., & Hahn-Hägerdal, B. (2000). Bioresource Technology, 74, 25–33. doi:10.1016/S0960-8524(99)00161-3.

    Article  CAS  Google Scholar 

  24. Ramos, L. P. (2003). Quimica Nova, 26, 863–871.

    CAS  Google Scholar 

  25. Szengyel, Z., Zacchi, G., & Réczey, K. (1997). Applied Biochemistry and Biotechnology, 63–65, 351–362. doi:10.1007/BF02920437.

    Article  Google Scholar 

  26. Kötter, P., & Ciriacy, M. (1993). Applied Microbiology and Biotechnology, 38, 776–783. doi:1007/BF00167144.

    Article  Google Scholar 

Download references

Acknowledgment

This work was financially supported by National Research and Development Programs (NKFP OM00152/2005) and the Hungarian National Research Fund (OTKA–K 72710). Guido Zacchi is gratefully acknowledged for the possibility of steam pretreatment. Enzymes were kindly donated by Novozymes A/S (Bagsvaerd, Denmark). Research Institute, Karcag is acknowledged for the sweet sorghum samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bálint Sipos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sipos, B., Réczey, J., Somorai, Z. et al. Sweet Sorghum as Feedstock for Ethanol Production: Enzymatic Hydrolysis of Steam-Pretreated Bagasse. Appl Biochem Biotechnol 153, 151–162 (2009). https://doi.org/10.1007/s12010-008-8423-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8423-9

Keywords

Navigation