Skip to main content
Log in

Genetic engineering of soft-rot bacteria for ethanol production from lignocellulose

  • Original Papers
  • Published:
Journal of Industrial Microbiology

Summary

The soft-rot bacteriaErwinia carotovora SR38 andErwinia chrysanthemi EC16 have been genetically engineered to efficiently produce ethanol and carbon dioxide as primary fermentation products from cellobiose, glucose and xylose. These organisms have the native ability to secrete a battery of hydrolases and lyases to aid in the solubilization of lignocellulose. Both strains of ethanologenicErwinia fermented cellobiose at twice the rate of the cellobioseutilizing yeasts (Spindler et al., 1992. Biotechnology Letters 14: 403–407) and may be useful in simultaneous saccharification and fermentation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alterthum, F. and L.O. Ingram. 1989. Efficient ethanol production from glucose, lactose and xylose by recombinantEscherichia coli. Appl. Environ. Microbiol. 55: 1943–1948.

    Google Scholar 

  2. Beall, D.S., K. Ohta and L.O. Ingram. 1991. Parametric studies of ethanol production from xylose and other sugars by recombinantEscherichia coli. Biotech. Bioeng. 38: 296–303.

    Google Scholar 

  3. Beguin, P. 1990. Molecular biology of cellulose degradation. Annu. Rev. Microbiol. 44: 219–248.

    Google Scholar 

  4. Brau, B. and H. Sahm. 1986. Cloning and expression of the structural gene for pyruvate decarboxylase ofZymomonas mobilis inEscherichia coli. Arch. Microbiol. 144: 296–301.

    Google Scholar 

  5. Burchhardt, G. and L.O. Ingram. 1992. Conversion of xylan to ethanol by ethanologenic strains ofEscherichia coli andKlebsiella oxytoca. Appl. Environ. Microbiol. 58: 1128–1133.

    Google Scholar 

  6. Chatterjee, A.K., G.E. Buchanan, M.K. Behrens and M.P. Starr. 1979. Synthesis and excretion of polygalacturonic acidtrans-eliminase inErwinia, Yersininia, andKlebsiella species. Can. J. Microbiol. 25: 94–102.

    Google Scholar 

  7. Curry, C., N. Gilkes, G. O'Neill, R.C. Miller Jr. and N. Skipper. 1988. Expression and secretion of aCellulomonas fimi exoglucanase inSaccharomyces cerevisiae. Appl. Environ. Microbiol. 54: 476–484.

    Google Scholar 

  8. Dombek, K.M. and L.O. Ingram. 1985. Determination of the intracellular concentration of ethanol inSaccharomyces cerevisiae during fermentation. Appl. Environ. Microbiol. 51: 197–200.

    Google Scholar 

  9. Hinton, J.C.D., M.C.M. Perombelon and G.P.C. Salmond. 1985. Efficient transformation ofErwinia carotovora subsp.carotovora andE. carotovora subsp.atroseptica. J. Bacteriol. 161: 786–788.

    Google Scholar 

  10. Ingram, L.O., T. Conway, D.P. Clark, G.W. Sewell and J.F. Preston. 1987. Genetic engineering of ethanol production inEscherichia coli. Appl. Environ. Microbiol. 53: 2420–2425.

    Google Scholar 

  11. Kado, C.I. 1992. Plant pathogenic bacteria. In: The Prokaryotes (A. Balows, H.G. Truper, M. Dworkin, W. Harder and K.-H. Schleifer, eds.) Vol. 1, pp. 659–674, Springer-Verlag, New York.

    Google Scholar 

  12. Ohta, K., D.S. Beall, J.P. Mejia, K.T. Shanmugam and L.O. Ingram. 1991. Metabolic engineering ofKlebsiella oxytoca M5A1 for ethanol production from xylose and glucose. Appl. Environ. Microbiol. 57: 2810–2815.

    Google Scholar 

  13. Perombelon, M.C.M. 1992. The genusErwinia. In: The Prokaryotes (A. Balows, H.G. Truper, M. Dworkin, W. Harder, and K.-H. Schleifer, eds.), Vol. 3, pp. 2899–2921, Springer-Verlag, New York.

    Google Scholar 

  14. Preston III, J.F., J.D. Rice, J.C. Chow and B.J. Brown. 1991. Kinetic comparisons of trimer-generating pectate and alginate lyases by reversed-phase ion-pair liquid chromatography. Carbohydr. Res. 215: 147–157.

    Google Scholar 

  15. Sambrook, J., E.F. Fritsch and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd Edn. Vol. 1, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  16. Spindler, D.D., C.E. Wyman, K. Grohmann and G.P. Philippidis. 1992. Evaluation of the cellobiose-fermenting yeastBrettanomyces custersii in the simultaneous saccharification and fermentation of cellulose. Biotechnol. Lett. 14: 403–407.

    Google Scholar 

  17. Tolan, J.S. and R.K. Finn. 1987. Fermentation ofd-xylose andl-arabinose to ethanol byErwinia chrysanthemi. Appl. Environ. Microbiol. 53: 2033–2038.

    Google Scholar 

  18. Tolan, J.S. and R.K. Finn. 1987. Fermentation ofd-xylose to ethanol by genetically modifiedKlebsiella planticola. Appl. Environ. Microbiol. 53: 2039–2044.

    Google Scholar 

  19. Wood, B.E. and L.O. Ingram. 1992. Ethanol production from cellobiose, amorphous cellulose, and crystalline cellulose by recombinantKlebsiella oxytoca containing chromosomally integratedZymomonas mobilis genes for ethanol production and plasmids expressing thermostable cellulase genes fromClostridium thermocellum. Appl. Environ. Microbiol. 58: 2103–2110.

    Google Scholar 

  20. Wood, P.J., J.D. Erfle and R.M. Teather. 1988. Use of complex formation between Congo red and polysaccharides in detection and assay of polysaccharide hydrolysis. Methods Enzymol. 160: 59–74.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beall, D.S., Ingram, L.O. Genetic engineering of soft-rot bacteria for ethanol production from lignocellulose. Journal of Industrial Microbiology 11, 151–155 (1993). https://doi.org/10.1007/BF01583716

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01583716

Key words

Navigation