Skip to main content
Log in

Theoretical insights into the structures and mechanical properties of HMX/NQ cocrystal explosives and their complexes, and the influence of molecular ratios on their bonding energies

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Molecular dynamics (MD) methods were employed to study the binding energies and mechanical properties of selected crystal planes of 1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane (HMX)/nitroguanidine (NQ) cocrystals at different molecular molar ratios. The densities and detonation velocities of the cocrystals at different molar ratios were estimated. The intermolecular interaction and bond dissociation energy (BDE) of the N–NO2 bond in the HMX:NQ (1:1) complex were calculated using the B3LYP, MP2(full) and M06-2X methods with the 6-311++G(d,p) and 6-311++G(2df,2p) basis sets. The results indicated that the HMX/NQ cocrystal prefers cocrystalizing in a 1:1 molar ratio, and the cocrystallization is dominated by the (0 2 0) and (1 0 0) facets. The K, G, and E values of the ratio of 1:1 are smaller than those of the other ratios, and the 1:1 cocrystal has the best ductility. The N–NO2 bond becomes stronger upon the formation of the intermolecular H-bonding interaction and the sensitivity of HMX decreases in the cocrystal. This sensitivity change in the HMX/NQ cocrystal originates not only from the formation of the intermolecular interaction but also from the increment of the BDE of N–NO2 bond in comparison with isolated HMX. The HMX/NQ (1:1) cocrystal exhibits good detonation performance. Reduced density gradient (RDG) reveals the nature of cocrystallization. Analysis of the surface electrostatic potential further confirmed that the sensitivity decreases in complex (or cocrystal) in comparison with that in isolated HMX.

Binding energies and mechanical properties of HMX/NQ cocrystals in different molecular molar ratios were studied using molecular dynamics methods. The origin of the sensitivity change in the HMX/NQ cocrystal originates from formation of intermolecular interactions and the bond dissociation energy increment of the N–NO2 bond

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Landenberger KB, Bolton O, Matzger AJ (2013) Two isostructural explosive cocrystals with significantly different thermodynamic stabilities. Angew Chem Int Ed 52:6468–6471

  2. Thottempudi V, Shreeve JM (2011) Synthesis and promising properties of a new family of high-density energetic salts of 5-Nitro-3-trinitromethyl-1H-1, 2,4-triazole and 5,5’-Bis(trinitromethyl)-3,3’-azo-1H-1,2,4-triazole. J Am Chem Soc 133:19982–19992

  3. Lindoy LF, Atkinson IM (2000) Self-assembly in supramolecular systems. Royal Society of Chemistry, London

  4. Lehn JM (1988) Supramolecular chemistry-scope and perspectives molecules, supermolecules, and molecular devices (Nobel Lecture). Angew Chem Int Ed 27:89–112

    Article  Google Scholar 

  5. Lara-Ochoa F, Espinosa-Pérez G (2007) Cocrystals definitions. Supramol Chem 19:553–557

    Article  CAS  Google Scholar 

  6. Zhang H, Guo C, Wang X, Xu J, He X, Liu Y, Liu X, Huang H, Sun J (2013) Five energetic cocrystals of BTF by intermolecular hydrogen bond and π-stacking interactions. Cryst Growth Des 13:679–687

    Article  Google Scholar 

  7. Bolton O, Matzger AJ (2011) Improved stability and smart-material functionality realized in an energetic cocrystal. Angew Chem Int Ed 50:8960–8963

  8. Bolton O, Simke LR, Pagoria PF, Matzger AJ (2012) High power explosive with good sensitivity: A 2:1 cocrystal of CL-20:HMX. Cryst Growth Des 12:4311–4314

  9. Guo C, Zhang H, Wang X, Xua J, Liu Y, Liu X, Huang H, Sun J (2013) Crystal structure and explosive performance of a new CL-20/caprolactam cocrystal. J Mol Struct 1048:267–273

    Article  CAS  Google Scholar 

  10. Wang Y, Yang Z, Li H, Zhou X, Zhang Q, Wang J, Liu Y (2014) A novel cocrystal explosive of HNIW with good comprehensive properties. Propellants Explos Pyrotech 39(4):590–596

    Article  CAS  Google Scholar 

  11. Yang Z, Li H, Zhou X, Zhang C, Huang H, Li J, Nie F (2012) Characterization and properties of a novel energetic-energetic cocrystal explosive composed of HNIW and BTF. Cryst Growth Des 12:5155–5158

    Article  CAS  Google Scholar 

  12. Evers J, Gospodinov I, Joas M, Klapötke TM, Stierstorfer J (2014) Cocrystallization of photosensitive energetic copper(II) perchlorate complexes with the nitrogen-rich ligand 1,2-di(1H-tetrazol-5-yl)ethane. Inorg Chem 53:11749–11756

  13. Millar DIA, Maynard-Casely HE, Allan DR, Cumming AS, Lennie AR, Mackay AJ, Oswald IDH, Tang CC, Pulham CR (2012) Crystal engineering of energetic materials: co-crystals of CL-20. CrystEngComm 14:3742–3749

  14. Li H, Shu Y, Gao S, Chen L, Ma Q, Ju X (2013) Easy methods to study the smart energetic TNT/CL-20 co-crystal. J Mol Model 19:4909–4917

    Article  CAS  Google Scholar 

  15. Lin H, Zhu SG, Li HZ, Peng XH (2013) Synthesis, characterization, AIM and NBO analysis of HMX/DMI cocrystal explosive. J Mol Struct 1048:339–348

    Article  CAS  Google Scholar 

  16. Gu B, Lin H, Zhu S (2014) Ab initio studies of 1,3,5,7-tetranitro-1,3,5,7-tetrazocine/ 1,3-dimethyl-2-imidazolidinone cocrystal under high pressure using dispersion corrected density functional theory. J Appl Phys 115:143509-1–143509-8

    Google Scholar 

  17. Lin H, Zhu S, Zhang L, Peng X, Chen P, Li H (2013) Intermolecular interactions, thermodynamic properties, crystal structure, and detonation performance of HMX/NTO cocrystal explosive. Int J Quantum Chem 113:1591–1599

    Article  CAS  Google Scholar 

  18. Wei C, Duan X, Liu C, Liu Y, Li J (2009) Molecular simulation on co-crystal structure of HMX/TATB. Acta Chim Sin 67:2822–2826

    CAS  Google Scholar 

  19. Jin PS, Duan XH, Luo QP, Zhou Y, Bao Q, Ma YJ, Pei CH (2011) Preparation and characterization of a novel cocrystal explosive. Cryst Growth Des 11:1759–1765

    Article  Google Scholar 

  20. Wei C, Huang H, Duan X, Pei C (2011) Structures and properties prediction of HMX/TATB co-crystal. Propellants Explos Pyrotech 36:416–423

    Article  CAS  Google Scholar 

  21. Landenberger KB, Matzger AJ (2012) Cocrystals of 1,3,5,7-Tetranitro-1,3,5,7-tetrazacyclooctane (HMX). Cryst Growth Des 12:3603–3609

    Article  CAS  Google Scholar 

  22. Lin H, Zhu S, Li H, Peng X (2013) Structure and detonation performance of a novel HMX/LLM-105 cocrystal explosive. J Phys Org Chem 26:898–907

    Article  CAS  Google Scholar 

  23. Lin H, Zhu SG, Zhang L, Peng XH, Li HZ (2014) Synthesis and first principles investigation of HMX/NMP cocrystal explosive. J Energ Mater 31:261–272

    Article  Google Scholar 

  24. Astakhov AM, Dyugnev KP, Kuzubov AA, Nasluzov VA, Vasiliev AD, Buka ES (2009) Theoretical studies of the structure of nitrimines. I. structure of 2-nitroguanidine and its alkyl derivatives. J Struct Chem 50:201–211

    Article  CAS  Google Scholar 

  25. Chang BC, Choi S, Boutin HP (1970) A study of the crystal structure of β-cyclotetramethylene tetranitramine by neutron diffraction. Acta Crystallogr B 26:1235–1240

    Article  Google Scholar 

  26. Choi CS, Prince E (1972) The crystal structure of cyclotrimethylenetrinitramine. Acta Crystallogr B 28:2857–2862

    Article  CAS  Google Scholar 

  27. Lin H, Zhang L, Zhu S, Li H, Peng X (2012) Molecular dynamic simulation of cyclotetramethylene tetranitramine/1,1-diamino-2,2-dinitroethylene co-crystal explosive. ACTA Armamentarii 33:1025–1030

    CAS  Google Scholar 

  28. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  29. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Inc.. USA, Wallingford CT

  30. Lu T (2014) Multiwfn: a multifunctional wavefunction analyzer, Version 3.3.5. Beijing

  31. Atzger AJ, Bolton O (2011) Improved stability and smart-material functionality realized in an energetic cocrystal. Angew Chem Int Ed 50:8960–8963

    Article  Google Scholar 

  32. Landenberger KB, Matzger AJ (2010) Cocrystal engineering of a prototype energetic materials supramolecular chemistry of 2, 4, 6-trinitrotoluene. Cryst Growth Des 10:5341–5347

    Article  CAS  Google Scholar 

  33. Weiner JH (1983) Statistical mechanics of elasticity. Wiley, New York

    Google Scholar 

  34. Pugh SF (1954) XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos Mag 45(367):823–843

    Article  CAS  Google Scholar 

  35. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799

    Article  CAS  Google Scholar 

  36. Wang HB, Shi WJ, Ren FD, Yang L, Wang JL (2012) A B3LYP and MP2(full) theoretical investigation into explosive sensitivity upon the formation of the intermolecular hydrogen-bonding interaction between the nitro group of RNO2 (R = −CH3, −NH2, −OCH3) and HF, HCl or HBr. Comput Theor Chem 994:73–80

    Article  CAS  Google Scholar 

  37. Macaveiu L, Göbel M, Klapötke TM, Murray JS, Politzer P (2010) The unique role of the nitro group in intramolecular interactions: chloronitromethanes. Struct Chem 21:139–146

    Article  CAS  Google Scholar 

  38. Zhu W, Wang XJ, Xiao JJ, Zhu HW, Sun H, Xiao HM (2009) Molecular dynamics simulations of AP/HMX composite with a modified force field. J Hazard Mater 167:810–816

    Article  CAS  Google Scholar 

  39. Brill BT, James K (1993) Kinetics and mechanisms of thermal decomposition of nitroaromatic explosive. Chem Rev 93:2667–2692

    Article  CAS  Google Scholar 

  40. Li BH, Shi WJ, Ren FD, Wang Y (2013) A B3LYP and MP2(full) theoretical investigation into the strength of the C–NO2 bond upon the formation of the intermolecular hydrogen-bonding interaction between HF and the nitro group of nitrotriazole or its methyl derivatives. J Mol Model 19:511–519

    Article  Google Scholar 

  41. Gao HF, Zhang SH, Ren FD, Liu F, Gou RJ, Ding X (2015) Theoretical Insight into the Co-crystal Explosive of 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (CL-20)/1,1-diamino-2,2-dinitroethylene (FOX-7). Comput Mater Sci. doi:10.1016/j.commatsci.2015.05.009, In Press

    Google Scholar 

  42. Liu H, Wang F, Wang GX, Gong XD (2012) Theoretical studies of -NH2 and -NO2 substituted dipyridines. J Mol Model 18:4639–4647

    Article  CAS  Google Scholar 

  43. Wu Q, Pan Y, Zhu WH, Xiao HM (2013) Computational study of energetic nitrogen-rich derivatives of 1,4-bis(1-azo-2,4-dinitrobenzene)-iminotetrazole. J Mol Model 19:1853–1864

    Article  CAS  Google Scholar 

  44. Budyka MF, Zyubina TS, Zarkadis AK (2002) Correlating ground and excited state properties: a quantum chemical study of the photodissociation of the C–N bond in N-substituted anilines. J Mol Struct (THEOCHEM) 594:113–125

    Article  CAS  Google Scholar 

  45. Brinck T, Haeberlin M, Jonsson M (1997) A computational analysis of substituent effects on the O−H bond dissociation energy in phenols: polar versus radical effects. J Am Chem Soc 119:4239–4244

    Article  CAS  Google Scholar 

  46. Politzer P, Murray JS (2014) Impact sensitivity and crystal lattice compressibility/free space. J Mol Model 20:2223–2230

    Article  Google Scholar 

  47. Johnson ER, Keinan S, Mori-Sánchez P, Contreras-Garcia J, Cohen AL, Yang W (2010) Revealing noncovalent interactions. J Am Chem Soc 132:6498–6506

    Article  CAS  Google Scholar 

  48. Zhang C, Cao Y, Li H, Zhou Y, Zhou J, Gao T, Zhang H, Yang Z, Jiang G (2013) Toward low-sensitive and high-energetic cocrystal I: evaluation of the power and the safety of observed energetic cocrystals. Cryst Eng Commun 15:4003–4014

    Article  CAS  Google Scholar 

  49. Kamlet MJ, Jacobs SJ (1968) Chemistry of detonations. I. A simple method for calculating detonation properties of C–H–N–O explosives. J Chem Phys 48:23–25

    Article  CAS  Google Scholar 

  50. Bracuti AJ (1999) Crystal structure refinement of nitroguanidine. J Chem Crystallogr 29:671–676

    Article  CAS  Google Scholar 

  51. Duan W, Lv Z (2003) Mechanical sensitivity and explosive performance of nitroguanidine (NQ)-based composite explosives. Chin J Energ Mater 11:209–212

    CAS  Google Scholar 

  52. Politzer P, Murray JS (2002) The fundamental nature and role of the electrostatic potential in atoms and molecules. Theor Chem Acc 108:134–142

    Article  CAS  Google Scholar 

  53. Murray JS, Politzer P (2011) The electrostatic potential: an overview. WIREs Comput Mol Sci 1:153–163

    Article  CAS  Google Scholar 

  54. Rice BM, Hare JJ (2002) A quantum mechanical investigation of the relation between impact sensitivity and the charge distribution in energetic molecules. J Phys Chem A 106:1770–1783

    Article  CAS  Google Scholar 

  55. Murray JS, Concha MC, Politzer P (2009) Links between surface electrostatic potentials of energetic molecules, impact sensitivities and C–NO2/N–NO2 bond dissociation energies. Mol Phys 107:89–97

    Article  CAS  Google Scholar 

  56. Politzer P, Murray JS (2014) In: Brinck T (ed) Green energetic materials. Chichester, Wiley, pp 45–62, ch 3

    Chapter  Google Scholar 

  57. Politzer P, Murray JS (2014) Detonation performance and sensitivity: a quest for balance. Adv Quantum Chem 69:1–30

    Article  CAS  Google Scholar 

  58. Politzer P, Murray JS (1996) Relationships between dissociation energies and electrostatic potentials of C–NO2 bonds: applications to impact sensitivities. J Mol Struct 376:419–424

    Article  CAS  Google Scholar 

  59. Murray JS, Lane P, Politzer P (1998) Effects of strongly electron-attracting components on molecular surface electrostatic potentials: application to predicting impact sensitivities of energetic molecules. Mol Phys 93:187–194

    Article  CAS  Google Scholar 

  60. Politzer P, Murray JS (2015) Some molecular/crystalline factors that affect the sensitivities of energetic materials: molecular surface electrostatic potentials, lattice free space and maximum heat of detonation per unit volume. J Mol Model 21:25–35

    Article  Google Scholar 

  61. Murray JS, Lane P, Politzer P (1995) Relationships between impact sensitivities and molecular surface electrostatic potentials of nitroaromatic and nitroheterocyclic molecules. Mol Phys 85:1–8

    Article  CAS  Google Scholar 

  62. Politzer P, Murray JS (1995) C–NO2 dissociation energies and surface electrostatic potential maxima in relation to the impact sensitivities of some nitroheterocyclic molecules. Mol Phys 86:251–255

    Article  CAS  Google Scholar 

  63. Politzer P, Murray JS, Concha MC, Lane P (2007) Effects of electric fields upon energetic molecules: nitromethane and dimethylnitramine. Cent Eur J Energetic Mater 4:3–21

    CAS  Google Scholar 

  64. Pospíšil M, Vávra P, Concha MC, Murray JS, Politzer P (2010) A possible crystal volume factor in the impact sensitivities of some energetic compounds. J Mol Model 16:895–901

    Article  Google Scholar 

Download references

Ethical statement

We have full control of all primary data and agree to allow the journal to review all the data if requested. We confirm the validity of the results from this manuscript. We have no financial relationships to declare. The manuscript has not been submitted to more than one journal, and it has not been published previously. This study is not split up into several parts to increase the quantity of submissions and submitted to various journals or to one journal over time. No data have been fabricated or manipulated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-xiang Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1262 kb)

Appendix A

Appendix A

Cell parameters and main stable surfaces of HMX in vacuum as well as the surface electrostatic potentials are in Appendix A.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Yx., Chen, Ss. & Ren, Fd. Theoretical insights into the structures and mechanical properties of HMX/NQ cocrystal explosives and their complexes, and the influence of molecular ratios on their bonding energies. J Mol Model 21, 245 (2015). https://doi.org/10.1007/s00894-015-2790-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2790-2

Keywords

Navigation