Skip to main content
Log in

A possible crystal volume factor in the impact sensitivities of some energetic compounds

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We have investigated the possibility of a link between the impact sensitivities of energetic compounds and the space available to their molecules in their crystal lattices. As a measure of this space, we use ΔV=Veff−V(0.002), where Veff is the effective molecular volume obtained from the crystal density and V(0.002) is that enclosed by the 0.002 au contour of the molecule’s gas phase electronic density, determined computationally. When experimental impact sensitivity was plotted against ΔV for a series of 20 compounds, the nitramines formed a separate group showing little dependence upon ΔV. Their impact sensitivities correlate well with an anomalous imbalance in the electrostatic potentials on their molecular surfaces, which is characteristic of energetic compounds in general. The imbalance is symptomatic of the weakness of the N–NO2 bonds, caused by depletion of electronic charge. The impact sensitivities of non-nitramines, on the other hand, depend much more strongly upon ΔV, and can be quite effectively related to it if an electrostatically-based correction term is included.

Measured impact sensitivities (h 50) plotted against computed ΔV for the compounds in Table 1. Triangles correspond to nitramines, circles to all others

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Iyer S, Slagg N (1988) In: Liebman JF, Greenberg A (eds) Structure and reactivity. VCH , New York ch 7

    Google Scholar 

  2. Storm CB, Stine JR, Kramer JF (1990) In: Bulusu SN (ed) Chemistry and physics of energetic materials. Kluwer, Dordrecht (The Netherlands) ch 27

    Google Scholar 

  3. Meyer R, Köhler J, Hornburg A (2007) Explosives, 6th edn. Wiley-VCH, Weinheim

    Google Scholar 

  4. Zeman S, Friedl Z, Koci J, Pelikan V, Majzlik J (2006) Centr Europ J Energ Mater 3(3):27–44

    CAS  Google Scholar 

  5. Zeman S, Friedl Z, Koci J (2007) Centr Europ J Energ Mater 4(4):23–31

    CAS  Google Scholar 

  6. Brill TB, James K (1993) Chem Rev 93:2667–2692

    Article  CAS  Google Scholar 

  7. Rice BM, Hare JJ (2002) J Phys Chem A 106:1770–1783

    Article  CAS  Google Scholar 

  8. Kamlet MJ (1976) Proc 6th Symp (Internat) Deton, Report No ACR 221, Office of Naval Research, p 312

  9. Kamlet MJ, Adolph HG (1979) Propellants Explos 4:30–34

    Article  CAS  Google Scholar 

  10. Politzer P, Murray JS (2003) In: Politzer P, Murray JS (eds) Energetic materials, part 2. Detonation, combustion. Elsevier, Amsterdam ch 1

    Google Scholar 

  11. Zeman S (2007) Struct Bond 125:195–271

    Article  CAS  Google Scholar 

  12. Shackelford SA (2008) Centr Europ J Energ Mater 5(1):75–101

    CAS  Google Scholar 

  13. Politzer P, Murray JS, Concha MC, Lane P (2007) Centr Europ J Energ Mater 4(4):3–21

    CAS  Google Scholar 

  14. Politzer P, Murray JS (2009) Int J Quantum Chem 109:3–7

    Article  CAS  Google Scholar 

  15. Politzer P, Murray JS, Lane P (2009) Int J Quantum Chem 109:534–539

    Article  CAS  Google Scholar 

  16. Brill TB, Oyumi Y (1986) J Phys Chem 90:2679–2682

    Article  CAS  Google Scholar 

  17. Oyumi Y, Brill TB (1988) Propellants Explos Pyrotech 13:69–73

    Article  CAS  Google Scholar 

  18. Stewart PH, Jeffries JM, Zellweger JM, McMillen DF, Golden DM (1989) J Phys Chem 93:3557–3563

    Article  CAS  Google Scholar 

  19. Politzer P, Murray JS, Lane P, Sjoberg P, Adolph HG (1991) Chem Phys Lett 181:78–82

    Article  CAS  Google Scholar 

  20. Kohno Y, Maekawa K, Tsuchioka T, Hashizume T, Imamura A (1993) Chem Phys Lett 214:603–608

    Article  CAS  Google Scholar 

  21. Kohno Y, Maekawa K, Tsuchioka T, Hashizume T, Imamura A (1994) Combust Flame 96:343–350

    Article  CAS  Google Scholar 

  22. Kohno Y, Ueda K, Imamura A (1996) J Phys Chem 100:4701–4712

    Article  CAS  Google Scholar 

  23. Oxley JC (2003) In: Politzer P, Murray JS (eds) Energetic materials, part 1. Decomposition, crystal and molecular properties. Elsevier, Amsterdam, ch 1

    Google Scholar 

  24. Murray JS, Concha MC, Politzer P (2009) Mol Phys 107:89–97

    Article  CAS  Google Scholar 

  25. Storm CB, Ryan RR, Ritchie JP, Hall JH, Bachrach SM (1989) J Phys Chem 93:1000–1007

    Article  CAS  Google Scholar 

  26. Politzer P, Grice ME, Seminario JM (1997) Int J Quantum Chem 61:389–392

    Article  CAS  Google Scholar 

  27. Gindulyte A, Massa A, Huang L, Karle J (1999) J Phys Chem A 103:11045–11051

    Article  CAS  Google Scholar 

  28. Murray JS, Lane P, Göbel M, Klapötke TM, Politzer P (2009) Theor Chem Acc, doi:10.1007/s00214-009-0620-2

  29. Liu W-G, Zybin SV, Dasgupta S, Klapötke TM, Goddard WA III (2009) J Am Chem Soc 131:7490–7491

    Article  CAS  Google Scholar 

  30. Murray JM, Lane P, Politzer P (1995) Mol Phys 85:1–8

    Article  CAS  Google Scholar 

  31. Politzer P, Murray JS (1995) Mol Phys 86:251–255

    Article  CAS  Google Scholar 

  32. Politzer P, Murray JS (1996) J Mol Struct 376:419–424

    Article  CAS  Google Scholar 

  33. Murray JS, Lane P, Politzer P (1998) Mol Phys 93:187–194

    Article  CAS  Google Scholar 

  34. Stewart RF (1979) Chem Phys Lett 65:335–342

    Article  CAS  Google Scholar 

  35. Politzer P, Truhlar DG (eds) (1981) Chemical applications of atomic and molecular electrostatic potentials. Plenum, New York

    Google Scholar 

  36. Politzer P, Murray JS (2002) Theor Chem Acc 108:134–142

    Google Scholar 

  37. Politzer P, Murray JS (1998) Theochem 425:107–114

    Article  Google Scholar 

  38. Politzer P, Murray JS (1999) Trends Chem Phys 7:157–165

    CAS  Google Scholar 

  39. Politzer P, Murray JS (2001) Fluid Phase Equilib 185:129–137

    Article  CAS  Google Scholar 

  40. Bader RFW, Carroll MT, Cheeseman JR, Chang C (1987) J Am Chem Soc 109:7968–7979

    Article  CAS  Google Scholar 

  41. Murray JS, Lane P, Politzer P (2009) J Mol Model 15:723–729

    Article  Google Scholar 

  42. Qiu L, Xiao H, Gong X, Ju X, Zhu W (2007) J Hazard Mater 141:280–288

    Article  CAS  Google Scholar 

  43. Rice BM, Hare JJ, Byrd EFC (2007) J Phys Chem A 111:10874–10879

    Article  CAS  Google Scholar 

  44. Politzer P, Martinez J, Murray JS, Concha MC, Toro-Labbé A (2009) Mol Phys, doi:10.1080/00268970903156306

  45. Hintze J (2006) NCSS, Kaysville, UT, www.ncss.com

  46. Zhang C, Shu Y, Huang Y, Zhao X, Dong H (2005) J Phys Chem B 109:8978–8982

    Article  CAS  Google Scholar 

Download references

Acknowledgments

MP and PV acknowledge the support of this work by the Ministry of Education, Youth and Sports of the Czech Republic as a part of its research projects Nos. MSM0021620835 (MP) and MSM0021627501 (PV), respectively. PP, JSM and MCC appreciate the support of the Defense Threat Reduction Agency, Contract No. HDTRA1-07-1-0002, Project Officer Dr. William Wilson.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Politzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pospíšil, M., Vávra, P., Concha, M.C. et al. A possible crystal volume factor in the impact sensitivities of some energetic compounds. J Mol Model 16, 895–901 (2010). https://doi.org/10.1007/s00894-009-0587-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-009-0587-x

Keywords

Navigation