Skip to main content
Log in

Theoretical studies of -NH2 and -NO2 substituted dipyridines

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this work, the experimental synthesized bipyridines 3,3′-Dinitro-2,2′-bipyridine (DNBPy), 3,3′-Dinitro-2,2′-bipyridine-1,1′-dioxide (DNBPyO), and (3-Nitro-2-pyridyl)(5-nitro-2-pyridyl) amine (NPyA), and a set of designed dipyridines that have similar frameworks but different linkages and substituents with NPyA were studied theoretically at the B3LYP/6-31G* level of density functional theory. The gas-phase heats of formation were predicted based on the isodesmic reactions and the condensed-phase heats of formation and heats of sublimation were estimated in the framework of the Politzer approach. The crystal densities have been computed from molecular packing. Results show that this method gives a good estimation of density in comparison with the available experimental data for DNBPy, DNBPyO, and NPyA. The predicted detonation velocities and pressures indicate that the performance of dipyridines linked with -O-, -NH-, or -CH2- bridges have not been improved compared with that of the directly linked dipyridines, but all derivatives have better detonation properties than DNBPy, DNBPyO, and NPyA because of the presence of more nitro groups. An analysis of the bond dissociation energies (BDEs) or the impact sensitivity (h 50) suggests that introduction of different bridges but not substituents has little influence on thermal stability. The calculated h 50 may be more reliable than BDE for predicting stability. Four bridged bipyridines have quite good detonation performance and low sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hiskey M, Chavez D (2001) Insensitive high-nitrogen compound NTIS No: DE220012776133

  2. Hiskey M, Chavez D, Darren LN (2000) Proceedings of 27th International Pyrotechnics Seminar USA, Colorado p3-14

  3. Huynh MHV, Hiskey M, Ernest L (2004) Angew Chem Int Ed 43:4924–4928

    Article  CAS  Google Scholar 

  4. All AN, Son SF, Hiskey M (2004) J Propuls Power 20:120–126

    Article  Google Scholar 

  5. Huang M, Li HZ (2006) Chin J Energ Mater 14:457–462

    CAS  Google Scholar 

  6. Yang SHQ, Xu SL, Lei YP (2006) Chin J Energ Mater 14:475–484

    CAS  Google Scholar 

  7. Zhou Y, Long XP, Wang X (2006) Chin J Energ Mater 14:315–320

    CAS  Google Scholar 

  8. Li XT, Pang SP, Luo YJ (2007) Chin J Org Chem 27:1050–1059

    CAS  Google Scholar 

  9. Wang GX, Xiao HM (2007) Acta Chim Sinica 65:517–524

    CAS  Google Scholar 

  10. Ritter H, Licht HH (1995) J Heterocycl Chem 32:585–590

    Article  CAS  Google Scholar 

  11. Hollins RA, Merwin LM, Nissan RA (1996) J Heterocycl Chem 33:895–904

    Article  CAS  Google Scholar 

  12. Ritter H, Licht HH (1988) Propellants Explos Pyrotech 13:25–29

    Article  Google Scholar 

  13. Cheng J, Yao QZ (2008) Chin J Org Chem 28:1943–1947

    CAS  Google Scholar 

  14. Chavez DE, Hiskey MA, Gilardi RD (2000) Angew Chem 39:1971–1973

    Google Scholar 

  15. Turker L, Atalar T (2006) J Hazard Mater 137:1333–1344

    Article  Google Scholar 

  16. Johnson MA, Truong TN (1999) J Phys Chem B 103:9392–9393

    Article  CAS  Google Scholar 

  17. Zeman S, Trcinski WA, Matyas R (2008) J Hazard Mater 154:192–198

    Article  CAS  Google Scholar 

  18. Turker L (2009) J Energ Mater 27:94–109

    Article  CAS  Google Scholar 

  19. Turker L, Atalar T, Gumus S, Amur YC (2009) J Hazard Mater 167:440–448

    Article  Google Scholar 

  20. Fried LE, Manaa MR, Pagoria PF, Simpson RL (2001) Annu Rev Mater Res 31:291–321

    Article  CAS  Google Scholar 

  21. Li JS, Huang YG, Dong HS (2005) Chin J Energ Mater 23:133–149

    Article  Google Scholar 

  22. He ZW, Zhou SQ, Ju XH, Liu ZL (2010) Struct Chem 21:651–656

    Article  CAS  Google Scholar 

  23. Fan XW, Gu CG, Chen G, Ju XH (2010) Chin J Chem 28:2364–2369

    Article  CAS  Google Scholar 

  24. Turker L, Gumus S, Atalar T (2010) J Energ Mater 28:139–171

    Article  CAS  Google Scholar 

  25. Li JS, Huang YG, Dong HS, Yang GC (2003) Chin J Energ Mater 11:177–181

    CAS  Google Scholar 

  26. Li JS, Huang YG, Dong HS (2004) Chin J Energ Mater 12:576–579

    CAS  Google Scholar 

  27. Liu Y, Gong XD, Wang LJ, Wang GX, Xiao HM (2011) J Phys Chem A 115:1754–1762

    Article  CAS  Google Scholar 

  28. Wang GX, Shi CH, Gong XD, Xiao HM (2009) J Phys Chem A 113:1318–1326

    Article  CAS  Google Scholar 

  29. Zhang XW, Zhu WH, Xiao HM (2010) J Phys Chem A 114:603–612

    Article  CAS  Google Scholar 

  30. Wang F, Du HC, Zhang JY, Gong XD (2011) J Phys Chem A 115:11852–11860

    Article  CAS  Google Scholar 

  31. Rice CR, Wallis JD, Povey DC (1992) Acta Crystallogr Sect C 48:1988–1991

    Article  Google Scholar 

  32. Leary JO, Wallis JD (2007) CrystEngComm 9:941–950

    Article  Google Scholar 

  33. Verardo G, Giumanini AG, Tolazzi M, Cerioni G (2000) Zh Org Khim 36:731–739

    CAS  Google Scholar 

  34. Dunne SJ, von Nagy-Felsobuki EI, Mackay MF (1995) Acta Crystallogr Sect C 51:1454–1457

    Article  Google Scholar 

  35. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  36. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  37. Hariharan PC, Pople JA (1973) Theor Chim Acta 28:213–222

    Article  CAS  Google Scholar 

  38. Xiao HM, Xu XJ, Qiu L (2008) Theoretical design of high energy density materials. Science Press, Beijing

    Google Scholar 

  39. Xiao HM (2004) Structures and properties of energetic compounds. National Defence Industry Press, Beijing

    Google Scholar 

  40. Chen ZX, Xiao JM, Xiao HM, Chiu YN (1999) J Phys Chem A 103:8062–8066

    Article  CAS  Google Scholar 

  41. Zhang J, Xiao HM (2002) J Chem Phys 116:10674–10683

    Article  CAS  Google Scholar 

  42. Xu XJ, Xiao HM, Ju XH, Gong XD, Zhu WH (2006) J Phys Chem A 110:5929–5933

    Article  CAS  Google Scholar 

  43. Wang GX, Gong XD, Xiao HM (2008) Chin J Chem 26:1357–1362

    Article  CAS  Google Scholar 

  44. Wang GX, Gong XD, Liu Y, Xiao HM (2010) J Quant Chem 110:1691–1701

    CAS  Google Scholar 

  45. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, MontgomeryJr JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Head-Gordon M, Replogle ES, Pople JA (2003) Gaussian03. Gaussian, Inc, Pittsburgh

    Google Scholar 

  46. Kamlet MJ, Jacobs SJ (1968) J Chem Phys 48:23–35

    Article  CAS  Google Scholar 

  47. Zhang XH, Yun ZH (1989) Explosive chemistry. National Defence Industry Press, Beijing

    Google Scholar 

  48. Xu XJ, Xiao HM, Gong XD, Ju XH, Chen ZX (2005) J Phys Chem A 109:11268–11274

    Article  CAS  Google Scholar 

  49. Qiu L, Xiao HM, Gong XD, Ju XH, Zhu WH (2006) J Phys Chem A 110:3797–3807

    Article  CAS  Google Scholar 

  50. Qiu L, Xiao HM, Ju XH, Gong XD (2005) J Quant Chem 105:48–56

    Article  CAS  Google Scholar 

  51. Xu XJ, Xiao HM, Wang GX, Ju XH (2006) Chin J Chem Phys 19:395–400

    Article  CAS  Google Scholar 

  52. Xiao HM, Zhang J (2002) Sci China Ser B 45:21

    Article  CAS  Google Scholar 

  53. Politzer P, Martinez J, Murray JS, Concha MC, Toro-Labbé A (2009) Mol Phys 107:2095–2101

    Article  CAS  Google Scholar 

  54. Gong XD (2007) Potden v.2.0 Nanjing University of Science and Technology, Nanjing

  55. Materials Studio 4.4 (2008) Accelrys Inc., San Diego, CA

  56. Mayo SL, Olafson BD, Goddard WA (1990) J Phys Chem 94:8897–8909

    Article  CAS  Google Scholar 

  57. Baur WH, Kassner D (1992) Acta Crystallogr Sec B: Struc Sci 48:356–369

    Article  Google Scholar 

  58. Wilson AJC (1988) Acta Crystallogr Sec A: Found Crystallogr 44:715–724

    Article  Google Scholar 

  59. Mighell AD, Himes VL, Rodgers J (1983) Acta Crystallogr Sec A: Found Crystallogr 39:737–740

    Article  Google Scholar 

  60. Lide DR (2003–2004) CRC handbook of chemistry and physics. CRC Press, Boca Raton, FL

  61. Curtiss LA, Raghavachari K, Redfern PC, Pople JA (1997) J Chem Phys 106:1063–1079

    Article  CAS  Google Scholar 

  62. Rice BM, Pai SV, Hare J (1999) Combust Flame 118:445–458

    Article  CAS  Google Scholar 

  63. Politzer P, Lane P, Murray JS (2011) Cent Euro J Energ Mater 8:39–52

    CAS  Google Scholar 

  64. Stewart JJP (1989) J Comput Chem 10:209–220

    Article  CAS  Google Scholar 

  65. Pospíšil M, Vávra P, Concha MC, Murray JS, Politzer P (2010) J Mol Model 16:895–901

    Article  Google Scholar 

  66. Byrd EFC, Rice BM (2006) J Phys Chem A 110:1005–1013

    Article  CAS  Google Scholar 

  67. Ju XH, Li YM, Xiao HM (2005) J Phys Chem A 109:934–938

    Article  CAS  Google Scholar 

  68. Talawar MB, Sivabalan R, Mukundan T, Muthurajan H, Sikder AK, Gandhe BR, Rao ASJ (2009) J Hazard Mater 161:589–607

    Article  CAS  Google Scholar 

  69. Fan XW, Ju XH, Xiao HM, Qiu L (2006) J Mol Struct (THEOCHEM) 801:55–62

    Article  CAS  Google Scholar 

  70. Xiao HM, Chen ZX (2000) The modern theory for tetrazole chemistry. Science, Beijing

    Google Scholar 

  71. Owens FJ (1996) J Mol Struct (THEOCHEM) 370:11–16

    Article  CAS  Google Scholar 

  72. Harris NJ, Lammertsma KJ (1997) Am Chem Soc 119:6583–6589

    Article  CAS  Google Scholar 

  73. Rice BM, Saha S, Owens FJ (2002) J Mol Struct (THEOCHEM) 583:69–72

    Article  CAS  Google Scholar 

  74. Chen HJ, Cheng XL, Ma ZG, Su XF (2007) J Mol Struct (THEOCHEM) 807:43–47

    Article  CAS  Google Scholar 

  75. Politzer P, Murray JS (1996) J Mol Struct 376:419–424

    Article  CAS  Google Scholar 

  76. Rice BM, Hare JJ (2002) J Phys Chem A 106:1770–1783

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks to the National Natural Science Foundation of China (NSAF Grant No. 11076017) for supporting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Dong Gong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1831 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H., Wang, F., Wang, GX. et al. Theoretical studies of -NH2 and -NO2 substituted dipyridines. J Mol Model 18, 4639–4647 (2012). https://doi.org/10.1007/s00894-012-1460-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1460-x

Keywords

Navigation