Skip to main content
Log in

Theoretical insights into the stabilities, detonation performance, and electrostatic potentials of cocrystals containing α- or β-HMX and TATB, FOX-7, NTO, or DMF in various molar ratios

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A molecular dynamics method was employed to study the binding energies associated with the cocrystallization (at selected crystal planes) of either 1,3,5-triamino-2,4,6-trinitro-benzene (TATB), 1,1-diamino-2,2-dinitroethylene, 3-nitro-1,2,4-triazol-5-one (TATB, FOX-7, and NTO, respectively, all of which are explosives), or N,N-dimethylformamide (DMF, a nonenergetic solvent) in various molar ratios with 1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane in its α and β conformations (α-HMX and β-HMX, respectively). The results showed that the cocrystals with low molar ratios (2:1, 1:1, 1:2, and 1:3) were the most stable. The binding energies of HMX/NTO and HMX/DMF were larger than those of HMX/TATB and HMX/FOX-7. According to the calculated stabilities, HMX prefers to adopt its α form in HMX/TATB and its β form in HMX/NTO, whereas the two forms coexist in HMX/FOX-7. For HMX/TATB, HMX/NTO, and α-HMX/FOX-7, increasing the proportion of the cocrystal component with the highest detonation heat (HMX in the first two cases, FOX-7 in the latter) increases the detonation heat, velocity, and pressure of the cocrystal. However, increasing the proportion of the component with the highest detonation heat in β-HMX/FOX-7 and γ-CL-20/FOX-7 increases the detonation heat of the cocrystal but decreases its detonation velocity. An investigation of the surface electrostatic potential revealed how the sensitivity changes upon cocrystal formation.

Surface electrostatic potential of HMX/TATB

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dong HS, Zhou FF (1994) High energetic explosives and relatives. Science Press, Beijing (and 2005 edition)

  2. Keshavarz MH, Pouretedal HR (2010) Simple relationship for predicting impact sensitivity of nitroaromatics, nitramines, and nitroaliphatics. Propellants Explos Pyrotech 35:175–181

    Article  CAS  Google Scholar 

  3. Lara-Ochoa F, Espinosa-Pérez G (2007) Cocrystals definitions. Supramol Chem 19:553–557

    Article  CAS  Google Scholar 

  4. Jean-Marie L (1988) Supramolecular chemistry—scope and perspectives: molecules, supermolecules, and molecular devices (Nobel Lecture). Angew Chem Int Ed 27:89–112

  5. Zhang H, Guo C, Wang X, Xu J, He X, Liu Y, Liu X, Huang H, Sun J (2013) Five energetic cocrystals of BTF by intermolecular hydrogen bond and π-stacking interactions. Cryst Growth Des 13:679–687

    Article  CAS  Google Scholar 

  6. Onas B, Matzger AJ (2011) Improved stability and smart-material functionality realized in an energetic cocrystal. Angew Chem Int Ed 50:8960–8963

    Article  CAS  Google Scholar 

  7. Onas B, Simke LR, Pagoria PF, Matzger AJ (2012) High power explosive with good sensitivity: a 2:1 cocrystal of CL-20:HMX. Cryst Growth Des 12:4311–4314

    Article  CAS  Google Scholar 

  8. Guo C, Zhang H, Wang X, Xua J, Liu Y, Liu X, Huang H, Sun J (2013) Crystal structure and explosive performance of a new CL-20/caprolactam cocrystal. J Mol Struct 1048:267–273

    Article  CAS  Google Scholar 

  9. Wang Y, Yang Z, Li H, Zhou X, Zhang Q, Wang J, Liu Y (2014) A novel cocrystal explosive of HNIW with good comprehensive properties. Propellants Explos Pyrotech 39(4):590–596

    Article  CAS  Google Scholar 

  10. Yang Z, Li H, Zhou X, Zhang C, Huang H, Li J, Nie F (2012) Characterization and properties of a novel energetic–energetic cocrystal explosive composed of HNIW and BTF. Cryst Growth Des 12:5155–5158

  11. Evers J, Ivan G, Manuel J, Thomas MK, Jörg S (2014) Cocrystallization of photosensitive energetic copper(II) perchlorate complexes with the nitrogen-rich ligand 1,2-di(1H-tetrazol-5-yl)ethane. Inorg Chem 53:11749–11756

  12. David IAM, Helen EMC, David RA, Adam SC, Alistair RL, Alexandra JM, Iain DHO, Chiu CT, Colin RP (2012) Crystal engineering of energetic materials: co-crystals of CL-20. CrystEngComm 14:3742–3749

    Article  CAS  Google Scholar 

  13. Li H, Shu Y, Gao S, Chen L, Ma Q, Ju X (2013) Easy methods to study the smart energetic TNT/CL-20 co-crystal. J Mol Model 19:4909–4917

    Article  CAS  Google Scholar 

  14. Lin H, Zhu SG, Li HZ, Peng XH (2013) Synthesis, characterization, AIM and NBO analysis of HMX/DMI cocrystal explosive. J Mol Struct 1048:339–348

    Article  CAS  Google Scholar 

  15. Li Y, Chen S, Ren F, Jin S (2015) Theoretical insights into the structures and mechanical properties of HMX/NQ cocrystal explosives and their complexes, and the influence of molecular ratios on their bonding energies. J Mol Model 21:245-1–245-13

    Google Scholar 

  16. Ding X, Gou R, Ren F, Liu F, Zhang S, Gao H (2016) Molecular dynamics simulation and density functional theory insight into the cocrystal explosive of hexaazaisowurtzitane/nitroguanidine. Int J Quantum Chem 2:88–96

  17. Gao H, Zhang S, Ren F, Liu F, Gou R, Ding X (2015) Theoretical insight into the co-crystal explosive of 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (CL-20)/1,1-diamino-2,2-dinitroethylene (FOX-7). Comput Mater Sci 107:33–41

    Article  CAS  Google Scholar 

  18. Politzer P, Murray JS (2015) Impact sensitivity and the maximum heat of detonation. J Mol Model 21:262-1–262-11

    Google Scholar 

  19. Wei C, Duan X, Liu C, Liu Y, Li J (2009) Molecular simulation on co-crystal structure of HMX/TATB. Acta Chim Sin 67:2822–2826

    CAS  Google Scholar 

  20. Shen JP, Duan XH, Luo QP, Zhou Y, Bao Q, Ma YJ, Pei CH (2011) Preparation and characterization of a novel cocrystal explosive. Cryst Growth Des 11:1759–1765

    Article  CAS  Google Scholar 

  21. Wei C, Huang H, Duan X, Pei C (2011) Structures and properties prediction of HMX/TATB co-crystal. Propellants Explos Pyrotech 36:416–423

    Article  CAS  Google Scholar 

  22. Landenberger KB, Matzger AJ (2012) Cocrystals of 1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane (HMX). Cryst Growth Des 12:3603–3609

  23. Lin H, Zhu S, Li H, Peng X (2013) Structure and detonation performance of a novel HMX/LLM-105 cocrystal explosive. J Phys Org Chem 26:898–907

    Article  CAS  Google Scholar 

  24. Lin H, Zhu S, Zhang L, Peng X, Chen P, Li H (2013) Intermolecular interactions, thermodynamic properties, crystal structure, and detonation performance of HMX/NTO cocrystal explosive. Int J Quantum Chem 113:1591–1599

    Article  CAS  Google Scholar 

  25. Gu B, Lin H, Zhu S (2014) Ab initio studies of 1,3,5,7-tetranitro-1,3,5,7-tetrazocine/1,3-dimethyl-2-imidazolidinone cocrystal under high pressure using dispersion corrected density functional theory. J Appl Phys 115:143509-1–143509-8

  26. Lin H, Zhu SG, Zhang L, Peng XH, Li HZ (2014) Synthesis and first principles investigation of HMX/NMP cocrystal explosive. J Energ Mater 31:261–272

    Article  CAS  Google Scholar 

  27. Lin H, Zhang L, Zhu S, Li H, Peng X (2012) Molecular dynamic simulation of cyclotetramethylene tetranitramine/1,1-diamino-2,2-dinitroethylene co-crystal explosive. ACTA Armamentarii 33:1025–1030

    CAS  Google Scholar 

  28. Wei YJ, Ren FD, Shi WJ, Zhao Q (2016) Theoretical insight into the influences of molecular ratios on stabilities and mechanical properties, solvent effect of HMX/FOX-7 cocrystal explosive. J Energ Mater 36:426–439

    Article  CAS  Google Scholar 

  29. Cady HH, Cromer DT, Larson AC (1963) The crystal of α-HMX and a refinement of the structure of β-HMX. Acta Crystallogr 16:617–623

    Article  CAS  Google Scholar 

  30. Zhurova EA, Zhurov VV, Pinkerton AA (2007) Structure and bonding in β-HMX-characterization of a trans-annular N···N interaction. J Am Chem Soc 129:13887–13893

  31. Cobbledick RE, Small RWH (1974) The crystal structure of the δ-form of 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (δ-HMX). Acta Crystallogr Sect B Struct Sci 30:1918–1922

  32. Main P, Cobbledick RE, Small RWH (1985) Structure of the fourth form of 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (γ-HMX), 2C4H8N8O8.0.5H2O. Acta Crystallogr Sect C Cryst Struct Commun 41:1351–1354

  33. Cady HH, Smith LC (1961) Studies on the polymorphs of HMX, LAMS-2652. Los Alamos Scientific Laboratory, University of California, Los Alamos

    Google Scholar 

  34. Zhang C, Cao Y, Li H, Zhou Y, Zhou J, Gao T, Zhang H, Yang Z, Jiang G (2013) Toward low-sensitive and high-energetic cocrystal I: evaluation of the power and the safety of observed energetic cocrystals. CrystEngComm 15:4003–4014

    Article  CAS  Google Scholar 

  35. Jessica HU, Jennifer AS (2014) Solvent effects on the growth morphology and phase purity of CL-20. Cryst Growth Des 14:1642–1649

    Article  CAS  Google Scholar 

  36. Beyer T, Day GM, Price SL (2001) The prediction, morphology, and mechanical properties of the polymorphs of paracetamol. J Am Chem Soc 123:5086–5094

    Article  CAS  Google Scholar 

  37. Hartman P, Bennema P (1980) The attachment energy as a habit controlling factor: I. Theoretical considerations. J Cryst Growth 49:145–156

    Article  CAS  Google Scholar 

  38. Hartman P, Perdok WG (1955) On the relations between structure and morphology of crystals. I. Acta Cryst 8:49–52

    Article  CAS  Google Scholar 

  39. Feng RZ, Zhang SH, Ren FD, Gou RJ, Gao L (2016) Theoretical insight into the binding energy and detonation performance of ε-, γ-, β-CL-20 cocrystals with β-HMX, FOX-7 and DMF in different molar ratios, as well as electrostatic potential. J Mol Model 22:123-1–123-14

    Article  CAS  Google Scholar 

  40. Chang BC, Choi S, Boutin HP (1970) A study of the crystal structure of β-cyclotetramethylene tetranitramine by neutron diffraction. Acta Crystallogr Sect B Struct Sci 26:1235–1240

  41. Choi CS, Prince H (1972) The crystal structure of cyclotrimethylenetrinitramine. Acta Crystallogr Sect B Struct Sci 28:2857–2862

  42. Rice SF, Simpson RL (1990) The unusual stability of TATB: a review of the scientific literature (report UCRL-LR-103683). Lawrence Livermore National Laboratory, Livermore

  43. Gilardi R (1999) CCCD 127539. Cambridge Structural Database, Cambridge Crystallographic Data Center, Cambridge

  44. Ma S, Yuan JM, Liu YC, Chang SJ, Wang JH, Yu YW (2014) Prediction of crystal morphology on NTO. Chin J Explos Propellants 37:53–57

  45. Accelrys Software Inc. (2013) Materials Studio 7.0. Accelrys Software Inc., San Diego

  46. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian Inc., Wallingford

  47. Lu T (2014) Multiwfn: a multifunctional wavefunction analyzer, version 3.3.5. T. Lu, Beijing

  48. Politzer P, Murray JS (2015) Some molecular/crystalline factors that affect the sensitivities of energetic materials: molecular surface electrostatic potentials, lattice free space and maximum heat of detonation per unit volume. J Mol Model 21:25-1–11

    Article  Google Scholar 

  49. Kamlet MJ, Jacobs SJ (1968) Chemistry of detonations. I. A simple method for calculating detonation properties of C–H–N–O explosives. J Chem Phys 48:23–35

    Article  CAS  Google Scholar 

  50. Stewart JJP (2007) Optimization of parameters for semiempirical methods. V: Modification of NDDO approximations and application to 70 elements. J Mol Model 13:1173–1213

  51. Duan X, Wei C, Pei C, Li J (2008) Prediction of crystal morphology of HMX. Chin J Energ Mater 2009(17):655–659

  52. Shen F, Lv P, Sun C, Rubo Zhang R, Pang S (2014) The crystal structure and morphology of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) p-xylene solvate: a joint experimental and simulation study. Molecules 19:18574–18589

    Article  CAS  Google Scholar 

  53. Ou YX (1994) Analysis of explosive. Publishing House of the Defense Industry, Beijing

  54. Trzciński WA, Cudziło S, Chyłek Z, Szymańczyk L (2008) Detonation properties of 1,1-diamino-2,2-dinitroethene (DADNE). J Hazard Mater 157:605–612

    Article  CAS  Google Scholar 

  55. Latypov NV, Bergman J, Langlet A, Wellmar U, Bemm U (1998) Synthesis and reactions of 1,1-diamino-2,2-dinitroethylene. Tetrahedron 54:11525–11536

    Article  CAS  Google Scholar 

  56. Storm CB, Stine JR, Kramer JF (1990) In: Bulusu SN (ed) Chemistry and physics of energetic materials. Kluwer, Dordrecht, pp 605–639

    Chapter  Google Scholar 

  57. Politzer P, Murray JS (2014) Impact sensitivity and crystal lattice compressibility/free space. J Mol Model 20:2223–2230

    Article  CAS  Google Scholar 

  58. Murray JS, Concha MC, Politzer P (2009) Links between surface electrostatic potentials of energetic molecules, impact sensitivities and C–NO2/N–NO2 bond dissociation energies. Mol Phys 107:89–97

    Article  CAS  Google Scholar 

  59. Politzer P, Murray JS (2014) Chapter 3. In: Brinck T (ed) Green energetic materials. Wiley, Chichester, pp 45–62

  60. Politzer P, Murray JS (2014) Detonation performance and sensitivity: a quest for balance. Adv Quantum Chem 69:1–30

    Article  CAS  Google Scholar 

  61. Politzer P, Murray JS (1996) Relationships between dissociation energies and electrostatic potentials of C–NO2 bonds: applications to impact sensitivities. J Mol Struct 376:419–424

    Article  CAS  Google Scholar 

  62. Murray JS, Lane P, Politzer P (1998) Effects of strongly electron-attracting components on molecular surface electrostatic potentials: application to predicting impact sensitivities of energetic molecules. Mol Phys 93:187–194

    Article  CAS  Google Scholar 

  63. Murray JS, Lane P, Politzer P (1995) Relationships between impact sensitivities and molecular surface electrostatic potentials of nitroaromatic and nitroheterocyclic molecules. Mol Phys 85:1–8

    Article  CAS  Google Scholar 

  64. Politzer P, Murray JS (1995) C–NO2 dissociation energies and surface electrostatic potential maxima in relation to the impact sensitivities of some nitroheterocyclic molecules. Mol Phys 86:251–255

    Article  CAS  Google Scholar 

  65. Politzer P, Murray JS, Concha MC, Lane P (2007) Effects of electric fields upon energetic molecules: nitromethane and dimethylnitramine. Cent Eur J Energetic Mater 4:3–21

    CAS  Google Scholar 

  66. Pospíšil M, Vávra P, Concha MC, Murray JS, Politzer P (2010) A possible crystal volume factor in the impact sensitivities of some energetic compounds. J Mol Model 16:895–901

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-de Ren.

Ethics declarations

We have full control over all primary data and we allow the journal to review all of the data and confirm the validity of the results. We have no financial relationships to declare. This manuscript was not submitted to more than one journal, and it was not published previously. This study has not been split into several parts to increase the quantity of submissions. Except for the data involving γ-CL-20/FOX-7 in Table 6 (see [39] below Table 6), no data have been fabricated or manipulated.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

The optimized geometries of β-HMX···TATB, β-HMX···FOX-7, β-HMX···NTO, and HMX···DMF as well as intermolecular interactions are shown in Appendix A. (DOC 2401 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Kp., Ren, Fd., Zhang, Sh. et al. Theoretical insights into the stabilities, detonation performance, and electrostatic potentials of cocrystals containing α- or β-HMX and TATB, FOX-7, NTO, or DMF in various molar ratios. J Mol Model 22, 249 (2016). https://doi.org/10.1007/s00894-016-3111-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-016-3111-0

Keywords

Navigation