Skip to main content
Log in

Some molecular/crystalline factors that affect the sensitivities of energetic materials: molecular surface electrostatic potentials, lattice free space and maximum heat of detonation per unit volume

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We discuss three molecular/crystalline properties that we believe to be among the factors that influence the impact/shock sensitivities of energetic materials (i.e., their vulnerabilities to unintended detonation due to impact or shock). These properties are (a) the anomalously strong positive electrostatic potentials in the central regions of their molecular surfaces, (b) the free space per molecule in their crystal lattices, and (c) their maximum heats of detonation per unit volume. Overall, sensitivity tends to become greater as these properties increase; however these are general trends, not correlations. Nitramines are exceptions in that their sensitivities show little or no variation with free space in the lattice and heat of detonation per unit volume. We outline some of the events involved in detonation initiation and show how the three properties are related to different ones of these events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Politzer P, Murray JS (2014) Adv Quantum Chem 69:1–30

    Article  CAS  Google Scholar 

  2. Licht H-H (2000) Propell Explos Pyrotechnics 25:126–132

    Article  CAS  Google Scholar 

  3. Bolton O, Matzger AJ (2011) Angew Chem Int Ed 50:8960–8963

    Article  CAS  Google Scholar 

  4. Bolton O, Simke LR, Pagoria PF, Matzger AJ (2012) Cryst Growth Des 12:4311–4314

    Article  CAS  Google Scholar 

  5. Li H, Shu Y, Gao S, Chen L, Ma Q, Ju X (2013) J Mol Model 19:4909–4917

    Article  CAS  Google Scholar 

  6. Kamlet MJ (1976) 6th Symposium (International) on Detonation, ACR 221. Office of Naval Research, Arlington, VA, pp 312–322

    Google Scholar 

  7. Wilson WS, Bliss DE, Christian SL, Knight DJ (1990) Explosive properties of polynitroaromatics, NWC TP 7073. Naval Weapons Center, China Lake, CA

    Google Scholar 

  8. Armstrong RW, Coffey CS, DeVost VF, Elban WL (1990) J Appl Phys 68:979–984

    Article  CAS  Google Scholar 

  9. Sučeska M (1995) Test methods for explosives. Springer, New York

    Book  Google Scholar 

  10. Armstrong RW, Elban WL (2006) Mater Sci Tech 22:381–395

    Article  CAS  Google Scholar 

  11. Doherty RM, Watt DS (2008) Propell Explos Pyrotechnics 33:4–13

    Article  CAS  Google Scholar 

  12. Elbeih A, Husarova A, Zeman S (2011) Cent Eur J Energ Mater 8:173–182

    CAS  Google Scholar 

  13. Wang Y, Jiang W, Song X, Deng G, Li F (2013) Cent Eur J Energ Mater 10:277–287

    CAS  Google Scholar 

  14. Storm CB, Stine JR, Kramer JF (1990) In: Bulusu SN (ed) Chemistry and physics of energetic materials, Chap 27, Kluwer, Dordrecht, pp 605–639

  15. Meyer R, Köhler J, Homburg A (2007) Explosives, 6th edn. Wiley-VCH, Weinheim

    Book  Google Scholar 

  16. Simpson RL, Urtiew PA, Ornellas DL, Moody GL, Scribner KJ, Hoffman DM (1997) Propell Explos Pyrotechnics 22:249–255

    Article  CAS  Google Scholar 

  17. Tsai DH, Armstrong RW (1994) J Phys Chem 98:10997–11000

    Article  CAS  Google Scholar 

  18. Mintmire JW, Robertson DH, White CT (1994) Phys Rev B 49:14859–14864

    Article  CAS  Google Scholar 

  19. Tarver CM, Chidester SK, Nichols AL III (1996) J Phys Chem 100:5794–5799

    Article  CAS  Google Scholar 

  20. Tsai DH (1996) Mater Res Soc Symp Proc 418:281–286

    Article  CAS  Google Scholar 

  21. Coffey CS, Sharma J (1999) Phys Rev B 60:9365–9371

    Article  CAS  Google Scholar 

  22. Strachan A, van Duin ACT, Chakraborty D, Dasgupta S, Goddard WA III (2003) Phys Rev Lett 91:98301, 1–4

    Article  Google Scholar 

  23. Dlott DD (2003) in Energetic Materials. Part 2. Detonation, Combusion, Politzer P, Murray JS (eds) Elsevier, Amsterdam, ch 6, 125–191

  24. Tarver CM, Urtiew PA, Tran TD (2005) J Energ Mater 23:183–203

    Article  CAS  Google Scholar 

  25. Plaskin I, Coffey CS, Mendes R, Ribeiro J, Campos J, Direito J (2006) 13th Symposium (International) on Detonation, ONR 351-07-01. Office of Naval Research, Arlington, VA, p 319

    Google Scholar 

  26. Nomura K, Kalia RK, Nakano A, Vashishta P (2007) Appl Phys Lett 91:183109, 1–3

    Article  Google Scholar 

  27. Kuklja MM, Rashkeev SN (2007) Phys Rev B 75:104111, 1–10

    Article  Google Scholar 

  28. Shackelford SA (2008) Cent Eur J Energ Mater 5:75–101

    CAS  Google Scholar 

  29. Zhang C (2007) J Phys Chem B 111:14295–14298

    Article  CAS  Google Scholar 

  30. Zhang C, Wang X, Huang H (2008) J Am Chem Soc 130:8359–8365

    Article  CAS  Google Scholar 

  31. Kuklja MM, Rashkeev SN (2009) J Phys Chem C 113:17–20

    Article  CAS  Google Scholar 

  32. Bedrov D, Hooper JB, Smith GD, Sewell TD (2009) J Chem Phys 131:34712, 1–12

    Article  Google Scholar 

  33. Zybin SV, Goddard WA III, Xu P, van Duin ACT, Thompson AP (2010) Appl Phys Lett 96:81918, 1–3

    Article  Google Scholar 

  34. Kuklja MM, Rashkeev SN (2010) J Energ Mater 28:66–77

    Article  CAS  Google Scholar 

  35. An Q, Liu Y, Zybin SV, Kim H, Goddard WA III (2012) J Phys Chem C 116:10198–10206

    Article  CAS  Google Scholar 

  36. Zhou T, Zybin SV, Liu Y, Huang F, Goddard WA III (2012) J Appl Phys 111:124904, 1–11

    Article  Google Scholar 

  37. Klapötke TM (2012) Chemistry of High-Energy Materials. de Gruyter, Berlin

    Book  Google Scholar 

  38. Wen Y, Xue X, Zhou X, Guo F, Long X, Zhou Y, Li H, Zhang C (2013) J Phys Chem C 117:24368–24374

    Article  CAS  Google Scholar 

  39. Zeman S (2007) Struct Bond 125:195–271

    Article  CAS  Google Scholar 

  40. Anders G, Borges I Jr (2011) J Phys Chem A 115:9055–9068

    Article  CAS  Google Scholar 

  41. Politzer P, Murray JS (2014) in Green Energetic Materials, Brinck T (ed) Wiley, Chichester, UK, ch 3, 45–62

  42. Murray JS, Lane P, Politzer P (1995) Mol Phys 85:1–8

    Article  CAS  Google Scholar 

  43. Politzer P, Murray JS (1995) Mol Phys 86:251–255

    Article  CAS  Google Scholar 

  44. Politzer P, Murray JS (1996) J Mol Struct 376:419–424

    Article  CAS  Google Scholar 

  45. Murray JS, Lane P, Politzer P (1998) Mol Phys 93:187–194

    Article  CAS  Google Scholar 

  46. Pospišil M, Vávra P, Concha MC, Murray JS, Politzer P (2010) J Mol Model 16:895–901

    Article  Google Scholar 

  47. Pospišil M, Vávra P, Concha MC, Murray JS, Politzer P (2011) J Mol Model 17:2569–2574

    Article  Google Scholar 

  48. Politzer P, Murray JS (2014) J Mol Model 20:2223, 1–8

    Article  Google Scholar 

  49. Politzer P, Murray JS (2002) Theor Chem Accounts 108:134–142

    Article  CAS  Google Scholar 

  50. Murray JS, Politzer P (2011) WIREs Comp Mol Sci 1:153–163

    Article  CAS  Google Scholar 

  51. Wiberg KB, Rablen PR (1993) J Comp Chem 14:1504–1518

    Article  CAS  Google Scholar 

  52. Bader RFW, Carroll MT, Cheeseman JR, Chang C (1987) J Am Chem Soc 109:7968–7979

    Article  CAS  Google Scholar 

  53. Rice BM, Hare JJ (2002) J Phys Chem A 106:1770–1783

    Article  CAS  Google Scholar 

  54. Politzer P, Murray JS (2003) In: Politzer P, Murray JS (eds) Energetic materials. Part 2. Detonation, combusion, Chap 1. Elsevier, Amsterdam, pp 5–23

  55. Murray JS, Concha MC, Politzer P (2009) Mol Phys 107:89–97

    Article  CAS  Google Scholar 

  56. Hammerl A, Klapötke TM, Nöth H, Warchhold M (2003) Propell Explos Pyrotechnics 28:165–173

    Article  CAS  Google Scholar 

  57. Hammerl A, Klapötke TM, Mayer P, Weigand JJ (2005) Propell Explos Pyrotechnics 30:17–26

    Article  CAS  Google Scholar 

  58. Gökҁinar E, Klapötke TM, Bellamy AJ (2010) J Mol Struct (Theochem) 953:18–23

    Article  Google Scholar 

  59. Klapötke TM, Nordheiter A, Stierstorfer J (2012) New J Chem 36:1463–1468

    Article  Google Scholar 

  60. Dick JJ (1984) Appl Phys Lett 44:859–861

    Article  CAS  Google Scholar 

  61. Yoo CS, Holmes NC, Souers PC, Wu CJ, Ree FH, Dick JJ (2000) J Appl Phys 88:70–75

    Article  CAS  Google Scholar 

  62. Piermarini GJ, Block S, Miller PJ (1989) J Phys Chem 93:457–462

    Article  CAS  Google Scholar 

  63. Dang NC, Dreger ZA, Gupta YM, Hooks DE (2010) J Phys Chem A 114:11560–11566

    Article  CAS  Google Scholar 

  64. Dick JJ, Ritchie JP (1994) J Appl Phys 76:2726–2737

    Article  CAS  Google Scholar 

  65. Kuklja MM, Rashkeev SN (2007) Appl Phys Lett 90:151913, 1–3

    Article  Google Scholar 

  66. Eckhardt CJ, Gavezzotti A (2007) J Phys Chem B 111:3430–3437

    Article  CAS  Google Scholar 

  67. Kuklja MM, Kunz AB (1999) J Appl Phys 86:4428–4434

    Article  CAS  Google Scholar 

  68. Boyd S, Murray JS, Politzer P (2009) J Chem Phys 131:204903, 1-x

    Article  Google Scholar 

  69. Roszak S, Keegstra PB, O’Neal DW, Hariharan PC, Kaufman JJ (1989) Int J Quantum Chem 36:353–368

    Article  CAS  Google Scholar 

  70. Zhang C (2013) J Mol Model 19:477–483

    Article  CAS  Google Scholar 

  71. Kuklja MM (2001) J Phys Chem B 105:10159–10162

    Article  CAS  Google Scholar 

  72. Sharia O, Kuklja MM (2012) J Phys Chem C 116:11077–11081

    Article  CAS  Google Scholar 

  73. Borne L (1993) Tenth Symposium (International) on Detonation, ADA 304862. Office of Naval Research, Arlington, VA, pp 286–293

    Google Scholar 

  74. Baillou F, Dartyge JM, Spyckerelle C, Mala J (1993) Tenth Symposium (International) on Detonation, ADA 304862. Office of Naval Research, Arlington, VA, pp 816–823

    Google Scholar 

  75. Kunz AB (1996) Mat Res Soc Symp Proc 418:287–292

    Article  CAS  Google Scholar 

  76. Rice BM, Byrd EFC (2013) J Comput Chem 34:2146–2151

    Article  CAS  Google Scholar 

  77. Li J-R, Zhao J-M, Dong H-S (2005) J Chem Cryst 35:943–948

    Article  CAS  Google Scholar 

  78. Pagoria PF, Lee GS, Mitchell AR, Schmidt RD (2002) Thermochim Acta 384:187–204

    Article  CAS  Google Scholar 

  79. Watt DS, Cliff MD (1998) TNAZ Based Melt-Cast Explosives: Technology Review and AMRL Research Directions, DSTO-TR-0702, Defence Science and Technology Organisation, Melbourne, Australia, Sect. 4.1, p 13

  80. Archibald TG, Gilardi R, Baum K, George C (1990) J Org Chem 55:2920–2924

    Article  CAS  Google Scholar 

  81. Gilardi RD, Butcher RJ (2001) Acta Cryst E 57:657–658

    Article  Google Scholar 

  82. Fried LE, Manaa MR, Pagoria PF, Simpson RL (2001) Annu Rev Mater Res 31:291–321

    Article  CAS  Google Scholar 

  83. Luo YR (2007) Comprehensive handbook of chemical bond energies. CRC, Boca Raton

    Book  Google Scholar 

  84. Kamlet MJ, Ablard JE (1968) J Chem Phys 48:36–42

    Article  CAS  Google Scholar 

  85. Ornellas DL (1968) J Phys Chem 72:2390–2394

    Article  CAS  Google Scholar 

  86. Pepekin VI, Gubin SA (2007) Combust Explos Shock Waves 43:212–218

    Article  Google Scholar 

  87. Kamlet MJ, Jacobs SJ (1968) J Chem Phys 48:23–55

    Article  CAS  Google Scholar 

  88. Mader CL (1998) Numerical modeling of explosives and propellents, 2nd edn. CRC, Boca Raton

    Google Scholar 

  89. Rice BM, Hare J (2002) Thermochim Acta 384:377–391

    Article  CAS  Google Scholar 

  90. Politzer P, Murray JS (2011) Cent Eur J Energ Mater 8:209–220

    CAS  Google Scholar 

  91. Sućeska M (2004) Mater Sci Forum 465(466):325–330

    Article  Google Scholar 

  92. Bastea S, Fried LE, Glaesemann KR, Howard WM, Sovers PC, Vitello PA (2006) CHEETAH 5.0, User’s manual, Lawrence Livermore National Laboratory, Livermore

  93. Grys S, Trzciński WA (2010) Cent Eur J Energ Mater 7:97–113

    CAS  Google Scholar 

  94. Akhavan J (2004) The chemistry of explosives, 2nd edn. Royal Society of Chemistry, Cambridge

    Google Scholar 

  95. Muthurajan H, How Ghee A (2008) Cent Eur J Energ Mater 5(3–4):19–35

    CAS  Google Scholar 

  96. Politzer P, Murray JS (2014) Cent Eur J Energ Mater 11:459–474

    Google Scholar 

  97. Pepekin VI, Korsunskii BL, Denisaev AA (2008) Combust Explos Shock Waves 44:586–590

    Article  Google Scholar 

  98. Linstrom PJ, Mallard WG (eds) NIST Chemistry Webbook, NIST Standard Reference Database Number 69, National Institutte of Standards and Technology, Gaithersburg, MD, http://www.nist.gov

  99. Byrd EFC, Rice BM (2006) J Phys Chem A 110:1005–1013

    Article  CAS  Google Scholar 

  100. Licht H-H, Ritter H (1994) J Energ Mater 12:223–235

    Article  CAS  Google Scholar 

  101. Wei T, Zhu W, Zhang X, Li Y-F, Xiao H (2009) J Phys Chem A 113:9404–9412

    Article  CAS  Google Scholar 

  102. Zhang X, Gong X (2014) J Mol Model 20:2327, 1–11

    Article  Google Scholar 

  103. Pepekin VI, Gubin SA (2007) Combust Explos Shock Waves 43:84–95

    Article  Google Scholar 

Download references

Acknowledgments

We greatly appreciate the support of this work by the Office of Naval Research, contract number N00014-12-1-0535, Program Officer Dr. Clifford D. Bedford.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Politzer.

Additional information

This paper belongs to Topical Collection 6th conference on Modeling & Design of Molecular Materials in Kudowa Zdrój (MDMM 2014)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Politzer, P., Murray, J.S. Some molecular/crystalline factors that affect the sensitivities of energetic materials: molecular surface electrostatic potentials, lattice free space and maximum heat of detonation per unit volume. J Mol Model 21, 25 (2015). https://doi.org/10.1007/s00894-015-2578-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2578-4

Keywords

Navigation