Skip to main content
Log in

Computational study of energetic nitrogen-rich derivatives of 1,4-bis(1-azo-2,4-dinitrobenzene)-iminotetrazole

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The heats of formation (HOFs), electronic structure, energetic properties, and thermal stabilities for a series of 1,4-bis(1-azo-2,4-dinitrobenzene)-iminotetrazole derivatives with different substituents and substitution positions and numbers of nitrogen atoms in the nitrobenzene rings were studied using the DFT-B3LYP method. All the substituted compounds have higher HOFs than their parent compounds. As the number of nitrogen atoms in the nitrobenzene ring increases, the HOFs of the derivatives with the same substituent rise gradually. Replacing carbon atoms in the nitrobenzene with nitrogen atoms to form N–N bonds is very helpful in improving their HOFs. Most of the substituted compounds have higher HOMO–LUMO gaps than the corresponding unsubstituted compounds. Substitution of the –NO2, –NF2, or –ONO2 group and an increase in the number of nitrogen atoms in the nitrobenzene rings are useful for enhancing their detonation performance. The substituents’ substitution is not favorable for improving thermal stability. Considering detonation performance and thermal stability, five compounds may be considered potential candidates for high energy density compounds (HEDCs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fried LE, Manaa MR, Pagoria PF, Simpson RL (2001) Annu Rev Mater Res 31:291–321

    Article  CAS  Google Scholar 

  2. Pagoria PF, Lee GS, Mitchell AR, Schmidt (2002) Thermochim Acta 384:187–204

    Article  CAS  Google Scholar 

  3. Xu XJ, Xiao HM, Ju XH, Gong XD, Zhu WH (2006) J Phys Chem A 110:5929–5933

    Article  CAS  Google Scholar 

  4. Wei T, Zhu WH, Zhang XW, Li YF, Xiao HM (2009) J Phys Chem A 113:9404–9412

    Article  CAS  Google Scholar 

  5. Gutowski KE, Rogers RD, Dixon DA (2006) J Phys Chem A 110:11890–11897

    Article  CAS  Google Scholar 

  6. Wei T, Zhu WH, Zhang JJ, Xiao HM (2010) J Hazard Mater 179:581–590

    Article  CAS  Google Scholar 

  7. Zhang CC, Zhu WH, Xiao HM (2010) Comput Theor Chem 967:257–264

    Article  Google Scholar 

  8. Pan Y, Zhu WH, Xiao HM (2012) J Mol Model 18:3125–3138

    Article  CAS  Google Scholar 

  9. Joo YH, Shreeve JM (2010) Angew Chem Int Ed 49:7320–7323

    Article  CAS  Google Scholar 

  10. Qiu L, Xiao HM, Gong XD, Ju XH, Zhu WH (2006) J Phys Chem A 110:3797–3807

    Article  CAS  Google Scholar 

  11. Wei T, Wu JZ, Zhang CC, Zhu WH, Xiao HM (2012) J Mol Model 18:3467–3479

    Article  CAS  Google Scholar 

  12. Joo YH, Shreeve JM (2009) Angew Chem Int Ed 48:564–567

    Article  CAS  Google Scholar 

  13. Stierstorfer J, Tarantik KR, Klapöke TM (2009) Chem Eur J 15:5775–5792

    Article  CAS  Google Scholar 

  14. Zhao GZ, Lu M (2012) J Mol Model 18:2443–2451

    Article  CAS  Google Scholar 

  15. Agrawal JP (2005) Propell Explos Pyrot 5:316–328

    Article  Google Scholar 

  16. Nair UR, Gore GM, Sivabalan R, Pawar SJ, Asthana SN, Venugopalan S (2007) J Hazard Mater 143:500–505

    Article  CAS  Google Scholar 

  17. Zhang XW, Zhu WH, Xiao HM (2010) J Phys Chem A 114:603–612

    Article  CAS  Google Scholar 

  18. Zhu WH, Zhang CC, Wei T, Xiao HM (2011) J Comput Chem 32:2298–2312

    Article  CAS  Google Scholar 

  19. Zhang XW, Zhu WH, Xiao HM (2010) Int J Quantum Chem 110:1549–1558

    Article  CAS  Google Scholar 

  20. Ghule VD, Radhakrishnan S, Jadhav PM, Pandey RK (2011) J Mol Model 17:2927–2937

    Article  CAS  Google Scholar 

  21. Thottempudi V, Gao HX, Shreeve JM (2011) J Am Chem Soc 133:6464–6471

    Article  CAS  Google Scholar 

  22. Zhou Y, Long XP, Shu YJ (2010) J Mol Model 16:1021–1027

    Article  CAS  Google Scholar 

  23. Zhu WH, Zhang CC, Wei T, Xiao HM (2011) Struct Chem 22:149–159

    Article  Google Scholar 

  24. Zhu WX, Wong NB, Wang WZ, Zhou G, Tian A (2004) J Phys Chem A 108:97–106

    Article  Google Scholar 

  25. Pan Y, Li JS, Cheng BB, Zhu WH, Xiao HM (2012) Comput Theor Chem 992:110–119

    Article  CAS  Google Scholar 

  26. Ravi P, Gore GM, Tewari SP, Sikder AK (2012) Propell Explos Pyrot 37:52–58

    Article  CAS  Google Scholar 

  27. Fan XW, Ju XH, Xiao HM, Qiu L (2006) J Mol Struct (THEOCHEM) 801:55–62

    Article  CAS  Google Scholar 

  28. Fan XW, Ju XH (2008) J Comput Chem 29:505–513

    Article  CAS  Google Scholar 

  29. Muthurajan H, Sivabalan R, Talawar MB, Anniyappan M, Venugopalan S (2006) J Hazard Mater 133:30–45

    Article  CAS  Google Scholar 

  30. Chen ZX, Xiao JM, Xiao HM, Chiu YN (1999) J Phys Chem A 103:8062–8066

    Article  CAS  Google Scholar 

  31. Xiao HM, Chen ZX (2000) The modern theory for tetrazole chemistry, 1st edn. Science, Beijing

    Google Scholar 

  32. Hahre WJ, Radom L, Schleyer PVR, Pole JA (1986) Ab initio molecular orbital theory. Wiley-Interscience, New York

    Google Scholar 

  33. Atkins PW (1982) Physical chemistry. Oxford University Press, Oxford

    Google Scholar 

  34. Politzer P, Lane P, Murray JS (2011) Cent Eur J Energ Mat 8:39–52

    CAS  Google Scholar 

  35. Politzer P, Murray JS (2011) Cent Eur J Energ Mat 8:209–220

    CAS  Google Scholar 

  36. Politzer P, Murray JS, Grice ME, DeSalvo M, Miller E (1997) Mol Phys 91:923–928

    CAS  Google Scholar 

  37. Byrd EFC, Rice BM (2006) J Phys Chem A 110:1005–1013

    Article  CAS  Google Scholar 

  38. Bulat FA, Toro-Labbe A, Brinck T, Murray JS, Politzer P (2010) J Mol Model 16:1679–1691

    Article  CAS  Google Scholar 

  39. Jaidann M, Roy S, Abou-Rachid H, Lussier LS (2010) J Hazard Mater 176:165–173

    Article  CAS  Google Scholar 

  40. Kamlet MJ, Jacobs SJ (1968) J Chem Phys 48:23–35

    Article  CAS  Google Scholar 

  41. Politzer P, Martinez J, Murray JS, Concha MC, Toro-Labbé A (2009) Mol Phys 107:2095–2101

    Article  CAS  Google Scholar 

  42. Benson SW (1976) Thermochemical kinetic, 2nd edn. Wiley-Interscience, New York

    Google Scholar 

  43. Mills I, Cvitas T, Homann K, Kallay N, Kuchitsu K (1988) Quantities, units, and symbols in physical chemistry. Blackwell, Oxford

    Google Scholar 

  44. Blanksby SJ, Ellison GB (2003) Accounts Chem Res 36:255–263

    Article  CAS  Google Scholar 

  45. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko, A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (2009) Gaussian 09, Revision A. 01. Gaussian, Inc.

  46. Afeefy HY, Liebman JF, Stein SE (2000) Neutral thermochemical data. In: Linstrom PJ, Mallard WG (eds) NIST chemistry webbook, NIST standerd reference database number 69. National Institute of Standards and Technology, Gaitherersburg, MD, http://webbook.nist.gov

  47. Dean JA (1999) LANGE’S handbook of chemistry, 15th edn. McGraw-Hill, New York

    Google Scholar 

  48. Scott AP, Radom L (1996) J Phys Chem 100:16502–16513

    Article  CAS  Google Scholar 

  49. Talawar MB, Sivabalan R, Mukundan T, Muthurajan H, Sikder AK, Gandhe BR, Rao AS (2009) J Hazard Mater 161:589–607

    Article  CAS  Google Scholar 

  50. Chung GS, Schmidt MW, Gordon MS (2000) J Phys Chem A 104:5647–5650

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (Grant No. 21273115).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihua Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Q., Pan, Y., Zhu, W. et al. Computational study of energetic nitrogen-rich derivatives of 1,4-bis(1-azo-2,4-dinitrobenzene)-iminotetrazole. J Mol Model 19, 1853–1864 (2013). https://doi.org/10.1007/s00894-013-1756-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-1756-5

Keywords

Navigation