Skip to main content
Log in

An overview on enzyme-mimicking nanomaterials for use in electrochemical and optical assays

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Various kinds of nanomaterials have been described in recent years that represent stable and low-cost alternatives to biomolecules (such as enzymes) for use in (bio)analytical methods. The materials typically include, metal/metal oxides, metal complexes, nanocomposites, porphyrins, phthalocyanines, smart polymers, and carbonaceous nanomaterials. Due to their biomimetic and other properties, such nano-materials may replace natural enzymes in chemical sensors, biosensors, and in various kinds of bioassays. This overview (with 252 references) highlights the analytical potential of such nanomaterials. It is divided into sections on (a) the types of nanomaterials according to their intrinsic nature, (b) non-enzymatic sensor designs (including electrochemical, colorimetric, fluorescent and chemiluminescent methods), and (c), applications of non-enzymatic sensors in the biomedical, environmental and food analysis fields. We finally address current challenges and future directions.

This review discusses different types of nanomaterials, which are explored as a potential biomimetic material to replace the natural enzyme in the field of biosensors, and have found widespread applications in biomedical, food and environmental analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Omrani NM, Hayat A, Korri-Youssoufi H, Marty JL (2016) Electrochemical biosensors for food security: mycotoxins detection. In: Biosensors for security and bioterrorism applications. Springer, pp 469–490. doi:10.1007/978-3-319-28926-7_22

  2. Lafleur JP, Jönsson A, Senkbeil S, Kutter JP (2016) Recent advances in lab-on-a-chip for biosensing applications. Biosens Bioelectron 76:213–233

    Article  CAS  Google Scholar 

  3. Fiammengo R, Jaschke A (2005) Nucleic acid enzymes. Curr Opin Biotechnol 16(6):614–621. doi:10.1016/j.copbio.2005.10.006

    CAS  Google Scholar 

  4. Volz H, Holzbecher M (1997) A bridged Porphyrinato (thiolato) iron (III) complex as a model of the active Center of the Cytochrome P‐450 Isozyme. Angew Chem Int Ed Engl 36(13–14):1442–1445

    Article  CAS  Google Scholar 

  5. Ghosh M, Conroy JL, Seto CT (1999) Hydrolysis of amides catalyzed by 4‐Heterocyclohexanones: small molecule mimics of serine proteases. Angew Chem Int Ed 38(4):514–516

    Article  CAS  Google Scholar 

  6. Funabiki T, Yamazaki T, Fukui A, Tanaka T, Yoshida S (1998) Oxygenative cleavage of Chlorocatechols with molecular oxygen catalyzed by non‐Heme iron (III) complexes and its relevance to Chlorocatechol Dioxygenases. Angew Chem Int Ed 37(4):513–515

    Article  CAS  Google Scholar 

  7. Molenveld P, Engbersen JF, Reinhoudt DN (1999) Specific RNA dinucleotide cleavage by a synthetic calix [4] arene‐based Trinuclear Metallo (II)‐phosphodiesterase. Angew Chem Int Ed 38(21):3189–3192

    Article  CAS  Google Scholar 

  8. Han MJ, Yoo KS, Chang JY, Ha TK (2000) 5‐(β‐Cyclodextrinylamino)‐5‐Deoxy‐α‐D‐Riboses as models for nuclease, ligase, phosphatase, and Phosphorylase. Angew Chem Int Ed 39(2):347–349

    Article  CAS  Google Scholar 

  9. Muche MS, Göbel MW (1996) Bis (guanidinium) alcohols as models of staphylococcal nuclease: substrate binding through ion pair complexes and fast phosphoryl transfer reactions. Angew Chem Int Ed Engl 35(18):2126–2129

    Article  CAS  Google Scholar 

  10. Signor L, Knuppe C, Hug R, Schweizer B, Pfaltz A, Jaun B (2000) Methane formation by reaction of a methyl Thioether with a photo‐excited nickel Thiolate—a process mimicking methanogenesis in Archaea. Chemistry–A European Journal 6(19):3508–3516

    Article  CAS  Google Scholar 

  11. Wei H, Wang E (2013) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 42(14):6060–6093. doi:10.1039/C3CS35486E

    Article  CAS  Google Scholar 

  12. Hayat A, Catanante G, Marty JL (2014) Current trends in nanomaterial-based amperometric biosensors. Sensors 14(12):23439–23461

    Article  Google Scholar 

  13. Lim C, Alavijeh AS, Lauritzen M, Kolodziej J, Knights S, Kjeang E (2015) Fuel cell durability enhancement with cerium oxide under combined chemical and mechanical membrane degradation. ECS Electrochemistry Letters 4(4):F29–F31

    Article  CAS  Google Scholar 

  14. Ansari AA, Solanki PR, Malhotra B (2008) Sol-gel derived nanostructured cerium oxide film for glucose sensor. Appl Phys Lett 92(26):263901

    Article  CAS  Google Scholar 

  15. Luo X, Morrin A, Killard AJ, Smyth MR (2006) Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis 18(4):319–326

    Article  CAS  Google Scholar 

  16. Wang N, Sun J, Chen L, Fan H, Ai S (2015) A Cu2(OH)3Cl-CeO2 nanocomposite with peroxidase-like activity, and its application to the determination of hydrogen peroxide, glucose and cholesterol. Microchim Acta 182(9):1733–1738. doi:10.1007/s00604-015-1506-8

    Article  CAS  Google Scholar 

  17. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021

    Article  CAS  Google Scholar 

  18. Dobson J (2006) Magnetic nanoparticles for drug delivery. Drug Dev Res 67(1):55–60

    Article  CAS  Google Scholar 

  19. Chertok B, Moffat BA, David AE, Yu F, Bergemann C, Ross BD, Yang VC (2008) Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials 29(4):487–496

    Article  CAS  Google Scholar 

  20. Xu Y, Wang E (2012) Electrochemical biosensors based on magnetic micro/nano particles. Electrochim Acta 84:62–73

    Article  CAS  Google Scholar 

  21. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2(9):577–583

    Article  CAS  Google Scholar 

  22. Li L, Du Z, Liu S, Hao Q, Wang Y, Li Q, Wang T (2010) A novel nonenzymatic hydrogen peroxide sensor based on MnO 2/graphene oxide nanocomposite. Talanta 82(5):1637–1641

    Article  CAS  Google Scholar 

  23. Thiagarajan S, Tsai TH, Chen S-M (2011) Electrochemical fabrication of nano manganese oxide modified electrode for the detection of H2O2. Int J Electrochem Sci 6:2235–2245

    CAS  Google Scholar 

  24. Yang X, Chen X, Zhang X, Yang W, Evans DG (2008) Intercalation of methylene blue into layered manganese oxide and application of the resulting material in a reagentless hydrogen peroxide biosensor. Sensors Actuators B Chem 129(2):784–789

    Article  CAS  Google Scholar 

  25. Wang J, Sun XW, Wei A, Lei Y, Cai X, Li CM, Dong ZL (2006) Zinc oxide nanocomb biosensor for glucose detection. Appl Phys Lett 88(23):3106

    Google Scholar 

  26. Wang X, Liu E, Zhang X (2014) Non-enzymatic glucose biosensor based on copper oxide-reduced graphene oxide nanocomposites synthesized from water-isopropanol solution. Electrochim Acta 130:253–260

    Article  CAS  Google Scholar 

  27. André R, Natálio F, Humanes M, Leppin J, Heinze K, Wever R, Schröder HC, Müller WE, Tremel W (2011) V2O5 nanowires with an intrinsic peroxidase‐like activity. Adv Funct Mater 21(3):501–509

    Article  CAS  Google Scholar 

  28. Xiang Z, Wang Y, Ju P, Zhang D (2016) Optical determination of hydrogen peroxide by exploiting the peroxidase-like activity of AgVO3 nanobelts. Microchim Acta 183(1):457–463. doi:10.1007/s00604-015-1670-x

    Article  CAS  Google Scholar 

  29. Lang X-Y, Fu H-Y, Hou C, Han G-F, Yang P, Liu Y-B, Jiang Q (2013) Nanoporous gold supported cobalt oxide microelectrodes as high-performance electrochemical biosensors. Nat Commun 4:2169–2177. doi:10.1038/ncomms3169

  30. Ding C, Yan Y, Xiang D, Zhang C, Xian Y (2016) Magnetic Fe3S4 nanoparticles with peroxidase-like activity, and their use in a photometric enzymatic glucose assay. Microchim Acta 183(2):625–631. doi:10.1007/s00604-015-1690-6

    Article  CAS  Google Scholar 

  31. Lu Y, Yu J, Ye W, Yao X, Zhou P, Zhang H, Zhao S, Jia L (2016) Spectrophotometric determination of mercury(II) ions based on their stimulation effect on the peroxidase-like activity of molybdenum disulfide nanosheets. Microchim Acta 183(8):2481–2489. doi:10.1007/s00604-016-1886-4

    Article  CAS  Google Scholar 

  32. Comotti M, Della Pina C, Matarrese R, Rossi M (2004) The catalytic activity of “naked” gold particles. Angew Chem Int Ed 43(43):5812–5815

    Article  CAS  Google Scholar 

  33. Li X-J, Wang Y-S, Yang S-Y, Tang X, Liu L, Zhou B, Wang X-F, Zhu Y-F, Huang Y-Q, He S-Z (2016) Determination of metallothioneins based on the enhanced peroxidase-like activity of mercury-coated gold nanoparticles aggregated by metallothioneins. Microchim Acta 183(7):2123–2129. doi:10.1007/s00604-016-1828-1

    Article  CAS  Google Scholar 

  34. Yang M, Yang Y, Liu Y, Shen G, Yu R (2006) Platinum nanoparticles-doped sol–gel/carbon nanotubes composite electrochemical sensors and biosensors. Biosens Bioelectron 21(7):1125–1131

    Article  CAS  Google Scholar 

  35. Kuila T, Bose S, Khanra P, Mishra AK, Kim NH, Lee JH (2011) Recent advances in graphene-based biosensors. Biosens Bioelectron 26(12):4637–4648

    Article  CAS  Google Scholar 

  36. Gavalas VG, Chaniotakis NA (2000) [60] Fullerene-mediated amperometric biosensors. Anal Chim Acta 409(1):131–135

    Article  CAS  Google Scholar 

  37. Lanzellotto C, Favero G, Antonelli M, Tortolini C, Cannistraro S, Coppari E, Mazzei F (2014) Nanostructured enzymatic biosensor based on fullerene and gold nanoparticles: preparation, characterization and analytical applications. Biosens Bioelectron 55:430–437

    Article  CAS  Google Scholar 

  38. Partha R, Conyers JL (2009) Biomedical applications of functionalized fullerene-based nanomaterials. Int J Nanomedicine 4:261

    Article  CAS  Google Scholar 

  39. Wohlstadter JN, Wilbur JL, Sigal GB, Biebuyck HA, Billadeau MA, Dong L, Fischer AB, Gudibande SR, Jameison SH, Kenten JH (2003) Carbon nanotube‐based biosensor. Adv Mater 15(14):1184–1187

    Article  CAS  Google Scholar 

  40. Atashbar MZ, Bejcek B, Singamaneni S, Santucci S (2004) Carbon nanotube based biosensors. In: Sensors, 2004. Proceedings of IEEE, IEEE, pp 1048–1051

  41. Chen RJ, Bangsaruntip S, Drouvalakis KA, Kam NWS, Shim M, Li Y, Kim W, Utz PJ, Dai H (2003) Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc Natl Acad Sci 100(9):4984–4989

    Article  CAS  Google Scholar 

  42. Yang N, Chen X, Ren T, Zhang P, Yang D (2015) Carbon nanotube based biosensors. Sensors Actuators B Chem 207:690–715

    Article  CAS  Google Scholar 

  43. Song Y, Wang X, Zhao C, Qu K, Ren J, Qu X (2010) Label‐free colorimetric detection of single nucleotide polymorphism by using single‐walled carbon nanotube intrinsic peroxidase‐like activity. Chemistry–A European Journal 16(12):3617–3621

    Article  CAS  Google Scholar 

  44. Chen J, Ge J, Zhang L, Li Z, Li J, Sun Y, Qu L (2016) Reduced graphene oxide nanosheets functionalized with poly(styrene sulfonate) as a peroxidase mimetic in a colorimetric assay for ascorbic acid. Microchim Acta 183(6):1847–1853. doi:10.1007/s00604-016-1826-3

    Article  CAS  Google Scholar 

  45. Shi X, Gu W, Li B, Chen N, Zhao K, Xian Y (2014) Enzymatic biosensors based on the use of metal oxide nanoparticles. Microchim Acta 181(1):1–22. doi:10.1007/s00604-013-1069-5

    Article  CAS  Google Scholar 

  46. Govindhan M, Adhikari B-R, Chen A (2014) Nanomaterials-based electrochemical detection of chemical contaminants. RSC Adv 4(109):63741–63760

    Article  CAS  Google Scholar 

  47. Zhu C, Yang G, Li H, Du D, Lin Y (2014) Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal Chem 87(1):230–249

    Article  CAS  Google Scholar 

  48. Sanghavi BJ, Wolfbeis OS, Hirsch T, Swami NS (2015) Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters. Microchim Acta 182(1–2):1–41

    Article  CAS  Google Scholar 

  49. Shah B, Lafleur T, Chen A (2013) Carbon nanotube based electrochemical sensor for the sensitive detection of valacyclovir. Faraday Discuss 164:135–146

    Article  CAS  Google Scholar 

  50. Chatterjee S, Wen J, Chen A (2013) Electrochemical determination of methylglyoxal as a biomarker in humanplasma. Biosens Bioelectron 42:349–354

    Article  CAS  Google Scholar 

  51. Chatterjee S, Chen A (2012) Functionalization of carbon buckypaper for the sensitive determination of hydrogen peroxide in human urine. Biosens Bioelectron 35(1):302–307

    Article  CAS  Google Scholar 

  52. Wanekaya AK (2011) Applications of nanoscale carbon-based materials in heavy metal sensing and detection. Analyst 136(21):4383–4391

    Article  CAS  Google Scholar 

  53. Peng Y, Wang Y, Li Y, He X (2016) Polyethylenimine Functionalized Multi‐walled Carbon Nanotubes for Electrochemical Detection of Chromium (VI). Electroanalysis

  54. Balan I, David IG, David V, Stoica A-I, Mihailciuc C, Stamatin I, Ciucu AA (2011) Electrocatalytic voltammetric determination of guanine at a cobalt phthalocyanine modified carbon nanotubes paste electrode. J Electroanal Chem 654(1):8–12

    Article  CAS  Google Scholar 

  55. Yao L, Teng J, Zhu M, Zheng L, Zhong Y, Liu G, Xue F, Chen W (2016) MWCNTs based high sensitive lateral flow strip biosensor for rapid determination of aqueous mercury ions. Biosens Bioelectron 85:331–336

    Article  CAS  Google Scholar 

  56. Razzino CA, Sgobbi LF, Canevari TC, Cancino J, Machado SA (2015) Sensitive determination of carbendazim in orange juice by electrode modified with hybrid material. Food Chem 170:360–365

    Article  CAS  Google Scholar 

  57. Kalambate PK, Srivastava AK (2016) Simultaneous voltammetric determination of paracetamol, cetirizine and phenylephrine using a multiwalled carbon nanotube-platinum nanoparticles nanocomposite modified carbon paste electrode. Sensors Actuators B Chem 233:237–248

    Article  CAS  Google Scholar 

  58. Karimian N, Gholivand M, Malekzadeh G (2016) Cefixime detection by a novel electrochemical sensor based on glassy carbon electrode modified with surface imprinted polymer/multiwall carbon nanotubes. J Electroanal Chem 771:64–72

    Article  CAS  Google Scholar 

  59. Umar A, Kim S, Kumar R, Algarni H, Al-Assiri M (2016) Platinum nanoparticles decorated carbon nanotubes for highly sensitive 2-nitrophenol chemical sensor. Ceram Int 42(7):9257–9263

    Article  CAS  Google Scholar 

  60. Yao Y, Liu Y, Yang Z (2016) A novel electrochemical sensor based on a glassy carbon electrode modified with Cu–MWCNT nanocomposites for determination of hydroquinone. Anal Methods 8(12):2568–2575

    Article  CAS  Google Scholar 

  61. Heydari H, Gholivand MB, Abdolmaleki A (2016) Cyclic voltammetry deposition of copper nanostructure on MWCNTs modified pencil graphite electrode: an ultra-sensitive hydrazine sensor. Mater Sci Eng C 66:16–24

    Article  CAS  Google Scholar 

  62. Maluta JR, Canevari TC, Machado SA (2014) Sensitive determination of nitric oxide using an electrochemical sensor based on MWCNTs decorated with spherical Au nanoparticles. J Solid State Electrochem 18(9):2497–2504

    Article  CAS  Google Scholar 

  63. Fifield LS, Grate JW (2010) Hydrogen-bond acidic functionalized carbon nanotubes (CNTs) with covalently-bound hexafluoroisopropanol groups. Carbon 48(7):2085–2088

    Article  CAS  Google Scholar 

  64. Yang Z, Yan X, Li Z, Zheng X, Zheng J (2016) Synthesis of Cu2O on AlOOH/reduced graphene oxide for non-enzymatic amperometric glucose sensing. Anal Methods 8(7):1527–1531. doi:10.1039/C5AY03258J

    Article  CAS  Google Scholar 

  65. Deng H, Liu C, Yang S, Xiao S, Zhou Z-K, Wang Q-Q (2008) Additive-mediated splitting of lanthanide orthovanadate nanocrystals in water: morphological evolution from rods to sheaves and to spherulites. Cryst Growth Des 8(12):4432–4439

    Article  CAS  Google Scholar 

  66. Chang G, Shu H, Huang Q, Oyama M, Ji K, Liu X, He Y (2015) Synthesis of highly dispersed Pt nanoclusters anchored graphene composites and their application for non-enzymatic glucose sensing. Electrochim Acta 157:149–157. doi:10.1016/j.electacta.2015.01.085

    Article  CAS  Google Scholar 

  67. Zhang H, Xu X, Yin Y, Wu P, Cai C (2013) Nonenzymatic electrochemical detection of glucose based on Pd 1 Pt 3–graphene nanomaterials. J Electroanal Chem 690:19–24

    Article  CAS  Google Scholar 

  68. Thanh TD, Balamurugan J, Lee SH, Kim NH, Lee JH (2016) Novel porous gold-palladium nanoalloy network-supported graphene as an advanced catalyst for non-enzymatic hydrogen peroxide sensing. Biosens Bioelectron 85:669–678

    Article  CAS  Google Scholar 

  69. Lv Y, Wang F, Zhu H, Zou X, Tao C-a, Wang J (2016) Electrochemically Reduced Graphene Oxide-nafion/Au Nanoparticle Modified Electrode for Hydrogen Peroxide Sensing

  70. Wang S, Han Z, Li Y, Peng R, Feng B (2015) An electrochemical sensor based on reduced graphene oxide and copper sulfide hollow nanospheres. RSC Adv 5(130):107318–107325. doi:10.1039/C5RA20926A

    Article  CAS  Google Scholar 

  71. Xu X, Fang B, Zhang F, Tian Y, Wu J (2010) Influence of rare earth co-dopant on the photocatalytic property of TiO2 nano-particles. Journal of Wuhan University of Technology--Materials Science Edition 25(3):370–374

    Article  CAS  Google Scholar 

  72. Cincotto FH, Canevari TC, Campos AM, Landers R, Machado SA (2014) Simultaneous determination of epinephrine and dopamine by electrochemical reduction on the hybrid material SiO 2/graphene oxide decorated with Ag nanoparticles. Analyst 139(18):4634–4640

    Article  CAS  Google Scholar 

  73. Cincotto FH, Canevari TC, Machado SA, Sánchez A, Barrio MAR, Villalonga R, Pingarrón JM (2015) Reduced graphene oxide-Sb 2 O 5 hybrid nanomaterial for the design of a laccase-based amperometric biosensor for estriol. Electrochim Acta 174:332–339

    Article  CAS  Google Scholar 

  74. Zhao S, Wang L, Wang T, Han Q, Xu S (2016) A high-performance hydrazine electrochemical sensor based on gold nanoparticles/single-walled carbon nanohorns composite film. Appl Surf Sci 369:36–42

    Article  CAS  Google Scholar 

  75. Lu B, Zhang Z, Hao J, Xu G, Zhang B, Tang J (2012) Electrochemical sensing platform based on Schiff-base cobalt(ii)/single-walled carbon nanohorns complexes system. Anal Methods 4(11):3580–3585. doi:10.1039/C2AY25940K

    Article  CAS  Google Scholar 

  76. Dai H, Gong L, Xu G, Zhang S, Lu S, Jiang Y, Lin Y, Guo L, Chen G (2013) An electrochemical sensing platform structured with carbon nanohorns for detecting some food borne contaminants. Electrochim Acta 111:57–63

    Article  CAS  Google Scholar 

  77. Maroneze CM, Gushikem Y, Kubota LT (2016) Applications of MN4 macrocyclic metal complexes in electroanalysis. In: Electrochemistry of N4 macrocyclic metal complexes. Springer, pp 107–133. doi: 10.1007/978-3-319-31332-0_3

  78. Walcarius A (2013) Mesoporous materials and electrochemistry. Chem Soc Rev 42(9):4098–4140

    Article  CAS  Google Scholar 

  79. Walcarius A (2015) Mesoporous materials‐based electrochemical sensors. Electroanalysis 27(6):1303–1340

    Article  CAS  Google Scholar 

  80. Rahim A, Santos LS, Barros S, Kubota LT, Landers R, Gushikem Y (2014) Electrochemical detection of nitrite in meat and water samples using a mesoporous carbon ceramic SiO2/C electrode modified with in situ generated manganese (II) phthalocyanine. Electroanalysis 26(3):541–547

    Article  CAS  Google Scholar 

  81. Rahim A, Santos LS, Barros SB, Kubota LT, Gushikem Y (2013) Dissolved O 2 sensor based on cobalt (II) phthalocyanine immobilized in situ on electrically conducting carbon ceramic mesoporous SiO 2/C material. Sensors Actuators B Chem 177:231–238

    Article  CAS  Google Scholar 

  82. Santos LS, Landers R, Gushikem Y (2011) Application of manganese (II) phthalocyanine synthesized in situ in the SiO 2/SnO 2 mixed oxide matrix for determination of dissolved oxygen by electrochemical techniques. Talanta 85(2):1213–1216

    Article  CAS  Google Scholar 

  83. Rahim A, Barros SB, Kubota LT, Gushikem Y (2011) SiO 2/C/Cu (II) phthalocyanine as a biomimetic catalyst for dopamine monooxygenase in the development of an amperometric sensor. Electrochim Acta 56(27):10116–10121

    Article  CAS  Google Scholar 

  84. Barros SB, Rahim A, Tanaka AA, Arenas LT, Landers R, Gushikem Y (2013) In situ immobilization of nickel (II) phthalocyanine on mesoporous SiO 2/C carbon ceramic matrices prepared by the sol–gel method: use in the simultaneous voltammetric determination of ascorbic acid and dopamine. Electrochim Acta 87:140–147

    Article  CAS  Google Scholar 

  85. Rahim A, Muhammad N, Nishan U, Khan US, Rehman F, Kubota LT, Gushikem Y (2015) Copper phthalocyanine modified SiO 2/C electrode as a biomimetic electrocatalyst for 4-aminophenol in the development of an amperometric sensor. RSC Adv 5(106):87043–87050

    Article  CAS  Google Scholar 

  86. Rahim A, Barros SB, Arenas LT, Gushikem Y (2011) In situ immobilization of cobalt phthalocyanine on the mesoporous carbon ceramic SiO 2/C prepared by the sol–gel process. Evaluation as an electrochemical sensor for oxalic acid. Electrochim Acta 56(3):1256–1261

    Article  CAS  Google Scholar 

  87. Canevari TC, Prado TM, Cincotto FH, Machado SA (2016) Immobilization of ruthenium phthalocyanine on silica-coated multi-wall partially oriented carbon nanotubes: electrochemical detection of fenitrothion pesticide. Mater Res Bull 76:41–47

    Article  CAS  Google Scholar 

  88. Canevari TC, Vinhas RC, Landers R, Gushikem Y (2011) SiO 2/SnO 2/Sb 2 O 5 microporous ceramic material for immobilization of meldola’s blue: application as an electrochemical sensor for NADH. Biosens Bioelectron 26(5):2402–2406

    Article  CAS  Google Scholar 

  89. Maroneze CM, Rahim A, Fattori N, da Costa LP, Sigoli FA, Mazali IO, Custodio R, Gushikem Y (2014) Electroactive properties of 1-propyl-3-methylimidazolium ionic liquid covalently bonded on mesoporous silica surface: development of an electrochemical sensor probed for NADH, dopamine and uric acid detection. Electrochim Acta 123:435–440

    Article  CAS  Google Scholar 

  90. Tkachenko O, Rahim A, Baraban A, Sukhov R, Khristenko I, Gushikem Y, Kholin Y (2013) Hybrid silica-organic material with immobilized amino groups: surface probing and use for electrochemical determination of nitrite ions. J Sol-Gel Sci Technol 67(1):145–154

    Article  CAS  Google Scholar 

  91. Canevari TC, Arenas LT, Landers R, Custodio R, Gushikem Y (2013) Simultaneous electroanalytical determination of hydroquinone and catechol in the presence of resorcinol at an SiO 2/C electrode spin-coated with a thin film of Nb 2 O 5. Analyst 138(1):315–324

    Article  CAS  Google Scholar 

  92. dos Santos MP, Rahim A, Fattori N, Kubota LT, Gushikem Y (2012) Novel amperometric sensor based on mesoporous silica chemically modified with ensal copper complexes for selective and sensitive dopamine determination. Sensors Actuators B Chem 171:712–718

    Article  CAS  Google Scholar 

  93. Maroneze CM, dos Santos GP, de Moraes VB, da Costa LP, Kubota LT (2016) Multifunctional catalytic platform for peroxidase mimicking, enzyme immobilization and biosensing. Biosens Bioelectron 77:746–751

    Article  CAS  Google Scholar 

  94. Weerathunge P, Ramanathan R, Shukla R, Sharma TK, Bansal V (2014) Aptamer-controlled reversible inhibition of gold nanozyme activity for pesticide sensing. Anal Chem 86(24):11937–11941

    Article  CAS  Google Scholar 

  95. Zhang Z, Zhu H, Wang X, Yang X (2011) Sensitive electrochemical sensor for hydrogen peroxide using Fe3O4 magnetic nanoparticles as a mimic for peroxidase. Microchim Acta 174(1):183–189. doi:10.1007/s00604-011-0600-9

    Article  CAS  Google Scholar 

  96. Wang J, X-j C, Liao K-m, Wang G-h, Han M (2015) Pd nanoparticle-modified electrodes for nonenzymatic hydrogen peroxide detection. Nanoscale Res Lett 10(1):1–6. doi:10.1186/s11671-015-1021-1

    Article  CAS  Google Scholar 

  97. Li Z, Chen Y, Xin Y, Zhang Z (2015) Sensitive electrochemical nonenzymatic glucose sensing based on anodized CuO nanowires on three-dimensional porous copper foam. Sci Rep 5:16115–16123

  98. Hu A-L, Liu Y-H, Deng H-H, Hong G-L, Liu A-L, Lin X-H, Xia X-H, Chen W (2014) Fluorescent hydrogen peroxide sensor based on cupric oxide nanoparticles and its application for glucose and l-lactate detection. Biosens Bioelectron 61:374–378. doi:10.1016/j.bios.2014.05.048

    Article  CAS  Google Scholar 

  99. Shi Y, Su P, Wang Y, Yang Y (2014) Fe3O4 peroxidase mimetics as a general strategy for the fluorescent detection of H2O2-involved systems. Talanta 130:259–264. doi:10.1016/j.talanta.2014.06.053

    Article  CAS  Google Scholar 

  100. Chen W, Hong L, Liu A-L, Liu J-Q, Lin X-H, Xia X-H (2012) Enhanced chemiluminescence of the luminol-hydrogen peroxide system by colloidal cupric oxide nanoparticles as peroxidase mimic. Talanta 99:643–648. doi:10.1016/j.talanta.2012.06.061

    Article  CAS  Google Scholar 

  101. Abdolmohammad-Zadeh H, Rahimpour E (2015) A novel chemosensor for Ag(I) ion based on its inhibitory effect on the luminol–H2O2 chemiluminescence response improved by CoFe2O4 nano-particles. Sensors Actuators B Chem 209:496–504. doi:10.1016/j.snb.2014.11.096

    Article  CAS  Google Scholar 

  102. Hong L, Liu A-L, Li G-W, Chen W, Lin X-H (2013) Chemiluminescent cholesterol sensor based on peroxidase-like activity of cupric oxide nanoparticles. Biosens Bioelectron 43:1–5. doi:10.1016/j.bios.2012.11.031

    Article  CAS  Google Scholar 

  103. Zhu W, Zhang J, Jiang Z, Wang W, Liu X (2014) High-quality carbon dots: synthesis, peroxidase-like activity and their application in the detection of H2O2, Ag + and Fe3+. RSC Adv 4(33):17387–17392. doi:10.1039/c3ra47593j

    Article  CAS  Google Scholar 

  104. Qiao F, Chen L, Li X, Li L, Ai S (2014) Peroxidase-like activity of manganese selenide nanoparticles and its analytical application for visual detection of hydrogen peroxide and glucose. Sensors Actuators B Chem 193:255–262. doi:10.1016/j.snb.2013.11.108

    Article  CAS  Google Scholar 

  105. Nie G, Zhang L, Lei J, Yang L, Zhang Z, Lu X, Wang C (2014) Monocrystalline VO2 (B) nanobelts: large-scale synthesis, intrinsic peroxidase-like activity and application in biosensing. J Mater Chem A 2(9):2910–2914. doi:10.1039/c3ta15051h

    Article  CAS  Google Scholar 

  106. Ray C, Dutta S, Sarkar S, Sahoo R, Roy A, Pal T (2014) Intrinsic peroxidase-like activity of mesoporous nickel oxide for selective cysteine sensing. Journal of Materials Chemistry B 2(36):6097–6105. doi:10.1039/c4tb00968a

    Article  CAS  Google Scholar 

  107. Mu J, Zhang L, Zhao M, Wang Y (2014) Catalase mimic property of Co3O4 nanomaterials with different morphology and its application as a calcium sensor. ACS Appl Mater Interfaces 6(10):7090–7098

    Article  CAS  Google Scholar 

  108. Deng H-H, Li G-W, Hong L, Liu A-L, Chen W, Lin X-H, Xia X-H (2014) Colorimetric sensor based on dual-functional gold nanoparticles: analyte-recognition and peroxidase-like activity. Food Chem 147:257–261

    Article  CAS  Google Scholar 

  109. Yang H, Xiong Y, Zhang P, Su L, Ye F (2015) Colorimetric detection of mercury ions using MnO2 nanorods as enzyme mimics. Anal Methods 7(11):4596–4601. doi:10.1039/c5ay00633c

    Article  CAS  Google Scholar 

  110. Long YJ, Li YF, Liu Y, Zheng JJ, Tang J, Huang CZ (2011) Visual observation of the mercury-stimulated peroxidase mimetic activity of gold nanoparticles. Chem Commun 47(43):11939–11941. doi:10.1039/c1cc14294a

    Article  CAS  Google Scholar 

  111. Hu J, Zhuang Q, Wang Y, Ni Y (2016) Label-free fluorescent catalytic biosensor for highly sensitive and selective detection of the ferrous ion in water samples using a layered molybdenum disulfide nanozyme coupled with an advanced chemometric model. Analyst 141(5):1822–1829. doi:10.1039/c5an02457a

    Article  CAS  Google Scholar 

  112. Chen C, Lu L, Zheng Y, Zhao D, Yang F, Yang X (2015) A new colorimetric protocol for selective detection of phosphate based on the inhibition of peroxidase-like activity of magnetite nanoparticles. Anal Methods 7(1):161–167. doi:10.1039/c4ay02461c

    Article  CAS  Google Scholar 

  113. Chang Y, Zhang Z, Hao J, Yang W, Tang J (2016) A simple label free colorimetric method for glyphosate detection based on the inhibition of peroxidase-like activity of Cu(II). Sensors Actuators B Chem 228:410–415. doi:10.1016/j.snb.2016.01.048

    Article  CAS  Google Scholar 

  114. Liang M, Fan K, Pan Y, Jiang H, Wang F, Yang D, Lu D, Feng J, Zhao J, Yang L, Yan X (2013) Fe3O4 magnetic nanoparticle peroxidase mimetic-based colorimetric assay for the rapid detection of organophosphorus pesticide and nerve agent. Anal Chem 85(1):308–312. doi:10.1021/ac302781r

    Article  CAS  Google Scholar 

  115. Guan G, Yang L, Mei Q, Zhang K, Zhang Z, Han M-Y (2012) Chemiluminescence switching on peroxidase-like Fe3O4 nanoparticles for selective detection and simultaneous determination of various pesticides. Anal Chem 84(21):9492–9497. doi:10.1021/ac302341b

    CAS  Google Scholar 

  116. Wang J (2006) Analytical electrochemistry, 3rd edn. John Wiley & Sons, New York, pp 1–250

  117. Ambrosi A, Chua CK, Bonanni A, Pumera M (2014) Electrochemistry of graphene and related materials. Chem Rev 114(14):7150–7188

    Article  CAS  Google Scholar 

  118. Raj MA, John SA (2014) Electrochemical determination of xanthine oxidase inhibitor drug in urate lowering therapy using graphene nanosheets modified electrode. Electrochim Acta 117:360–366

    Article  CAS  Google Scholar 

  119. Toh HS, Tschulik K, Batchelor-McAuley C, Compton RG (2014) Electrochemical quantification of iodide ions in synthetic urine using silver nanoparticles: a proof-of-concept. Analyst 139(16):3986–3990

    Article  CAS  Google Scholar 

  120. Metters JP, Kadara RO, Banks CE (2011) New directions in screen printed electroanalytical sensors: an overview of recent developments. Analyst 136(6):1067–1076

    Article  CAS  Google Scholar 

  121. Aiba Y, Sumaoka J, Komiyama M (2011) Artificial DNA cutters for DNA manipulation and genome engineering. Chem Soc Rev 40(12):5657–5668

    Article  CAS  Google Scholar 

  122. Huang X, Liu X, Luo Q, Liu J, Shen J (2011) Artificial selenoenzymes: designed and redesigned. Chem Soc Rev 40(3):1171–1184

    Article  CAS  Google Scholar 

  123. Gn W, Liu J (2011) Design of biomimetic catalysts by molecular imprinting in synthetic polymers: the role of transition state stabilization. Acc Chem Res 45(2):239–247

    Google Scholar 

  124. Dhakshinamoorthy A, Navalon S, Alvaro M, Garcia H (2012) Metal nanoparticles as heterogeneous Fenton catalysts. ChemSusChem 5(1):46–64

    Article  CAS  Google Scholar 

  125. Pietrzyk A, Suriyanarayanan S, Kutner W, Maligaspe E, Zandler ME, D’Souza F (2010) Molecularly imprinted poly[bis(2,2′-bithienyl)methane] film with built-in molecular recognition sites for a piezoelectric microgravimetry chemosensor for selective determination of dopamine. Bioelectrochemistry 80(1):62–72. doi:10.1016/j.bioelechem.2010.03.004

    Article  CAS  Google Scholar 

  126. Schirhagl R, Latif U, Podlipna D, Blumenstock H, Dickert FL (2012) Natural and biomimetic materials for the detection of insulin. Anal Chem 84(9):3908–3913

    Article  CAS  Google Scholar 

  127. Moreira FTC, Dutra RAF, Noronha JPC, Sales MGF (2013) Electrochemical biosensor based on biomimetic material for myoglobin detection. Electrochim Acta 107:481–487. doi:10.1016/j.electacta.2013.06.061

    Article  CAS  Google Scholar 

  128. Ruy MR, Figueira EC, Sotomayor MD (2015) Biomimetic sensor for detection of hydrochlorothiazide employing amperometric detection and Chemometrics for application in doping in sports. J Braz Chem Soc 26(10):2069–2076

    CAS  Google Scholar 

  129. Molaakbari E, Mostafavi A, Beitollahi H, Alizadeh R (2014) Synthesis of ZnO nanorods and their application in the construction of a nanostructure-based electrochemical sensor for determination of levodopa in the presence of carbidopa. Analyst 139(17):4356–4364. doi:10.1039/C4AN00138A

    Article  CAS  Google Scholar 

  130. dos Santos Ruy MR, Figueira EC, Sotomayor MDPT (2014) Electroanalytical determination of bumetanide employing a biomimetic sensor for detection of doping in sports. Anal Methods 6(15):5792–5798

    Article  Google Scholar 

  131. Boni AC, Sotomayor MD, Lanza MR, Tanaka SMC, Tanaka AA (2010) Application of a biomimetic sensor based on iron phthalocyanine chloride: 4-methylbenzylidene-camphor detection. J Braz Chem Soc 21(7):1377–1383

    Article  CAS  Google Scholar 

  132. Pletcher D (1984) Electrocatalysis: present and future. J Appl Electrochem 14(4):403–415

    Article  CAS  Google Scholar 

  133. Burke L (1994) Premonolayer oxidation and its role in electrocatalysis. Electrochim Acta 39(11):1841–1848

    Article  CAS  Google Scholar 

  134. Agnihotri N, Chowdhury AD, De A (2015) Non-enzymatic electrochemical detection of cholesterol using β-cyclodextrin functionalized graphene. Biosens Bioelectron 63:212–217. doi:10.1016/j.bios.2014.07.037

    Article  CAS  Google Scholar 

  135. Liu M, Liu R, Chen W (2013) Graphene wrapped Cu 2 O nanocubes: non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability. Biosens Bioelectron 45:206–212

    Article  CAS  Google Scholar 

  136. Dashtestani F, Ghourchian H, Eskandari K, Rafiee-Pour H-A (2015) A superoxide dismutase mimic nanocomposite for amperometric sensing of superoxide anions. Microchim Acta 182(5):1045–1053. doi:10.1007/s00604-014-1424-1

    Article  CAS  Google Scholar 

  137. Zheng X, Liu Q, Jing C, Li Y, Li D, Luo W, Wen Y, He Y, Huang Q, Long YT (2011) Catalytic gold nanoparticles for nanoplasmonic detection of DNA hybridization. Angew Chem Int Ed 50(50):11994–11998

    Article  CAS  Google Scholar 

  138. Çiftçi H, Tamer U (2012) Functional gold nanorod particles on conducting polymer poly (3-octylthiophene) as non-enzymatic glucose sensor. React Funct Polym 72(2):127–132

    Article  CAS  Google Scholar 

  139. Ma M, Zhang Y, Gu N (2011) Peroxidase-like catalytic activity of cubic Pt nanocrystals. Colloids Surf A Physicochem Eng Asp 373(1):6–10

    Article  CAS  Google Scholar 

  140. McLamore E, Shi J, Jaroch D, Claussen J, Uchida A, Jiang Y, Zhang W, Donkin SS, Banks M, Buhman K (2011) A self referencing platinum nanoparticle decorated enzyme-based microbiosensor for real time measurement of physiological glucose transport. Biosens Bioelectron 26(5):2237–2245

    Article  CAS  Google Scholar 

  141. Zhu J, Jiang J, Liu J, Ding R, Li Y, Ding H, Feng Y, Wei G, Huang X (2011) CNT-network modified Ni nanostructured arrays for high performance non-enzymatic glucose sensors. RSC Adv 1(6):1020–1025

    Article  CAS  Google Scholar 

  142. Zhang X, Wang G, Huang Y, Yu L, Fang B (2012) Non-enzymatic glucose detection using Ni/multi-walled carbon nanotubes composite. Micro & Nano Letters, IET 7(2):168–170

    Article  CAS  Google Scholar 

  143. Nie H, Yao Z, Zhou X, Yang Z, Huang S (2011) Nonenzymatic electrochemical detection of glucose using well-distributed nickel nanoparticles on straight multi-walled carbon nanotubes. Biosens Bioelectron 30(1):28–34

    Article  CAS  Google Scholar 

  144. Qu F, Sun H, Zhang Y, Lu H, Yang M (2012) Electrochemically deposited Pd nanorod array/sol–gel silica thin film for the fabrication of electrochemical sensors. Sensors Actuators B Chem 166:837–841

    Article  CAS  Google Scholar 

  145. Wang Q, Cui X, Chen J, Zheng X, Liu C, Xue T, Wang H, Jin Z, Qiao L, Zheng W (2012) Well-dispersed palladium nanoparticles on graphene oxide as a non-enzymatic glucose sensor. RSC Adv 2(15):6245–6249

    Article  CAS  Google Scholar 

  146. Mahshid SS, Mahshid S, Dolati A, Ghorbani M, Yang L, Luo S, Cai Q (2011) Template-based electrodeposition of Pt/Ni nanowires and its catalytic activity towards glucose oxidation. Electrochim Acta 58:551–555

    Article  CAS  Google Scholar 

  147. Zhang K, Hu X, Liu J, Yin J-J, Hou S, Wen T, He W, Ji Y, Guo Y, Wang Q (2011) Formation of PdPt alloy nanodots on gold nanorods: tuning oxidase-like activities via composition. Langmuir 27(6):2796–2803

    Article  CAS  Google Scholar 

  148. Liu J, Hu X, Hou S, Wen T, Liu W, Zhu X, Yin J-J, Wu X (2012) Au@ Pt core/shell nanorods with peroxidase-and ascorbate oxidase-like activities for improved detection of glucose. Sensors Actuators B Chem 166:708–714

    Article  CAS  Google Scholar 

  149. Lien C-W, Huang C-C, Chang H-T (2012) Peroxidase-mimic bismuth–gold nanoparticles for determining the activity of thrombin and drug screening. Chem Commun 48(64):7952–7954

    Article  CAS  Google Scholar 

  150. Yin J, Cao H, Lu Y (2012) Self-assembly into magnetic Co 3 O 4 complex nanostructures as peroxidase. J Mater Chem 22(2):527–534

    Article  CAS  Google Scholar 

  151. Asati A, Kaittanis C, Santra S, Perez JM (2011) pH-tunable oxidase-like activity of cerium oxide nanoparticles achieving sensitive fluorigenic detection of cancer biomarkers at neutral pH. Anal Chem 83(7):2547–2553

    Article  CAS  Google Scholar 

  152. Zhu A, Sun K, Petty HR (2012) Titanium doping reduces superoxide dismutase activity, but not oxidase activity, of catalytic CeO 2 nanoparticles. Inorg Chem Commun 15:235–237

    Article  CAS  Google Scholar 

  153. Chen W, Chen J, Liu AL, Wang LM, Li GW, Lin XH (2011) Peroxidase‐like activity of cupric oxide nanoparticle. ChemCatChem 3(7):1151–1154

    Article  CAS  Google Scholar 

  154. Das G, Tran TQN, Yoon HH (2015) Spherulitic copper–copper oxide nanostructure-based highly sensitive nonenzymatic glucose sensor. Int J Nanomedicine 10:165

    Article  CAS  Google Scholar 

  155. Qiu G, Huang H, Dharmarathna S, Benbow E, Stafford L, Suib SL (2011) Hydrothermal synthesis of manganese oxide nanomaterials and their catalytic and electrochemical properties. Chem Mater 23(17):3892–3901

    Article  CAS  Google Scholar 

  156. Wan Y, Qi P, Zhang D, Wu J, Wang Y (2012) Manganese oxide nanowire-mediated enzyme-linked immunosorbent assay. Biosens Bioelectron 33(1):69–74

    Article  CAS  Google Scholar 

  157. Cao X, Wang N (2011) A novel non-enzymatic glucose sensor modified with Fe2O3 nanowire arrays. Analyst 136(20):4241–4246

    Article  CAS  Google Scholar 

  158. Luo J, Zhang H, Jiang S, Jiang J, Liu X (2012) Facile one-step electrochemical fabrication of a non-enzymatic glucose-selective glassy carbon electrode modified with copper nanoparticles and graphene. Microchim Acta 177(3):485–490. doi:10.1007/s00604-012-0795-4

    Article  CAS  Google Scholar 

  159. Song J, Xu L, Xing R, Li Q, Zhou C, Liu D, Song H (2014) Synthesis of Au/graphene oxide composites for selective and sensitive electrochemical detection of ascorbic acid. Scientific reports 4:7515

    Article  CAS  Google Scholar 

  160. Li Y, Zhai X, Wang H, Liu X, Guo L, Ji X, Wang L, Qiu H, Liu X (2015) Non-enzymatic sensing of uric acid using a carbon nanotube ionic-liquid paste electrode modified with poly(β-cyclodextrin). Microchim Acta 182(11):1877–1884. doi:10.1007/s00604-015-1522-8

    Article  CAS  Google Scholar 

  161. Lee J-H, Hong H-G (2015) Nonenzymatic electrochemical sensing of hydrogen peroxide based on a polyaniline-MnO2 nanofiber-modified glassy carbon electrode. J Appl Electrochem 45(10):1153–1162. doi:10.1007/s10800-015-0881-5

    Article  CAS  Google Scholar 

  162. Zhou L, Shen Q, Zhao P, Xiang B, Nie Z, Huang Y, Yao S (2013) Fluorescent detection of copper (II) based on DNA-templated click chemistry and graphene oxide. Methods 64(3):299–304

    Article  CAS  Google Scholar 

  163. Zhang L, Li L (2016) Colorimetric thrombin assay using aptamer-functionalized gold nanoparticles acting as a peroxidase mimetic. Microchim Acta 183(1):485–490. doi:10.1007/s00604-015-1674-6

    Article  CAS  Google Scholar 

  164. Zhao K, Gu W, Zheng S, Zhang C, Xian Y (2015) SDS–MoS 2 nanoparticles as highly-efficient peroxidase mimetics for colorimetric detection of H 2 O 2 and glucose. Talanta 141:47–52

    Article  CAS  Google Scholar 

  165. Cao G-X, Wu X-M, Dong Y-M, Li Z-J, Wang G-L (2016) Colorimetric determination of melamine based on the reversal of the mercury(II) induced inhibition of the light-triggered oxidase-like activity of gold nanoclusters. Microchim Acta 183(1):441–448. doi:10.1007/s00604-015-1669-3

    Article  CAS  Google Scholar 

  166. Wang Y, Zhou B, Wu S, Wang K, He X (2015) Colorimetric detection of hydrogen peroxide and glucose using the magnetic mesoporous silica nanoparticles. Talanta 134:712–717

    Article  CAS  Google Scholar 

  167. Tamura T, Hamachi I (2014) Recent progress in Design of Protein-Based Fluorescent Biosensors and Their Cellular Applications. ACS Chem Biol 9(12):2708–2717. doi:10.1021/cb500661v

    Article  CAS  Google Scholar 

  168. Deng H-H, Weng S-H, Huang S-L, Zhang L-N, Liu A-L, Lin X-H, Chen W (2014) Colorimetric detection of sulfide based on target-induced shielding against the peroxidase-like activity of gold nanoparticles. Anal Chim Acta 852:218–222

    Article  CAS  Google Scholar 

  169. Liu F, He J, Zeng M, Hao J, Guo Q, Song Y, Wang L (2016) Cu–hemin metal-organic frameworks with peroxidase-like activity as peroxidase mimics for colorimetric sensing of glucose. J Nanopart Res 18(5):1–9. doi:10.1007/s11051-016-3416-z

    Article  CAS  Google Scholar 

  170. Liu X, Fu C, Ren X, Liu H, Li L, Meng X (2015) Fluorescence switching method for cascade detection of salicylaldehyde and zinc(II) ion using protein protected gold nanoclusters. Biosens Bioelectron 74:322–328. doi:10.1016/j.bios.2015.06.034

    Article  CAS  Google Scholar 

  171. Chang H-C, Ho J-aA (2015) Gold Nanocluster-assisted fluorescent detection for hydrogen peroxide and cholesterol based on the inner filter effect of gold nanoparticles. Anal Chem 87(20):10362–10367. doi:10.1021/acs.analchem.5b02452

    Article  CAS  Google Scholar 

  172. Huang J, Liu H, Zhang P, Zhang P, Li M, Ding L (2015) Immobilization of cholesterol oxidase on magnetic fluorescent core-shell-structured nanoparticles. Mater Sci Eng C 57:31–37. doi:10.1016/j.msec.2015.07.038

    Article  CAS  Google Scholar 

  173. Hu XL, Wu XM, Fang X, Li ZJ, Wang GL (2016) Switchable fluorescence of gold nanoclusters for probing the activity of alkaline phosphatase and its application in immunoassay. Biosens Bioelectron 77:666–672. doi:10.1016/j.bios.2015.10.046

    Article  CAS  Google Scholar 

  174. Zeng H-H, Qiu W-B, Zhang L, Liang R-P, Qiu J-D (2016) Lanthanide coordination polymer nanoparticles as an excellent artificial peroxidase for hydrogen peroxide detection. Anal Chem 88(12):6342–6348. doi:10.1021/acs.analchem.6b00630

    Article  CAS  Google Scholar 

  175. Fan Y, Huang Y (2012) The effective peroxidase-like activity of chitosan-functionalized CoFe2O4 nanoparticles for chemiluminescence sensing of hydrogen peroxide and glucose. Analyst 137(5):1225–1231. doi:10.1039/c2an16105b

    Article  CAS  Google Scholar 

  176. Iranifam M, Imani-Nabiyyi A, Khataee A, Kalantari J (2016) Enhanced luminol-O2 chemiluminescence reaction by CuO nanoparticles as oxidase mimics and its application for determination of ceftazidime. Anal Methods 8(18):3816–3823. doi:10.1039/C6AY00309E

    Article  CAS  Google Scholar 

  177. Shi W, Zhang X, He S, Huang Y (2011) CoFe2O4 magnetic nanoparticles as a peroxidase mimic mediated chemiluminescence for hydrogen peroxide and glucose. Chem Commun (Camb) 47(38):10785–10787. doi:10.1039/c1cc14300j

    Article  CAS  Google Scholar 

  178. Xie J, Cao H, Jiang H, Chen Y, Shi W, Zheng H, Huang Y (2013) Co3O4-reduced graphene oxide nanocomposite as an effective peroxidase mimetic and its application in visual biosensing of glucose. Anal Chim Acta 796:92–100. doi:10.1016/j.aca.2013.08.008

    Article  CAS  Google Scholar 

  179. Yu J, Ge L, Dai P, Zhang C, Ge S, Huang J (2010) A novel glucose chemiluminescence biosensor based on a rhodanine derivative chemiluminescence system and multilayer-enzyme membrane. Turk J Chem 34(4):489–498

    CAS  Google Scholar 

  180. Čopra-Janićijević A, Tahirović A, Kalcher K (2012) One-shot chemiluminescence biosensor for determination of glucose in soft drinks. Glasnik hemičara i tehnologa Bosne i Hercegovine 39:1–6

    Google Scholar 

  181. Yang Z, Zhang Z, Jiang Y, Chi M, Nie G, Lu X, Wang C (2016) Palladium nanoparticles modified electrospun CoFe2O4 nanotubes with enhanced peroxidase-like activity for colorimetric detection of hydrogen peroxide. RSC Adv 6(40):33636–33642. doi:10.1039/c6ra01527a

    Article  CAS  Google Scholar 

  182. Guo Y, Liu X, Wang X, Iqbal A, Yang C, Liu W, Qin W (2015) Carbon dot/NiAl-layered double hydroxide hybrid material: facile synthesis, intrinsic peroxidase-like catalytic activity and its application. RSC Adv 5(116):95495–95503. doi:10.1039/c5ra18087b

    Article  CAS  Google Scholar 

  183. Cui F, Deng Q, Sun L (2015) Prussian blue modified metal-organic framework MIL-101(Fe) with intrinsic peroxidase-like catalytic activity as a colorimetric biosensing platform. RSC Adv 5(119):98215–98221. doi:10.1039/c5ra18589k

    Article  CAS  Google Scholar 

  184. Zhang Y, Tian J, Liu S, Wang L, Qin X, Lu W, Chang G, Luo Y, Asiri AM, Al-Youbi AO (2012) Novel application of CoFe layered double hydroxide nanoplates for colorimetric detection of H 2 O 2 and glucose. Analyst 137(6):1325–1328

    Article  CAS  Google Scholar 

  185. Liu S, Wang L, Zhai J, Luo Y, Sun X (2011) Carboxyl functionalized mesoporous polymer: a novel peroxidase-like catalyst for H 2 O 2 detection. Anal Methods 3(7):1475–1477

    Article  CAS  Google Scholar 

  186. He W, Jia H, Li X, Lei Y, Li J, Zhao H, Mi L, Zhang L, Zheng Z (2012) Understanding the formation of CuS concave superstructures with peroxidase-like activity. Nanoscale 4(11):3501–3506

    Article  CAS  Google Scholar 

  187. Dai Z, Liu S, Bao J, Ju H (2009) Nanostructured FeS as a mimic peroxidase for biocatalysis and biosensing. Chemistry–A European Journal 15(17):4321–4326

    Article  CAS  Google Scholar 

  188. Dutta AK, Maji SK, Srivastava DN, Mondal A, Biswas P, Paul P, Adhikary B (2012) Synthesis of FeS and FeSe nanoparticles from a single source precursor: a study of their photocatalytic activity, peroxidase-like behavior, and electrochemical sensing of H2O2. ACS Appl Mater Interfaces 4(4):1919–1927

    Article  CAS  Google Scholar 

  189. Ge S, Liu W, Liu H, Liu F, Yu J, Yan M, Huang J (2015) Colorimetric detection of the flux of hydrogen peroxide released from living cells based on the high peroxidase-like catalytic performance of porous PtPd nanorods. Biosens Bioelectron 71:456–462. doi:10.1016/j.bios.2015.04.055

    Article  CAS  Google Scholar 

  190. Chen X, Su B, Cai Z, Chen X, Oyama M (2014) PtPd nanodendrites supported on graphene nanosheets: a peroxidase-like catalyst for colorimetric detection of H2O2. Sensors Actuators B Chem 201:286–292. doi:10.1016/j.snb.2014.04.067

    Article  CAS  Google Scholar 

  191. He W, Wu X, Liu J, Hu X, Zhang K, Hou S, Zhou W, Xie S (2010) Design of AgM bimetallic alloy nanostructures (M = Au, Pd, Pt) with tunable morphology and peroxidase-like activity. Chem Mater 22(9):2988–2994

    Article  CAS  Google Scholar 

  192. Liu Z, Zhao B, Shi Y, Guo C, Yang H, Li Z (2010) Novel nonenzymatic hydrogen peroxide sensor based on iron oxide–silver hybrid submicrospheres. Talanta 81(4):1650–1654

    Article  CAS  Google Scholar 

  193. Roy P, Lin Z-H, Liang C-T, Chang H-T (2012) Synthesis of enzyme mimics of iron telluride nanorods for the detection of glucose. Chem Commun 48(34):4079–4081

    Article  CAS  Google Scholar 

  194. Han L, Zeng L, Wei M, Li CM, Liu A (2015) A V2O3-ordered mesoporous carbon composite with novel peroxidase-like activity towards the glucose colorimetric assay. Nanoscale 7(27):11678–11685. doi:10.1039/c5nr02694f

    Article  CAS  Google Scholar 

  195. Qiao F, Qi Q, Wang Z, Xu K, Ai S (2016) MnSe-loaded g-C3N4 nanocomposite with synergistic peroxidase-like catalysis: synthesis and application toward colorimetric biosensing of H2O2 and glucose. Sensors Actuators B Chem 229:379–386. doi:10.1016/j.snb.2015.12.109

    Article  CAS  Google Scholar 

  196. Zheng A-X, Cong Z-X, Wang J-R, Li J, Yang H-H, Chen G-N (2013) Highly-efficient peroxidase-like catalytic activity of graphene dots for biosensing. Biosens Bioelectron 49:519–524. doi:10.1016/j.bios.2013.05.038

    Article  CAS  Google Scholar 

  197. Lin L, Song X, Chen Y, Rong M, Zhao T, Wang Y, Jiang Y, Chen X (2015) Intrinsic peroxidase-like catalytic activity of nitrogen-doped graphene quantum dots and their application in the colorimetric detection of H2O2 and glucose. Anal Chim Acta 869:89–95. doi:10.1016/j.aca.2015.02.024

    Article  CAS  Google Scholar 

  198. Qian J, Yang X, Yang Z, Zhu G, Mao H, Wang K (2015) Multiwalled carbon nanotube@reduced graphene oxide nanoribbon heterostructure: synthesis, intrinsic peroxidase-like catalytic activity, and its application in colorimetric biosensing. Journal of Materials Chemistry B 3(8):1624–1632. doi:10.1039/c4tb01702a

    Article  CAS  Google Scholar 

  199. Hayat A, Haider W, Raza Y, Marty JL (2015) Colorimetric cholesterol sensor based on peroxidase like activity of zinc oxide nanoparticles incorporated carbon nanotubes. Talanta 143:157–161. doi:10.1016/j.talanta.2015.05.051

    Article  CAS  Google Scholar 

  200. Haider W, Hayat A, Raza Y, Anwar Chaudhry A, Rehman I-U, Marty JL (2015) Gold nanoparticle decorated single walled carbon nanotube nanocomposite with synergistic peroxidase like activity for d-alanine detection. RSC Adv 5(32):24853–24858. doi:10.1039/C5RA01258A

    Article  CAS  Google Scholar 

  201. Wang S, Chen Z, Choo J, Chen L (2016) Naked-eye sensitive ELISA-like assay based on gold-enhanced peroxidase-like immunogold activity. Anal Bioanal Chem 408(4):1015–1022. doi:10.1007/s00216-015-9219-8

    Article  CAS  Google Scholar 

  202. Shi W, Fan H, Ai S, Zhu L (2015) Pd nanoparticles supported on nitrogen, sulfur-doped three-dimensional hierarchical nanostructures as peroxidase-like catalysts for colorimetric detection of xanthine. RSC Adv 5(41):32183–32190. doi:10.1039/c5ra02312b

    Article  CAS  Google Scholar 

  203. He S-B, Wu G-W, Deng H-H, Liu A-L, Lin X-H, Xia X-H, Chen W (2014) Choline and acetylcholine detection based on peroxidase-like activity and protein antifouling property of platinum nanoparticles in bovine serum albumin scaffold. Biosens Bioelectron 62:331–336. doi:10.1016/j.bios.2014.07.005

    Article  CAS  Google Scholar 

  204. Jiang T, Song Y, Wei T, Li H, Du D, Zhu M-J, Lin Y (2016) Sensitive detection of Escherichia coli O157:H7 using Pt–Au bimetal nanoparticles with peroxidase-like amplification. Biosens Bioelectron 77:687–694. doi:10.1016/j.bios.2015.10.017

    Article  CAS  Google Scholar 

  205. Hu X, Saran A, Hou S, Wen T, Ji Y, Liu W, Zhang H, Wu X (2014) Rod-shaped Au@PtCu nanostructures with enhanced peroxidase-like activity and their ELISA application. Chin Sci Bull 59(21):2588–2596. doi:10.1007/s11434-014-0316-4

    Article  CAS  Google Scholar 

  206. Zhan L, Li CM, Wu WB, Huang CZ (2014) A colorimetric immunoassay for respiratory syncytial virus detection based on gold nanoparticles-graphene oxide hybrids with mercury-enhanced peroxidase-like activity. Chem Commun 50(78):11526–11528. doi:10.1039/c4cc05155f

    Article  CAS  Google Scholar 

  207. Dutta S, Ray C, Mallick S, Sarkar S, Sahoo R, Negishi Y, Pal T (2015) A gel-based approach to design hierarchical CuS decorated reduced graphene oxide nanosheets for enhanced peroxidase-like activity leading to colorimetric detection of dopamine. J Phys Chem C 119(41):23790–23800. doi:10.1021/acs.jpcc.5b08421

    Article  CAS  Google Scholar 

  208. Chen C, Li N, Lan J, Ji X, He Z (2016) A label-free colorimetric platform for DNA via target-catalyzed hairpin assembly and the peroxidase-like catalytic of graphene/Au-NPs hybrids. Anal Chim Acta 902:154–159. doi:10.1016/j.aca.2015.10.030

    Article  CAS  Google Scholar 

  209. Zhao H, Qu Y, Yuan F, Quan X (2016) A visible and label-free colorimetric sensor for miRNA-21 detection based on peroxidase-like activity of graphene/gold-nanoparticle hybrids. Anal Methods 8(9):2005–2012. doi:10.1039/c5ay03296b

    Article  CAS  Google Scholar 

  210. Liu Q, Ding Y, Yang Y, Zhang L, Sun L, Chen P, Gao C (2016) Enhanced peroxidase-like activity of porphyrin functionalized ceria nanorods for sensitive and selective colorimetric detection of glucose. Mater Sci Eng C 59:445–453. doi:10.1016/j.msec.2015.10.046

    Article  CAS  Google Scholar 

  211. Mu J, He Y, Wang Y (2016) Copper-incorporated SBA-15 with peroxidase-like activity and its application for colorimetric detection of glucose in human serum. Talanta 148:22–28. doi:10.1016/j.talanta.2015.10.060

    Article  CAS  Google Scholar 

  212. Ghosh AB, Saha N, Sarkar A, Dutta AK, Biswas P, Nag K, Adhikary B (2016) Morphological tuning of Eu2O2S nanoparticles, manifestation of peroxidase-like activity and glucose assay use. New J Chem 40(2):1595–1604. doi:10.1039/c5nj02705e

    Article  CAS  Google Scholar 

  213. Lin X-Q, Deng H-H, Wu G-W, Peng H-P, Liu A-L, Lin X-H, Xia X-H, Chen W (2015) Platinum nanoparticles/graphene-oxide hybrid with excellent peroxidase-like activity and its application for cysteine detection. Analyst 140(15):5251–5256. doi:10.1039/c5an00809c

    Article  CAS  Google Scholar 

  214. Wu X-Q, Xu Y, Chen Y-L, Zhao H, Cui H-J, Shen J-S, Zhang H-W (2014) Peroxidase-like activity of ferric ions and their application to cysteine detection. RSC Adv 4(110):64438–64442. doi:10.1039/c4ra11000e

    Article  CAS  Google Scholar 

  215. Deng H-H, Hong G-L, Lin F-L, Liu A-L, Xia X-H, Chen W (2016) Colorimetric detection of urea, urease, and urease inhibitor based on the peroxidase-like activity of gold nanoparticles. Anal Chim Acta 915:74–80. doi:10.1016/j.aca.2016.02.008

    Article  CAS  Google Scholar 

  216. Chai D-F, Ma Z, Qiu Y, Lv Y-G, Liu H, Song C-Y, Gao G-G (2016) Oxidase-like mimic of Ag@Ag3PO4 microcubes as a smart probe for ultrasensitive and selective Hg2+ detection. Dalton Trans 45(7):3048–3054. doi:10.1039/c5dt04192a

    Article  CAS  Google Scholar 

  217. Zhang S, Li H, Wang Z, Liu J, Zhang H, Wang B, Yang Z (2015) A strongly coupled Au/Fe3O4/GO hybrid material with enhanced nanozyme activity for highly sensitive colorimetric detection, and rapid and efficient removal of Hg2+ in aqueous solutions. Nanoscale 7(18):8495–8502. doi:10.1039/c5nr00527b

    Article  CAS  Google Scholar 

  218. Li W, Chen B, Zhang H, Sun Y, Wang J, Zhang J, Fu Y (2015) BSA-stabilized Pt nanozyme for peroxidase mimetics and its application on colorimetric detection of mercury(II) ions. Biosens Bioelectron 66:251–258. doi:10.1016/j.bios.2014.11.032

    Article  CAS  Google Scholar 

  219. Hayat A, Cunningham J, Bulbul G, Andreescu S (2015) Evaluation of the oxidase like activity of nanoceria and its application in colorimetric assays. Anal Chim Acta 885:140–147

    Article  CAS  Google Scholar 

  220. Huang X, Hao Y, Wu H, Guo Q, Guo L, Wang J, Zhong L, Lin T, Fu F, Chen G (2014) Magnetic beads based colorimetric detection of mercuric ion. Sensors Actuators B Chem 191:600–604

    Article  CAS  Google Scholar 

  221. Mohammadpour Z, Safavi A, Shamsipur M (2014) A new label free colorimetric chemosensor for detection of mercury ion with tunable dynamic range using carbon nanodots as enzyme mimics. Chem Eng J 255:1–7

    Article  CAS  Google Scholar 

  222. Zhu R, Zhou Y, Wang X-L, Liang L-P, Long Y-J, Wang Q-L, Zhang H-J, Huang X-X, Zheng H-Z (2013) Detection of Hg2+ based on the selective inhibition of peroxidase mimetic activity of BSA-Au clusters. Talanta 117:127–132. doi:10.1016/j.talanta.2013.08.053

    Article  CAS  Google Scholar 

  223. Kim YS, Jurng J (2013) A simple colorimetric assay for the detection of metal ions based on the peroxidase-like activity of magnetic nanoparticles. Sensors Actuators B Chem 176:253–257. doi:10.1016/j.snb.2012.10.052

    Article  CAS  Google Scholar 

  224. Tseng C-W, Chang H-Y, Chang J-Y, Huang C-C (2012) Detection of mercury ions based on mercury-induced switching of enzyme-like activity of platinum/gold nanoparticles. Nanoscale 4(21):6823–6830. doi:10.1039/c2nr31716h

    Article  CAS  Google Scholar 

  225. Jia S-M, Liu X-F, Li P, Kong D-M, Shen H-X (2011) G-quadruplex DNAzyme-based Hg2+ and cysteine sensors utilizing Hg2 + −mediated oligonucleotide switching. Biosens Bioelectron 27(1):148–152. doi:10.1016/j.bios.2011.06.032

    Article  CAS  Google Scholar 

  226. Taghdisi SM, Danesh NM, Lavaee P, Emrani AS, Ramezani M, Abnous K (2015) A novel colorimetric triple-helix molecular switch aptasensor based on peroxidase-like activity of gold nanoparticles for ultrasensitive detection of lead(ii). RSC Adv 5(54):43508–43514. doi:10.1039/c5ra06326d

    Article  CAS  Google Scholar 

  227. Wu Y-S, Huang F-F, Lin Y-W (2013) Fluorescent detection of lead in environmental water and urine samples using enzyme mimics of catechin-synthesized Au nanoparticles. ACS Appl Mater Interfaces 5(4):1503–1509. doi:10.1021/am3030454

    Article  CAS  Google Scholar 

  228. Zhao D, Chen C, Lu L, Yang F, Yang X (2015) A label-free colorimetric sensor for sulfate based on the inhibition of peroxidase-like activity of cysteamine-modified gold nanoparticles. Sensors Actuators B Chem 215:437–444. doi:10.1016/j.snb.2015.04.010

    Article  CAS  Google Scholar 

  229. Sun R, Wang Y, Ni Y, Kokot S (2014) Spectrophotometric analysis of phenols, which involves a hemin–graphene hybrid nanoparticles with peroxidase-like activity. J Hazard Mater 266:60–67. doi:10.1016/j.jhazmat.2013.12.006

    Article  CAS  Google Scholar 

  230. Wong A, Materon EM, Sotomayor MDPT (2014) Development of A biomimetic sensor modified with HEMIN and GRAPHENE oxide for monitoring of CARBOFURAN in food. Electrochim Acta 146:830–837. doi:10.1016/j.electacta.2014.09.091

    Article  CAS  Google Scholar 

  231. Wang M, Huang J, Wang M, Zhang D, Chen J (2014) Electrochemical nonenzymatic sensor based on CoO decorated reduced graphene oxide for the simultaneous determination of carbofuran and carbaryl in fruits and vegetables. Food Chem 151:191–197

    Article  CAS  Google Scholar 

  232. Shang L, Zhao F, Zeng B (2014) Sensitive voltammetric determination of vanillin with an AuPd nanoparticles − graphene composite modified electrode. Food Chem 151:53–57

    Article  CAS  Google Scholar 

  233. David IG, Bizgan A-MC, Popa DE, Buleandra M, Moldovan Z, Badea IA, Tekiner TA, Basaga H, Ciucu AA (2015) Rapid determination of total polyphenolic content in tea samples based on caffeic acid voltammetric behaviour on a disposable graphite electrode. Food Chem 173:1059–1065

    Article  CAS  Google Scholar 

  234. Sharpe E, Frasco T, Andreescu D, Andreescu S (2013) Portable ceria nanoparticle-based assay for rapid detection of food antioxidants (NanoCerac). Analyst 138(1):249–262

    Article  CAS  Google Scholar 

  235. Ping J, Wang Y, Wu J, Ying Y (2014) Development of an electrochemically reduced graphene oxide modified disposable bismuth film electrode and its application for stripping analysis of heavy metals in milk. Food Chem 151:65–71

    Article  CAS  Google Scholar 

  236. Fei A, Liu Q, Huan J, Qian J, Dong X, Qiu B, Mao H, Wang K (2015) Label-free impedimetric aptasensor for detection of femtomole level acetamiprid using gold nanoparticles decorated multiwalled carbon nanotube-reduced graphene oxide nanoribbon composites. Biosens Bioelectron 70:122–129

    Article  CAS  Google Scholar 

  237. Li W, Chen B, Zhang H, Sun Y, Wang J, Zhang J, Fu Y (2015) BSA-stabilized Pt nanozyme for peroxidase mimetics and its application on colorimetric detection of mercury (II) ions. Biosens Bioelectron 66:251–258

    Article  CAS  Google Scholar 

  238. Zhang X, He S, Chen Z, Huang Y (2013) CoFe2O4 nanoparticles as oxidase mimic-mediated chemiluminescence of aqueous luminol for sulfite in white wines. J Agric Food Chem 61(4):840–847

    Article  CAS  Google Scholar 

  239. Shu J, Qiu Z, Wei Q, Zhuang J, Tang D (2015) Cobalt-porphyrin-platinum-functionalized reduced graphene oxide hybrid nanostructures: a novel peroxidase mimetic system for improved electrochemical immunoassay. Sci Rep 5:15113–15124

  240. Tan H, Ma C, Gao L, Li Q, Song Y, Xu F, Wang T, Wang L (2014) Metal–organic framework‐derived copper nanoparticle@ carbon nanocomposites as peroxidase mimics for colorimetric sensing of ascorbic acid. Chemistry–A European Journal 20(49):16377–16383

    Article  CAS  Google Scholar 

  241. Wang Y, Hu J, Zhuang Q, Ni Y (2016) Enhancing sensitivity and selectivity in a label-free colorimetric sensor for detection of iron (II) ions with luminescent molybdenum disulfide nanosheet-based peroxidase mimetics. Biosens Bioelectron 80:111–117

    Article  CAS  Google Scholar 

  242. Jiang T, Song Y, Wei T, Li H, Du D, Zhu M-J, Lin Y (2016) Sensitive detection of Escherichia coli O157: H7 using Pt–Au bimetal nanoparticles with peroxidase-like amplification. Biosens Bioelectron 77:687–694

    Article  CAS  Google Scholar 

  243. Ding N, Yan N, Ren C, Chen X (2010) Colorimetric determination of melamine in dairy products by Fe3O4 magnetic nanoparticles − H2O2− ABTS detection system. Anal Chem 82(13):5897–5899

    Article  CAS  Google Scholar 

  244. Thiramanas R, Jangpatarapongsa K, Tangboriboonrat P, Polpanich D (2013) Detection of vibrio cholerae using the intrinsic catalytic activity of a magnetic polymeric nanoparticle. Anal Chem 85(12):5996–6002

    Article  CAS  Google Scholar 

  245. Gong J, Zhou T, Song D, Zhang L, Hu X (2009) Stripping voltammetric detection of mercury (II) based on a bimetallic Au − Pt inorganic − organic hybrid nanocomposite modified glassy carbon electrode. Anal Chem 82(2):567–573

    Article  CAS  Google Scholar 

  246. Bulbul G, Hayat A, Andreescu S (2015) A generic amplification strategy for electrochemical aptasensors using a non-enzymatic nanoceria tag. Nanoscale 7(31):13230–13238

    Article  CAS  Google Scholar 

  247. Zhang Z, Wang X, Yang X (2011) A sensitive choline biosensor using Fe3O4 magnetic nanoparticles as peroxidase mimics. Analyst 136(23):4960–4965

    Article  CAS  Google Scholar 

  248. Cao G-X, Wu X-M, Dong Y-M, Li Z-J, Wang G-L (2016) Colorimetric determination of melamine based on the reversal of the mercury (II) induced inhibition of the light-triggered oxidase-like activity of gold nanoclusters. Microchim Acta 183(1):441–448

    Article  CAS  Google Scholar 

  249. Kang X, Zhang J, Shang W, Wu T, Zhang P, Han B, Wu Z, Mo G, Xing X (2014) One-step synthesis of highly efficient Nanocatalysts on the supports with hierarchical pores using porous ionic liquid-water gel. J Am Chem Soc 136(10):3768–3771

    Article  CAS  Google Scholar 

  250. Yang X, Cui H, Li Y, Qin J, Zhang R, Tang H (2013) Fabrication of Ag3PO4-graphene composites with highly efficient and stable visible light photocatalytic performance. ACS Catal 3(3):363–369. doi:10.1021/cs3008126

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Akhtar Hayat or Abdur Rahim.

Ethics declarations

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasir, M., Nawaz, M.H., Latif, U. et al. An overview on enzyme-mimicking nanomaterials for use in electrochemical and optical assays. Microchim Acta 184, 323–342 (2017). https://doi.org/10.1007/s00604-016-2036-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-2036-8

Keywords

Navigation