Skip to main content
Log in

Optical determination of hydrogen peroxide by exploiting the peroxidase-like activity of AgVO3 nanobelts

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

AgVO3 nanobelts (typically 0.5 to 5 μm in length; 100 nm in width) are demonstrated for the first time to possess intrinsic peroxidase-like activity. The substrate 3,3′,5,5′-tetramethylbenzidine is converted to a blue dye (with an absorbance maximum at 652 nm) in the presence of H2O2. Kinetic analysis indicates that the catalytic reaction follows a ping-pong mechanism. Moreover, a possible photocatalytic mechanism is proposed based on active species trapping experiments, demonstrating that hydroxy radicals play major roles in this system. This feature of the nanobelts is used for quantitative kinetic determination of H2O2. The assay has a 5 μM detection limit and a detection range from 0.075 to 0.5 mM. Other attractive features include a good chemical stability and high specificity of the nanobelts, simplicity of the assay, and the good reproducibility of the synthesis of the material.

The newly synthesized AgVO3 nanobelts possess intrinsic peroxidase-like activity, and this finding was applied to design a rapid and selective colorimetric assay for H2O2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Song YJ, Wei WL, Qu XG (2011) Colorimetric biosensing using smart materials. Adv Mater 23(37):4215–4236

    Article  CAS  Google Scholar 

  2. Wei H, Wang EK (2013) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 42(14):6060–6093

    Article  CAS  Google Scholar 

  3. Wang SS, Chen ZP, Chen L, Liu RL, Chen LX (2013) Label-free colorimetric sensing of copper(II) ions based on accelerating decomposition of H2O2 using gold nanorods as an indicator. Analyst 138(7):2080–2084

    Article  CAS  Google Scholar 

  4. Kim J, Grate JW, Wang P (2006) Nanostructures for enzyme stabilization. Chem Eng Sci 61(3):1017–1026

    Article  CAS  Google Scholar 

  5. Otte KB, Hauer B (2015) Enzyme engineering in the context of novel pathways and products. Curr Opin Biotechnol 35C:16–22

    Article  Google Scholar 

  6. Nestl BM, Hammer SC, Nebel BA, Hauer B (2014) New generation of biocatalysts for organic synthesis. Angew Chem Int Ed 53(12):3070–3095

    Article  CAS  Google Scholar 

  7. Gao LZ, Zhuang J, Nie L, Zhang JB, Zhang Y, Gu N, Wang TH, Feng J, Yang DL, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2(9):577–583

    Article  CAS  Google Scholar 

  8. Luo W, Zhu LH, Wang N, Tang HQ, Cao MJ, She YB (2010) Efficient removal of organic pollutants with magnetic nanoscaled BiFeO3 as a reusable heterogeneous fenton-like catalyst. Environ Sci Technol 44(5):1786–1791

    Article  CAS  Google Scholar 

  9. Zhang XD, He SH, Chen ZH, Huang YM (2013) CoFe2O4 nanoparticles as oxidase mimic-mediated chemiluminescence of aqueous luminol for sulfite in white wines. J Agric Food Chem 61(4):840–847

    Article  CAS  Google Scholar 

  10. Chang Q, Tang HQ (2014) Optical determination of glucose and hydrogen peroxide using a nanocomposite prepared from glucose oxidase and magnetite nanoparticles immobilized on graphene oxide. Microchim Acta 181(5–6):527–534

    Article  CAS  Google Scholar 

  11. Dai ZH, Liu SH, Bao JC, Jui HX (2009) Nanostructured Fes as a mimic peroxidase for biocatalysis and biosensing. Chem Eur J 15(17):4321–4326

    Article  CAS  Google Scholar 

  12. Dutta AK, Maji SK, Srivastava DN, Mondal A, Biswas P, Paul P, Adhikary B (2012) Synthesis of Fes and FeSe nanoparticles from a single source precursor: a study of their photocatalytic activity, peroxidase-like behavior, and electrochemical sensing of H2O2. ACS Appl Mater Interfaces 4(4):1919–1927

    Article  CAS  Google Scholar 

  13. Dutta AK, Maji SK, Mondal A, Karmakar B, Biswas P, Adhikary B (2012) Iron selenide thin film: peroxidase-like behavior, glucose detection and amperometric sensing of hydrogen peroxide. Sensors Actuators B 173:724–731

    Article  CAS  Google Scholar 

  14. Wang N, Sun JC, Chen LJ, Fan H, Ai SY (2015) A Cu2(OH)3Cl-CeO2 nanocomposite with peroxidase-like activity, and its application to the determination of hydrogen peroxide, glucose and cholesterol. Microchim Acta 182(9–10):1733–1738

    Article  CAS  Google Scholar 

  15. Wan Y, Qi P, Zhang D, Wu JJ, Wang Y (2012) Manganese oxide nanowire-mediated enzyme-linked immunosorbent assay. Biosens Bioelectron 33(1):69–74

    Article  CAS  Google Scholar 

  16. Liu X, Wang Q, Zhao HH, Zhang LC, Su YY, Lv Y (2012) BSA-templated MnO2 nanoparticles as both peroxidase and oxidase mimics. Analyst 137(19):4552–4558

    Article  CAS  Google Scholar 

  17. Chen W, Chen J, Feng YB, Hong L, Chen QY, Wu LF, Lin XH, Xia XH (2012) Peroxidase-like activity of water-soluble cupric oxide nanoparticles and its analytical application for detection of hydrogen peroxide and glucose. Analyst 137(7):1706–1712

    Article  CAS  Google Scholar 

  18. Mu JS, Wang Y, Zhao M, Zhang L (2012) Intrinsic peroxidase-like activity and catalase-like activity of Co3O4 nanoparticles. Chem Commun 48(19):2540–2542

    Article  CAS  Google Scholar 

  19. Yin JF, Cao HQ, Lu YX (2012) Self-assembly into magnetic Co3O4 complex nanostructures as peroxidase. J Mater Chem 22(2):527–534

    Article  CAS  Google Scholar 

  20. André R, Natálio F, Humanes M, Leppin J, Heinze K, Wever R, Schröder HC, Müller WEG, Tremel W (2011) V2O5 nanowires with an intrinsic peroxidase-like activity. Adv Funct Mater 21(3):501–509

    Article  Google Scholar 

  21. Dutta AK, Das S, Samanta S, Samanta PK, Adhikary B, Biswas P (2013) CuS nanoparticles as a mimic peroxidase for colorimetric estimation of human blood glucose level. Talanta 107:361–367

    Article  CAS  Google Scholar 

  22. Maji SK, Dutta AK, Dutta S, Srivastava DN, Paul P, Mondal A, Adhikary B (2012) Single-source precursor approach for the preparation of CdS nanoparticles and their photocatalytic and intrinsic peroxidase like activity. Appl Catal, B 126:265–274

    Article  CAS  Google Scholar 

  23. Jv Y, Li BX, Cao R (2010) Positively-charged gold nanoparticles as peroxidiase mimic and their application in hydrogen peroxide and glucose detection. Chem Commun 46(42):8017–8019

    Article  Google Scholar 

  24. Ma M, Zhang Y, Cu N (2011) Peroxidase-like catalytic activity of cubic Pt nanocrystals. Colloids Surf, A 373(1–3):6–10

    Article  CAS  Google Scholar 

  25. Liu YJ, Zhu GX, Yang J, Yuan AH, Shen XP (2014) Peroxidase-like catalytic activity of Ag3PO4 nanocrystals prepared by a colloidal route. PLoS One 9(10):e109158

    Article  Google Scholar 

  26. Song YJ, Wang XH, Zhao C, Qu KG, Ren JS, Qu XG (2010) Label-free colorimetricdetection of single nucleotide polymorphism by using single-walled carbon nanotube intrinsic peroxidase-like activity. Chem Eur J 16(12):3617–3621

    Article  CAS  Google Scholar 

  27. Cui RJ, Han ZD, Zhu JJ (2011) Helical carbon nanotubes: intrinsic peroxidase catalytic activity and its application for biocatalysis and biosensing. Chem Eur J 17(34):9377–9384

    Article  CAS  Google Scholar 

  28. Song YJ, Qu KG, Zhao C, Ren JS, Qu XG (2010) Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv Mater 22(19):2206–2210

    Article  CAS  Google Scholar 

  29. Mu JS, Zhang L, Zhao M, Wang Y (2013) Co3O4 nanoparticles as an efficient catalase mimic: properties, mechanism and its electrocatalytic sensing application for hydrogen peroxide. J Mol Catal A Chem 378:30–37

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant No. 41476068) and National Key Basic Research Program of China (Grant No. 2014CB643304).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dun Zhang.

Electronic supplementary material

ESM 1

(DOCX 682 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, Z., Wang, Y., Ju, P. et al. Optical determination of hydrogen peroxide by exploiting the peroxidase-like activity of AgVO3 nanobelts. Microchim Acta 183, 457–463 (2016). https://doi.org/10.1007/s00604-015-1670-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1670-x

Keywords

Navigation