Skip to main content
Log in

Determination of metallothioneins based on the enhanced peroxidase-like activity of mercury-coated gold nanoparticles aggregated by metallothioneins

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on a photometric method for the determination of the metallothioneins (MTs). It is known that citrate capped gold nanoparticles (AuNPs) coated with traces of mercury possess peroxidase-like properties that can catalyze the oxidation of 2,2′-azino-bis(3-ethylbenzothiazoline- 6-sulfonate) (ABTS) to form a blue product in acetate buffer of pH 4.5. It is found that if the AuNPs are first aggregated by the cysteine-rich metallothioneins, the peroxidase-like properties of the resulting aggregates (AuNP-Hg-MTs) cause a largely accelerated oxidation of ABTS. The effect of adding MTs to such a solution is used to quantify the MTs by a kinetic assay. Changes in absorbance at 416 nm are linearly correlated to the concentration of MTs in the 4.3 to 49 nM range, and the detection limit is 1.3 nM. The method was successfully applied to the determination of MTs in (spiked) human urine. The strategy may pave the way for related detection platforms.

The gold nanoparticle (AuNP)-Hg-metallothionein (MT) hybrid possesses a stronger peroxidase-like activity than the AuNP-Hg complex. It can catalyze H2O2-mediated oxidation of ABTS along with the change of the absorbance of the assay system, which is directly proportional to the concentration of MTs in the linear range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yan YQ, Tang X, Wang YS, Li MH, Cao JX, Chen SH, Zhu YF, Wang XF, Huang YQ (2015) A sensitive and selective fluorescence assay for metallothioneins by exploiting the surface energy transfer between rhodamine 6G and gold nanoparticles. Microchim Acta 182:1353–1360

    Article  CAS  Google Scholar 

  2. Tang X, Wang YS, Xue JH, Zhou B, Cao JX, Chen SH, Li MH, Wang XF, Zhu YF, Huang YQ (2015) A novel strategy for dual-channel detection of metallothioneins and mercury based on the conformational switching of functional chimera aptamer. J Pharm Biomed Anal 107:258–264

    Article  CAS  Google Scholar 

  3. Dai H, Xu G, Zhang S, Hong Z, Lin Y (2015) A ratiometric biosensor for metallothionein based on a dual heterogeneous electro-chemiluminescent response from a TiO2 mesocrystalline interface. Chem Commun 51:7697–7700

    Article  CAS  Google Scholar 

  4. Nakazato K, Tomioka S, Nakajima K, Saito H, Kato M, Kodaira T, Yatsuzuka S, Shimomura Y, Hiroki T, Motoyama K, Kodama H, Nagamine T (2014) Determination of the serum metallothionein (MT)1/2 concentration in patients with Wilson's disease and Menkes disease. J Trace Elem Med Biol: Organ Soc Miner Trace Elem 28:441–447

    Article  CAS  Google Scholar 

  5. Kehrig HA, Hauser-Davis RA, Seixas TG, Fillmann G (2015) Trace-elements, methylmercury and metallothionein levels in Magellanic penguin (Spheniscus magellanicus) found stranded on the Southern Brazilian coast. Mar Pollut Bull 96:450–455

    Article  CAS  Google Scholar 

  6. Dutsch-Wicherek M, Sikora J, Tomaszewska R (2008) The possible biological role of metallothionein in apoptosis. Front Biosci: J Virt Lib 13:4029–4038

    Article  CAS  Google Scholar 

  7. Gumulec J, Raudenska M, Adam V, Kizek R, Masarik M (2014) Metallothionein- immunohistochemical cancer biomarker: a meta-analysis. PLoS One 9:e85346

    Article  Google Scholar 

  8. Dutsch-Wicherek M (2010) RCAS1, MT, and vimentin as potential markers of tumor microenvironment remodeling. Am J Reprod Immunol 26:181–188

    Article  Google Scholar 

  9. Smaoui-Damak W, Berthet B, Hamza-Chaffai A (2009) In situ potential use of metallothionein as a biomarker of cadmium contamination in Ruditapes decussatus. Ecotoxicol Environ Saf 72:1489–1498

    Article  CAS  Google Scholar 

  10. Walker CJ, Gelsleichter J, Adams DH, Manire CA (2014) Evaluation of the use of metallothionein as a biomarker for detecting physiological responses to mercury exposure in the bonnethead, Sphyrna tiburo. Fish Physiol Biochem 40:1361–1371

    Article  CAS  Google Scholar 

  11. Romero-Ruiz A, Alhama J, Blasco J, Gomez-Ariza JL, Lopez-Barea J (2008) New metallothionein assay in Scrobicularia plana: heating effect and correlation with other biomarkers. Environ Pollut 156:1340–1347

    Article  CAS  Google Scholar 

  12. Geng MJ, Liang SX, Liu W, Jin Y (2014) Quantification of metallothioneins in the earthworm by lomefloxacin-europium(iii) fluorescent probe. Environ Sci Proc Imp 16:1923–1929

    Article  CAS  Google Scholar 

  13. Xu M, Yang L, Wang Q (2013) Chemical interactions of mercury species and some transition and noble metals towards metallothionein (Zn7MT-2) evaluated using SEC/ICP-MS, RP-HPLC/ESI-MS and MALDI-TOF-MS. Metallomics 5:855–860

    Article  CAS  Google Scholar 

  14. Ndayibagira A, Sunahara GI, Yves Robidoux P (2007) Rapid isocratic HPLC quantification of metallothionein-like proteins as biomarkers for cadmium exposure in the earthworm Eisenia andrei. Soil Biol Biochem 39:194–201

    Article  CAS  Google Scholar 

  15. Ryvolova M, Hynek D, Skutkova H, Adam V, Provaznik I, Kizek R (2012) Structural changes in metallothionein isoforms revealed by capillary electrophoresis and Brdicka reaction. Electrophoresis 33:270–279

    Article  CAS  Google Scholar 

  16. Ryvolova M, Adam V, Kizek R (2012) Analysis of metallothionein by capillary electrophoresis. J Chromatogr A 1226:31–42

    Article  CAS  Google Scholar 

  17. Nejdl L, Nguyen HV, Richtera L, Krizkova S, Guran R, Masarik M, Hynek D, Heger Z, Lundberg K, Erikson K, Adam V, Kizek R (2015) Label-free bead-based metallothionein electrochemical immunosensor. Electrophoresis 36:1894–1904

    Article  CAS  Google Scholar 

  18. Heger Z, Zitka J, Cernei N, Krizkova S, Sztalmachova M, Kopel P, Masarik M, Hodek P, Zitka O, Adam V, Kizek R (2015) 3D-printed biosensor with poly(dimethylsiloxane) reservoir for magnetic separation and quantum dots-based immunolabeling of metallothionein. Electrophoresis 36:1256–1264

    Article  CAS  Google Scholar 

  19. Tseng CW, Chang HY, Chang JY, Huang CC (2012) Detection of mercury ions based on mercury-induced switching of enzyme-like activity of platinum/gold nanoparticles. Nanoscale 4:6823–6830

    Article  CAS  Google Scholar 

  20. Long YJ, Li YF, Liu Y, Zheng JJ, Tang J, Huang CZ (2011) Visual observation of the mercury-stimulated peroxidase mimetic activity of gold nanoparticles. Chem Commun 47:11939–11941

    Article  CAS  Google Scholar 

  21. Zhu R, Zhou Y, Wang XL, Liang LP, Long YJ, Wang QL, Zhang HJ, Huang XX, Zheng HZ (2013) Detection of Hg2+ based on the selective inhibition of peroxidase mimetic activity of BSA-Au clusters. Talanta 117:127–132

    Article  CAS  Google Scholar 

  22. Qian QM, Wang YS, Yang HX, Xue JH, Liu L, Zhou B, Wang JC, Yin JC, Wang YS (2013) Colorimetric detection of metallothioneins using a thymine-rich oligonucleotide-Hg complex and gold nanoparticles. Anal Biochem 436:45–52

    Article  CAS  Google Scholar 

  23. Zhou B, Shi LF, Wang YS, Yang HX, Xue JH, Liu L, Wang YS, Yin JC, Wang JC (2013) Resonance light scattering determination of uranyl based on labeled DNAzyme-gold nanoparticle system. Spectrochim Acta A Mol Biomol Spectrosc 110:419–424

    Article  CAS  Google Scholar 

  24. Xue JH, Qian QM, Wang YS, Meng XL, Liu L (2013) Resonance light scattering determination of metallothioneins using levofloxacin-palladium complex as a light scattering probe. Spectrochim Acta A Mol Biomol Spectrosc 102:205–211

    Article  CAS  Google Scholar 

  25. Wang CI, Huang CC, Lin YW, Chen WT, Chang HT (2012) Catalytic gold nanoparticles for fluorescent detection of mercury(II) and lead(II) ions. Anal Chim Acta 745:124–130

    Article  CAS  Google Scholar 

  26. Shankar S, Soni SK, Daima HK, Selvakannan PR, Khire JM, Bhargava SK, Bansal V (2015) Charge-switchable gold nanoparticles for enhanced enzymatic thermostability. Phys Chem Chem Phys 17:21517–21524

    Article  CAS  Google Scholar 

  27. Zhang JQ, Wang YS, Xue JH, He Y, Yang HX, Liang J, Shi LF, Xiao XL (2012) A gold nanoparticles-modified aptamer beacon for urinary adenosine detection based on structure-switching/fluorescence-"turning on" mechanism. J Pharm Biomed Anal 70:362–368

    Article  CAS  Google Scholar 

  28. Huai Q, Zhang B, Sheng F, Tao Z (1995) Raman and ATR infrared studied of the conformation of metallothionein in solution. Spectrosc Lett 28:829–838

    Article  CAS  Google Scholar 

  29. Somers EC, Ganser MA, Warren JS, Basu N, Wang L, Zick SM, Park SK (2015) Mercury exposure and antinuclear antibodies among females of reproductive age in the United States: NHANES. Environ Health Perspect 123:792–798

    Google Scholar 

  30. Ding X, Hua Y, Chen Y, Zhang C, Kong X (2015) Heavy metal complexation of thiol-containing peptides from soy glycinin hydrolysates. Int J Mol Sci 16:8040–8058

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of the National Natural Science Foundation of China (No. 21177052), the Science and Technology Program of Hunan Province in China (No. 2010SK3039) and the Construct Program of the Key Discipline (Public Health and Preventive Medicine) in Hunan Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Sheng Wang.

Ethics declarations

The author(s) declare that they have no competing interests

Electronic supplementary material

ESM 1

(DOC 2.66 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, XJ., Wang, YS., Yang, SY. et al. Determination of metallothioneins based on the enhanced peroxidase-like activity of mercury-coated gold nanoparticles aggregated by metallothioneins. Microchim Acta 183, 2123–2129 (2016). https://doi.org/10.1007/s00604-016-1828-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1828-1

Keywords

Navigation