Skip to main content
Log in

Magnetic Fe3S4 nanoparticles with peroxidase-like activity, and their use in a photometric enzymatic glucose assay

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Greigite magnetic nanoparticles (Fe3S4-MNPs) were prepared and reveal a peroxidase-like activity. Kinetic studies revealed a pseudo-enzymatic activity that is much higher than that of other magnetic nanomaterial-based enzyme mimetics. This finding was exploited to design a photometric enzymatic glucose assay based on the formation of H2O2 during enzymatic oxidation of glucose by glucose oxidase, and the formation of a blue product from an enzyme substrate that is catalytically oxidized by H2O2 in the presence of Fe3S4-MNPs. Glucose can be detected in the 2 to 100 μM concentration range, and the low detection limit is 0.16 μM. The method was applied to quantify glucose in human serum. In our perception, this enzyme mimetic has a large potential in that it may be used in other oxidase based assays, but also in ELISAs.

Fe3S4 magnetic nanoparticles (MNPs) are shown to act as peroxidase mimetics and this was used to design a glucose oxidase (GOx) based glucose assay where the H2O2 formed during oxidation of glucose oxidizes tetramethylbenzidine (TMB) to give a blue product which can be quantified by photometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Liu JB, Hu XN, Hou S, Wen T, Liu WQ, Zhu X, Wu XC (2011) Screening of inhibitors for oxidase mimics of Au@Pt nanorods by catalytic oxidation of OPD. Chem Commun 47(39):10981–10983. doi:10.1039/c1cc14346h

    Article  CAS  Google Scholar 

  2. Zhao K, Gu W, Zheng S, Zhang CL, Xian YZ (2015) SDS-MoS2 nanoparticles as highly-efficient peroxidase mimetics for colorimetric detection of H2O2 and glucose. Talanta 141:47–52. doi:10.1016/j.talanta.2015.03.055

    Article  CAS  Google Scholar 

  3. Wei H, Wang E (2008) Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal Chem 80(6):2250–2254. doi:10.1021/Ac702203f

    Article  CAS  Google Scholar 

  4. Asati A, Santra S, Kaittanis C, Nath S, Perez JM (2009) Oxidase-like activity of polymer-coated cerium oxide nanoparticles. Angew Chem Int Ed 48(13):2308–2312. doi:10.1002/anie.200805279

    Article  CAS  Google Scholar 

  5. Wang N, Sun JC, Chen LJ, Fan H, Ai SY (2015) A Cu2(OH)3Cl-CeO2 nanocomposite with peroxidase-like activity, and its application to the determination of hydrogen peroxide, glucose and cholesterol. Microchim Acta 182:1733–1738. doi:10.1007/s00604-015-1506-8

    Article  CAS  Google Scholar 

  6. Zheng X, Liu Q, Jing C, Li Y, Li D, Luo W, Wen Y, He Y, Huang Q, Long YT, Fan C (2011) Catalytic gold nanoparticles for nanoplasmonic detection of DNA hybridization. Angew Chem Int Ed 50(50):11994–11998. doi:10.1002/anie.201105121

    Article  CAS  Google Scholar 

  7. Song Y, Qu K, Zhao C, Ren J, Qu X (2010) Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv Mater 22(19):2206–2210. doi:10.1002/adma.200903783

    Article  CAS  Google Scholar 

  8. Song YJ, Wang XH, Zhao C, Qu KG, Ren JS, Qu XG (2010) Label-free colorimetric detection of single nucleotide polymorphism by using single-walled carbon nanotube intrinsic peroxidase-like activity. Chem Eur J 16(12):3617–3621. doi:10.1002/chem.200902643

    Article  CAS  Google Scholar 

  9. Chen J, Patil S, Seal S, McGinnis JF (2006) Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides. Nat Nanotechnol 1(2):142–150. doi:10.1038/nnano.2006.91

    Article  CAS  Google Scholar 

  10. Guo Y, Deng L, Li J, Guo S, Wang E, Dong S (2011) Hemin-graphene hybrid nanosheets with intrinsic peroxidase-like activity for label-free colorimetric detection of single-nucleotide polymorphism. ACS Nano 5(2):1282–1290. doi:10.1021/nn1029586

    Article  CAS  Google Scholar 

  11. Gao LZ, Zhuang J, Nie L, Zhang JB, Zhang Y, Gu N, Wang TH, Feng J, Yang DL, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2(9):577–583. doi:10.1038/nnano.2007.260

    Article  CAS  Google Scholar 

  12. An Q, Sun C, Li D, Xu K, Guo J, Wang C (2013) Peroxidase-like activity of Fe3O4@carbon nanoparticles enhances ascorbic acid-induced oxidative stress and selective damage to PC-3 prostate cancer cells. ACS Appl Mater Interfaces 5(24):13248–13257. doi:10.1021/am4042367

    Article  CAS  Google Scholar 

  13. Dong YL, Zhang HG, Rahman ZU, Su L, Chen XJ, Hu J, Chen XG (2012) Graphene oxide-Fe3O4 magnetic nanocomposites with peroxidase-like activity for colorimetric detection of glucose. Nanoscale 4(13):3969–3976. doi:10.1039/C2NR12109C

    Article  CAS  Google Scholar 

  14. Chang Q, Tang HQ (2014) Optical determination of glucose and hydrogen peroxide using a nanocomposite prepared from glucose oxidase and magnetite nanoparticles immobilized on graphene oxide. Microchim Acta 181:527–534. doi:10.1007/s00604-013-1145-x

    Article  CAS  Google Scholar 

  15. Liu Y, Yuan M, Qiao LJ, Guo R (2014) An efficient colorimetric biosensor for glucose based on peroxidase-like protein-Fe3O4 and glucose oxidase nanocomposites. Biosens Bioelectron 52:391–396. doi:10.1016/j.bios.2013.09.020

    Article  CAS  Google Scholar 

  16. Bhattacharya D, Baksi A, Banerjee I, Ananthakrishnan R, Maiti TK, Pramanik P (2011) Development of phosphonate modified Fe(1−x)MnxFe2O4 mixed ferrite nanoparticles: novel peroxidase mimetics in enzyme linked immunosorbent assay. Talanta 86:337–348. doi:10.1016/j.talanta.2011.09.026

    Article  CAS  Google Scholar 

  17. Su L, Qin WJ, Zhang HG, Rahman ZU, Ren CL, Ma SD, Chen XG (2015) The peroxidase/catalase-like activities of MFe2O4 (M = Mg, Ni, Cu) MNPs and their application in colorimetric biosensing of glucose. Biosens Bioelectron 63:384–391. doi:10.1016/j.bios.2014.07.048

    Article  CAS  Google Scholar 

  18. Wei H, Wang EK (2013) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 42:6060–6093. doi:10.1039/c3cs35486e

    Article  CAS  Google Scholar 

  19. Lyubutin IS, Starchikov SS, Lin CR, Lu SZ, Shaikh MO, Funtov KO, Dmitrieva TV, Ovchinnikov SG, Edelman IS, Ivantsov R (2013) Magnetic, structural, and electronic properties of iron sulfide Fe3S4 nanoparticles synthesized by the polyol mediated process. J Nanoparticle Res 15:1397–1410. doi:10.1007/s11051-012-1397-0

    Article  Google Scholar 

  20. Jia XL, Chen Z, Cui X, Peng YT, Wang XL, Wang G, Wei F, Lu YF (2012) Building robust architectures of carbon and metal oxide nanocrystals toward high-performance anodes for lithium-ion batteries. ACS Nano 6(11):9911–9919. doi:10.1021/nn303478e

    Article  CAS  Google Scholar 

  21. Li GW, Zhang BM, Yu F, Novakova AA, Krivenkov MS, Kiseleva TY, Chang L, Rao JC, Polyakov AO, Blake GR, de Groot RA, Palstra TTM (2014) High-purity Fe3S4 greigite microcrystals for magnetic and electrochemical performance. Chem Mater 26(20):5821–5829. doi:10.1021/cm501493m

    Article  CAS  Google Scholar 

  22. Hunger S, Benning LG (2007) Greigite: a true intermediate on the polysulfide pathway to pyrite. Geochem T 8. doi:10.1186/1467-4866-8-1

  23. Chang YS, Savitha S, Sadhasivam S, Hsu CK, Lin FH (2011) Fabrication, characterization, and application of greigite nanoparticles for cancer hyperthermia. J Colloid Interface Sci 363(1):314–319. doi:10.1016/j.jcis.2010.06.069

    Article  CAS  Google Scholar 

  24. Andre R, Natalio F, Humanes M, Leppin J, Heinze K, Wever R, Schroder HC, Muller WEG, Tremel W (2011) V2O5 nanowires with an intrinsic peroxidase-like activity. Adv Funct Mater 21:501–509. doi:10.1002/adfm.201001302

    Article  CAS  Google Scholar 

  25. Chen W, Chen J, Liu AL, Wang LM, Li GW, Lin XH (2013) Peroxidase-like activity of cupric oxide nanoparticle. Chem Cat Chem 3:1151–1154. doi:10.1002/cctc.201100064

    Google Scholar 

  26. Xie JX, Zhang XD, Wang H, Zheng HZ, Huang YM (2012) Analytical and environmental applications of nanoparticles as enzyme mimetics. TrAC Trends Anal Chem 39:114–129. doi:10.1016/j.trac.2012.03.021

    Article  CAS  Google Scholar 

  27. Ahamed M, Akhtar MJ, Alhadlaq HA, Alrokayan SA (2015) Assessment of the lung toxicity of copper oxide nanoparticles: current status. Nanomedicine 10(15):2365–2377. doi:10.2217/nnm.15.72 Epub 2015 Aug 7

    Article  CAS  Google Scholar 

  28. Feng M, Lu Y, Yang Y, Zhang M, Xu YJ, Gao HL, Dong L, Xu WP, Yu SH (2013) Bioinspired greigite magnetic nanocrystals: chemical synthesis and biomedicine applications. Sci Report 3. doi:10.1038/srep02994

  29. Dou H, Kim BJ, Choi SH, Jung EC, Lee S (2014) Effect of size of Fe3O4 magnetic nanoparticles on electrochemical performance of screen printed electrode using sedimentation field-flow fractionation. J Nanoparticle Res 16:2679. doi:10.1007/s11051-014-2679-5

    Article  Google Scholar 

  30. Zhao P, He KY, Han YT, Zhang Z, Yu MZ, Wang HH, Huang Y, Nie Z, Yao SZ (2015) Near-infrared dual-emission quantum dots − gold nanoclusters nanohybrid via Co-template synthesis for ratiometric fluorescent detection and bioimaging of ascorbic acid in vitro and In Vivo. Anal Chem 87(19):9998–10005. doi:10.1021/acs.analchem.5b02614

    Article  CAS  Google Scholar 

  31. Zheng AX, Cong ZX, Wang JR, Li J, Yang HH, Chen GN (2013) Highly-efficient peroxidase-like catalytic activity of graphene dots for biosensing. Biosens Bioelectron 49:519–524. doi:10.1016/j.bios.2013.05.038

    Article  CAS  Google Scholar 

  32. Lineweaver H (1934) The determination of enzyme dissociation constants. J Am Chem Soc 56:658–666. doi:10.1021/ja01318a036

    Article  CAS  Google Scholar 

  33. Su L, Feng J, Zhou XM, Ren CL, Li HH, Chen XG (2012) Colorimetric detection of urine glucose based ZnFe2O4 magnetic nanoparticles. Anal Chem 84(13):5753–5758. doi:10.1021/ac300939z

    Article  CAS  Google Scholar 

  34. Li Q, Tang GG, Xiong XW, Cao YL, Chen LL, Xu FG, Tan HL (2015) Carbon coated magnetite nanoparticles with improved water-dispersion and peroxidase-like activity for colorimetric sensing of glucose. Sensors Actuators B 215:86–92. doi:10.1016/j.snb.2015.03.029

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from the National Natural Science Foundation of China (21175046, 21465010) and the Shanghai Natural Science Foundation (15ZR1411600).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cuiling Zhang or Yuezhong Xian.

Electronic supplementary material

ESM 1

(DOCX 625 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, C., Yan, Y., Xiang, D. et al. Magnetic Fe3S4 nanoparticles with peroxidase-like activity, and their use in a photometric enzymatic glucose assay. Microchim Acta 183, 625–631 (2016). https://doi.org/10.1007/s00604-015-1690-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1690-6

Keywords

Navigation