Skip to main content
Log in

Hybrid silica-organic material with immobilized amino groups: surface probing and use for electrochemical determination of nitrite ions

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Hybrid silica-organic material with fixed n-propylamine groups was prepared by a sol–gel route and characterized by several techniques. Specific surface area of the material was 110 ± 2 m2 g−1, specific pore volume was 0.90 ± 0.01 cm3 g−1, and average pore size was 25 ± 3 nm. The specific concentration of attached amino groups was 3.28 ± 0.05 mmol g−1, the amount of residual silanol groups being comparable with that of amino groups. The maximum attainable adsorption of H+ ions was 2.34 ± 0.10 mmol g−1. The Dimroth–Reichardt normalized polarity parameter of the near-surface layer was 0.64 that points to the closeness of properties of the near-surface layer to those of water-organic mixtures and polar organic solvents rather than aqueous solutions. Surface probing with H+ ions has revealed that due to interactions between surface amino groups and weakly acidic silanol groups the protonization constants of fixed amino groups are considerably smaller than the protonization constants of aliphatic amines in aqueous solutions. The equimolecular composition of Cu (II) complexes with immobilized amino groups was concluded from the results of surface probing with Cu2+ ions and UV–vis diffuse reflectance spectroscopy. The stability constants of Cu (II) complexes were determined with the aid of the model of polydentate binding, and the influence of strong negative cooperativity effects on the adsorption equilibria was detected. The material with sorbed Cu (II) ions was used to prepare a working electrode for the electrochemical determination of nitrite ions. The electrocatalytic determination of nitrite ions in aqueous media may be performed by means of cyclic voltammetry, differential pulse voltammetry and chronoamperometry with the limits of detection 1.3, 4.6, and 3.1 μmol l−1, correspondingly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Doyle AM, Hodnett BK (2006) J Non-Crystal Solids 352:2193–2197

    Article  CAS  Google Scholar 

  2. Franc J, Blanc D, Zerroukhi A, Chalamet Y, Last A, Destouches N (2006) Mater Sci Eng, B 129:180–185

    Article  CAS  Google Scholar 

  3. Lucho AMS, Panteleimonov A, Kholin Y, Gushikem Y (2007) J Colloid Interface Sci 310:47–56

    Article  CAS  Google Scholar 

  4. Dana E, Sayari A (2011) Chem Eng J 166:445–453

    Article  CAS  Google Scholar 

  5. Aguado J, Arsuaga JM, Arencibia A, Lindo M, Gascon V (2009) J Hazard Mater 163:213–221

    Article  CAS  Google Scholar 

  6. Echeverria JC, Vicente P, Estella J, Garrido JJ (2012) Talanta 99:433–440

    Article  CAS  Google Scholar 

  7. Arguello J, Magosso HA, Landers R, Gushikem Y (2008) J Electroanal Chem 617:45–52

    Article  CAS  Google Scholar 

  8. Silveira G, Morais A, Villis PCM, Maroneze CM, Gushikem Y, Lucho AMS, Pissetti FL (2012) J Colloid Interface Sci 369:302–308

    Article  CAS  Google Scholar 

  9. Arguello J, Magosso HA, Landers R, Pimentel VL, Gushikem Y (2010) Electrochim Acta 56:340–345

    Article  CAS  Google Scholar 

  10. Sands P, Galizzi P (2006) Documents in European Community Environmental Law, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  11. World Health Organization (2008) Guidelines for drinking-water quality, 3rd edn. WHO Press, Geneva

    Google Scholar 

  12. Senra-Ferreiro S, Pena-Pereira F, Lavilla I, Bendicho C (2010) Anal Chim Acta 668:195–200

    Article  CAS  Google Scholar 

  13. Hea L, Zhang K, Wanga C, Luo X, Zhang S (2011) J Chromatogr A 1218:3595–3600

    Article  Google Scholar 

  14. Nilsson KF, Lundgren M, Agvald P, Adding LC, Linnarsson D, Gustafsson LE (2011) Biochem Pharmacol 82:248–259

    Article  CAS  Google Scholar 

  15. Ge X, Wang L, Liu Z, Ding Y (2011) Electroanal 23:381–386

    Article  CAS  Google Scholar 

  16. Santos WJR, Lima PR, Tanaka AA, Tanaka SMCN, Kubota LT (2009) Food Chem 113:1206–1211

    Article  CAS  Google Scholar 

  17. Kerkeni S, Lamy-Pitara E, Barbier J (2002) Catal Today 75:35–42

    Article  CAS  Google Scholar 

  18. Li J, Lin X (2007) Microchem J 87:41–46

    Article  CAS  Google Scholar 

  19. Rocha JRC, Angnes L, Bertotti M, Araki K, Toma HE (2002) Anal Chim Acta 452:23–28

    Article  Google Scholar 

  20. Borgo CA, Ferrari RT, Colpini LMS, Costa CMM, Baesso ML, Bento AC (1999) Anal Chim Acta 385:103–109

    Article  CAS  Google Scholar 

  21. Reichardt C, Welton T (2010) Solvents and solvent effects in organic chemistry, 4th edn. WILEY-VCH, Weinheim

    Book  Google Scholar 

  22. Kessler MA, Wolfbeis OS (1989) Chem Phys Lipids 50:51–56

    Article  CAS  Google Scholar 

  23. Britton HTS, Robinson RA (1931) J Chem Soc 1:458–473

    Article  Google Scholar 

  24. Morosanova EI, Velukorodniy AA, Kyzmin NM, Zolotov YuA (1999) Patent 2139244 Russ Federation, IPC C01B33/12, G01N31/00

  25. Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60:309–319

    Article  CAS  Google Scholar 

  26. Bugaevsky AA, Kholin YV (1991) Anal Chim Acta 249:353–356

    Article  Google Scholar 

  27. Merny SA, Konyaev DS, Kholin YV (1998) Kharkov Univ Bulletin 420:112–120

    Google Scholar 

  28. http://www-chemo.univer.kharkov.ua/kholin/clinp.html

  29. Brambilla R, Poisson J, Radtke C, Miranda MSL, Cardoso MB, Butler IS, Santos JHZ (2011) J Sol-Gel Sci Technol 59:135–144

    Article  CAS  Google Scholar 

  30. Luan Z, Fournier JA, Wooten JB, Miser DE (2005) Microporous Mesoporous Mater 83:150–158

    Article  CAS  Google Scholar 

  31. Zub YL, Stolyarchuk NV, Barczak M, Dabrowski A (2010) Appl Surf Sci 256:5361–5364

    Article  CAS  Google Scholar 

  32. Reichardt C (2007) Org Process Res Dev 11:105–113

    Article  CAS  Google Scholar 

  33. Duncan JM, Tavener SJ, Gray GW, Heath PA, Rafelt JS, Saulzet SI, Hardy JJE, Clark JH, Sutra P, Brunel D, Renzo F, Fajula F (1999) New J Chem 23:725–731

    Article  Google Scholar 

  34. Khristenko IV, Kholin YV, Mchedlov-Petrossyan NO, Reichardt C, Zaitsev VN (2006) Colloid J 68:511–517

    Article  CAS  Google Scholar 

  35. Denofre S, Gushikem Y, Castro SC, Kawano Y (1993) J Chem Soc, Faraday Trans 89:1057–1061

    Article  CAS  Google Scholar 

  36. Kholin Y, Zaitsev V (2008) Pure Appl Chem 80:1561–1592

    Article  CAS  Google Scholar 

  37. Volchenskova II (1973) Theor Exp Chem 9:495–501

    Article  Google Scholar 

  38. Shaikh AA, Firdaws J, Badrunnessa SS, Rahman MS, Bakshi PK (2011) Int J Electrochem Sci 6:2333–2343

    CAS  Google Scholar 

  39. do Carmo DR, Paim LL, Silvestrini DR, de Sa AC, de Oliveira Bicalhol U, Stradiotto NR (2011) Int J Electrochem Sci 6:1175–1188

  40. Sljukic B, Banks CE, Crossley A, Compton RG (2007) Electroanal 19:79–84

    Article  CAS  Google Scholar 

  41. Maroneze CM, Arenas LT, Luz RCS, Benvenutti EV, Landers R, Gushikem Y (2008) Electrochim Acta 53:4167–4175

    Article  CAS  Google Scholar 

  42. Bard AJ, Faulkner LR (2001) Electrochemical methods, fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  43. Sousa AL, Santos WJR, Luz RCS, Damos FS, Kubota LT, Tanaka AA, Tanaka SMCN (2008) Talanta 75:333–338

    Article  CAS  Google Scholar 

  44. Currie LA (1995) Pure Appl Chem 67:1699–1723

    Article  CAS  Google Scholar 

  45. Hao Y, Liu Y, Hao B (2011) In: Cao Z, Cao X, Sun L, He Y (eds) Advanced Materials Research, vol 239–242. Trans Tech Publications, Switzerland, pp 2466–2469

  46. Geng R, Zhao G, Liu M, Li M (2008) Biomater 29:2794–2801

    Article  CAS  Google Scholar 

  47. Wang Z, Liao F, Guo T, Yang S, Zeng C (2012) J Electroanal Chem 664:135–138

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Ministry of Education and Science of Ukraine through Project No 0109U001310. O.T. is indebted to this Ministry for the financial support of his in-depth training in the State University of Campinas. Authors are deeply grateful to Professor Alexander Korobov for manuscript revision and to Mr. Sergey Shekhovtsov for synthesis and purification of ET(33).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuriy Kholin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tkachenko, O., Rahim, A., Baraban, A. et al. Hybrid silica-organic material with immobilized amino groups: surface probing and use for electrochemical determination of nitrite ions. J Sol-Gel Sci Technol 67, 145–154 (2013). https://doi.org/10.1007/s10971-013-3060-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-013-3060-3

Keywords

Navigation