Skip to main content
Log in

A Cu2(OH)3Cl-CeO2 nanocomposite with peroxidase-like activity, and its application to the determination of hydrogen peroxide, glucose and cholesterol

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A nanomaterial of the chemical composition Cu2(OH)3Cl-CeO2 and with a large surface area is shown to be a viable peroxidase mimetic. It was synthesized by co-precipitation of an aqueous solution containing Ce(III) chloride, Cu(II) chloride and hexamethylenetetramine by adding an ionic liquid. The material was characterized by scanning electron microscopy and X-ray powder diffractometry. The composite possesses peroxidase-like activity and catalyzes the oxidation of the peroxidase substrate 3,3′,5,5′-tetramethylbenzidine by H2O2 to produce a blue product. Based on this finding, a simple, rapid and selective colorimetric method was worked out for the determination of glucose and cholesterol by using the respective oxidases and by quantifying the H2O2 formed. Both glucose and cholesterol can be determined by this method at levels as low as 50 µM.

We found that the newly synthesized Cu2(OH)3Cl-CeO2 composite material possesses intrinsic peroxidase-like activity, and this finding was applied to design a rapid and selective colorimetric assay for H2O2, glucose and cholesterol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Battistuzzi G, Bellei M, Bortolotti CA, Sola M (2010) Redox properties of heme peroxidases. Arch Biochem Biophys 500(1):21–36

    Article  CAS  Google Scholar 

  2. Pedersen LGM, Bols M (2009) Cyclodextrin derivatives that display enzyme catalysis. Trends Glycosci Glycotechnol 21:309–323

    Article  Google Scholar 

  3. Kirkman HN, Gaetani GF (2007) Mammalian catalase: a venerable enzyme with new mysteries. Trends Biochem Sci 32(1):44–50

    Article  CAS  Google Scholar 

  4. Hersleth H-P, Ryde U, Rydberg P, Görbitz CH, Andersson KK (2006) Structures of the high-valent metal-ion haem–oxygen intermediates in peroxidases, oxygenases and catalases. J Inorg Biochem 100(4):460–476

    Article  CAS  Google Scholar 

  5. Pierre A (2004) The sol–gel encapsulation of enzymes. Biocatal Biotransform 22(3):145–170

    Article  CAS  Google Scholar 

  6. Klonis N, Dilanian R, Hanssen E, Darmanin C, Streltsov V, Deed S, Quiney H, Tilley L (2010) Hematin − hematin self-association states involved in the formation and reactivity of the malaria parasite pigment, hemozoin. Biochemistry 49(31):6804–6811

    Article  CAS  Google Scholar 

  7. Wada A, S-i T, Ikeda M, Hamachi I (2009) MCM − enzyme − supramolecular hydrogel hybrid as a fluorescence sensing material for polyanions of biological significance. J Am Chem Soc 131(14):5321–5330

    Article  CAS  Google Scholar 

  8. German N, Ramanavicius A, Voronovic J, Oztekin Y, Ramanaviciene A (2011) The effect of gold nanoparticle colloidal solution on performance of glucose oxidase modified carbon electrode. Microchim Acta 172(1–2):185–191

    Article  CAS  Google Scholar 

  9. Chen L, Wang N, Wang X, Ai S (2013) Protein-directed in situ synthesis of platinum nanoparticles with superior peroxidase-like activity, and their use for photometric determination of hydrogen peroxide. Microchim Acta 180(15–16):1517–1522

    Article  CAS  Google Scholar 

  10. Rosenzweig AC, Sazinsky MH (2006) Structural insights into dioxygen-activating copper enzymes. Curr Opin Struct Biol 16(6):729–735

    Article  CAS  Google Scholar 

  11. Arena F, Giovenco R, Torre T, Venuto A, Parmaliana A (2003) Activity and resistance to leaching of Cu-based catalysts in the wet oxidation of phenol. Appl Catal B 45(1):51–62

    Article  CAS  Google Scholar 

  12. Mutti FG, Zoppellaro G, Gullotti M, Santagostini L, Pagliarin R, Andersson KK, Casella L (2009) Biomimetic modelling of copper enzymes: synthesis, characterization, EPR analysis and enantioselective catalytic oxidations by a new chiral trinuclear copper (II) complex. Eur J Inorg Chem 2009(4):554–566

    Article  Google Scholar 

  13. Koval IA, Gamez P, Belle C, Selmeczi K, Reedijk J (2006) Synthetic models of the active site of catechol oxidase: mechanistic studies. Chem Soc Rev 35(9):814–840

    Article  CAS  Google Scholar 

  14. Sreenivasulu B (2009) Diphenoxo-bridged copper (II) complexes of reduced schiff base ligands as functional models for catechol oxidase. Aust J Chem 62(9):968–979

    Article  CAS  Google Scholar 

  15. Latif Abuhijleh A, Woods C (2002) Synthesis, crystal structure and superoxide dismutase mimetic activity of hexakis (N-methylimidazole) copper (II) salicylate. Inorg Chem Commun 5(4):269–273

    Article  CAS  Google Scholar 

  16. Chen W, Chen J, Liu AL, Wang LM, Li GW, Lin XH (2011) Peroxidase‐like activity of cupric oxide nanoparticle. ChemCatChem 3(7):1151–1154

    Article  CAS  Google Scholar 

  17. Wang H, Xiang X, Li F, Evans DG, Duan X (2009) Investigation of the structure and surface characteristics of Cu–Ni–M (III) mixed oxides (M = Al, Cr and In) prepared from layered double hydroxide precursors. Appl Surf Sci 255(15):6945–6952

    Article  CAS  Google Scholar 

  18. Luo M-F, Song Y-P, Lu J-Q, Wang X-Y, Pu Z-Y (2007) Identification of CuO species in high surface area CuO-CeO2 catalysts and their catalytic activities for CO oxidation. J Phys Chem C 111(34):12686–12692

    Article  CAS  Google Scholar 

  19. Asati A, Santra S, Kaittanis C, Perez JM (2010) Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles. ACS Nano 4(9):5321–5331

    Article  CAS  Google Scholar 

  20. Jiao X, Song H, Zhao H, Bai W, Zhang L, Lv Y (2012) Well-redispersed ceria nanoparticles: promising peroxidase mimetics for H2O2 and glucose detection. Anal Methods 4(10):3261–3267

    Article  CAS  Google Scholar 

  21. Xiong Z, Xu Y (2007) Immobilization of palladium phthalocyaninesulfonate onto anionic clay for sorption and oxidation of 2, 4, 6-trichlorophenol under visible light irradiation. Chem Mater 19(6):1452–1458

    Article  CAS  Google Scholar 

  22. Dyakonov AJ, Grider DA, McCormick BJ, Kahol PK (2000) Modification of transition metal catalysts with rare-earth elements. Appl Catal A Gen 192(2):235–246

    Article  CAS  Google Scholar 

  23. Djinović P, Batista J, Pintar A (2008) Calcination temperature and CuO loading dependence on CuO-CeO2 catalyst activity for water-gas shift reaction. Appl Catal A Gen 347(1):23–33

    Article  Google Scholar 

  24. Olivier-Bourbigou H, Magna L, Morvan D (2010) Ionic liquids and catalysis: recent progress from knowledge to applications. Appl Catal A Gen 373(1):1–56

    Article  CAS  Google Scholar 

  25. Hallett JP, Welton T (2011) Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem Rev (Washington, DC, U S) 111(5):3508–3576

    Article  CAS  Google Scholar 

  26. Gebbie MA, Valtiner M, Banquy X, Fox ET, Henderson WA, Israelachvili JN (2013) Ionic liquids behave as dilute electrolyte solutions. Proc Natl Acad Sci 110(24):9674–9679

    Article  CAS  Google Scholar 

  27. Chinnappan A, Jadhav AH, Kim H, Chung W-J (2014) Ionic liquid with metal complexes: an efficient catalyst for selective dehydration of fructose to 5-hydroxymethylfurfural. Chem Eng J (Lausanne) 237:95–100

    Article  CAS  Google Scholar 

  28. Song Y, Qu K, Zhao C, Ren J, Qu X (2010) Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv Mater 22(19):2206–2210

    Article  CAS  Google Scholar 

  29. Chen L, Sun K, Li P, Fan X, Sun J, Ai S (2013) DNA-enhanced peroxidase-like activity of layered double hydroxide nanosheets and applications in H2O2 and glucose sensing. Nanoscale 5(22):10982–10988

    Article  CAS  Google Scholar 

  30. Guo Y, Deng L, Li J, Guo S, Wang E, Dong S (2011) Hemin − graphene hybrid nanosheets with intrinsic peroxidase-like activity for label-free colorimetric detection of single-nucleotide polymorphism. ACS Nano 5(2):1282–1290

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 21375079, 51402175) and Project of Development of Science and Technology of Shandong Province, China (No. 2013GZX20109).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai Fan or Shiyun Ai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 186 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, N., Sun, J., Chen, L. et al. A Cu2(OH)3Cl-CeO2 nanocomposite with peroxidase-like activity, and its application to the determination of hydrogen peroxide, glucose and cholesterol. Microchim Acta 182, 1733–1738 (2015). https://doi.org/10.1007/s00604-015-1506-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1506-8

Keywords

Navigation