Skip to main content

History of the Sol–Gel Chemistry and Technology

  • Living reference work entry
  • First Online:
Handbook of Sol-Gel Science and Technology

Abstract

The history of sol–gel technology has been reviewed on the basis of sol–gel-derived functional materials. When worldwide efforts for significant sol–gel processing started to be made around 1970, it was regarded as a new method of preparing homogeneous glasses and ceramics at low temperatures, compared to the conventional melting and sintering method. After the sol–gel preparation of inorganic–organic hybrid materials was proposed in 1984, however, glass and ceramic researchers started processing functional materials with optical, electrical, chemical, mechanical, or biomedical functions as well as advanced glasses and ceramics by sol–gel method, and around 1995 sol–gel technology attracted the people working in all the materials-related technology areas including electronics, chemistry, mechanics, pharmacy, and medicine. Since then, sol–gel technology continued to progress by being applied to improvement of the performance of existing functional materials and exploration of novel functional materials. Detailed description of these situations will be made.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adachi T, Sakka S. Preparation of monolithic silica gel and glass by the method using N,N-dimethylformamide. J Mater Sci. 1987;22:4407–10.

    Article  Google Scholar 

  • Aegerter MA, Al-Dahoudi N. Wet –chemical processing of transparent, and antiglare conducting ITO coating on plastic substrates. J Sol–gel Sci Technol. 2003;27:81–9.

    Article  Google Scholar 

  • Agostinelli JA, Paz-Pujalt GR, Mehrohtra RC. Superconducting thin films in the Bi-Sr-Ca-Cu-O system by the decomposition of metallo-organic precursors. Physica C. 1988;156:208–12.

    Article  Google Scholar 

  • Almeida RM, Gama A, Vueva Y. Bioactive sol–gel scaffolds with dual porosity for tissue engineering. J Sol–gel Sci Technol. 2011;57:336–42.

    Article  Google Scholar 

  • Amanuma K, Hase T, Miyasaka Y. Preparation and ferroelectric properties of SrBi2Ta2O9 thin films. Appl Phys Lett. 1995;66:221–3.

    Article  Google Scholar 

  • Anpo M, Takeuti M. The design and development of high reactive titanium oxide photocatalysts operating under visible light irradiation. J Catal. 2003;216:505–16.

    Article  Google Scholar 

  • Aravind PR, Shajesh P, Soraru GD, Warrier KG. Ambient pressure drying: a successful approach for the preparation of silica and silica based mixed oxide aerogels. J Sol–gel Sci Technol. 2010;54:105–17.

    Article  Google Scholar 

  • Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Visible light photocatalysts in nitrogen-doped titanium oxides. Science. 2001;293:269–71.

    Article  Google Scholar 

  • Asakuma N, Fukui T, Toki M, Imai H. Low-temperature synthesis of ITO thin films using an ultraviolet laser for conductive coating on organic polymer substrates. J Sol-Gel Sci Technol. 2003;27:91–5.

    Article  Google Scholar 

  • Avnir D, Levy D, Reisfeld R. The nature of the silica cage as reflected by spectral changes and enhanced photostability of trapped rhodamine 6G. J Phys Chem. 1984;88:5956–9.

    Article  Google Scholar 

  • Azevedo RCS, Sousa RG, Macedo WAA, Sousa EMB. Combining mesoporous silica-magnetite and thermally-sensitive polymers for applications in hyperthermia. J Sol–gel SciTechnol. 2014;72:208–18.

    Article  Google Scholar 

  • Beck JS, Vartuli JC, Roth WJ, Leonowitcz ME, Kresge CT, Schmitt KD, Chu CT-W, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenke JL. A new family of mesoporous molecular sieves prepared with liquid crystal temperature. J Am Chem Soc. 1992;114:10834–43.

    Article  Google Scholar 

  • Bednorz JG, Mueller KA. Possible high Tc superconductivity with barium- lanthanum-copper-oxygen system. Z Phys. 1986;B-64:189–93.

    Article  Google Scholar 

  • Bernardino S, Estrela N, Ochoa-Mendes V, Fernandes P, Fonsseca LP. Optimization in the immobilization of penicillin G acylase by entrapment in xerogel particles with magnetic properties. J Sol–gel Sci Technol. 2011;58:545–56.

    Article  Google Scholar 

  • Boettcher H, Slowak P, Suss W. Sol–gel carrier systems for controlled drug delivery. J Sol–gel Sci Technol. 1998;13:277–81.

    Article  Google Scholar 

  • Boninsegna S, Dal TR, Dal MR, Carturan G. Alginate microsphere loaded with animal cells and coated by a siliceous layer. J Sol–gel Sci Technol. 2012;61:570–6.

    Article  Google Scholar 

  • Bono MS, Anderson AM, Caroll MK. Alumina aerogels prepared via rapid supercritical extraction. J Sol–gel Sci Technol. 2010;53:16–22.

    Article  Google Scholar 

  • Boyle TJ, Buchheit CD, Rodriguez MA, Al-Shareef HN, Hernandez BA, Scott B, Ziller JW. Formation of SrBi2Ta2O9 : part I. Synthesis and characterization of a novel sol–gel solution for production of ferroelectric SrBi2Ta2O9 thin films. J Mater Res. 1996;11:2274–81.

    Article  Google Scholar 

  • Braun S, Shtelzer S, Rappoport S, Avnir D, Ottolenghi M. Biocatalysis by sol–gel entrapped enzymes. J Non-Cryst Solids. 1992;147–148:739–48.

    Article  Google Scholar 

  • Brown P, Hope-Weeks LJ. The synthesis and characterization of zinc ferrite aerogels prepared by epoxide addition. J Sol–gel Sci Technol. 2009;51:238–43.

    Article  Google Scholar 

  • Brown LM, Mazdiyasni KS. Cold-pressing and low-temperature sintering of alkoxy-derived PLZT. J Am Ceram Soc. 1972;55:541–2.

    Article  Google Scholar 

  • Campostrini R, Carturan G, Caniato R, Piovan A, Filippini R, Innocenzi G, Cappelletti EM. Immobilization of plant cell in hybrid sol–gel materials. J Sol–gel Sci Technol. 1990;7:87–97.

    Article  Google Scholar 

  • Cao S, Yao N, Yeung K. Synthesis of free-stand silica and titania-silica aerogels with ordered and disordered mesopores. J Sol–gel Sci Technol. 2008;46:323–33.

    Article  Google Scholar 

  • Chen Z, Kaplan DL, Yang K, Kumar J, Marx KA, Tripathy SK. Phycobiliprotein encapsulated in sol–gel glass. J Sol–gel Sci Technol. 1996;7:99–108.

    Article  Google Scholar 

  • Chen CP, Tang MH, Tang ZH, Zhou YC. Electrical properties of La0.6Ca0.4MnO3- Bi3.4Nd0.6Ti3O12 thin films derived by sol–gel process. J Sol–gel Sci Technol. 2013;68:346–50.

    Article  Google Scholar 

  • Chu PY, Jones RE, Zurcher P, Taylor DJ, Jiang B, Gillepse SJ, Lii YT. Characteristics of spin-on ferroelectric random access memory applications. J Mater Res. 1996;11:1065–8.

    Article  Google Scholar 

  • Dinelli M, Fabbri E, Bondioli F. TiO2-SiO2 hard coating on polycarbonate substrate by microwave assisted sol–gel technique. J Sol–gel Sci Technol. 2011;58:463–9.

    Article  Google Scholar 

  • Dislich H. New routes to multicomponent oxide glasses. AngewChem, Int Ed Engl. 1971;10:363–70.

    Article  Google Scholar 

  • Dislich H, Hinz P. History and principles of the sol–gel process and some new multicomponent oxide coatings. J Non-Cryst Solids. 1982;48:11–6.

    Article  Google Scholar 

  • Dislich H, Hussmann E. Amorphous and crystalline dip coatings obtained from organometallic solutions: procedures, chemical processes and products. Thin Solid Films. 1981;77:129–37.

    Article  Google Scholar 

  • Durucan C, Pantano CG. Hybrid sol/gels for DNA arrays and other Lab-on-a Chip applications. In: Sakka S, editor. Handbook of Sol–gel science and technology, vol. 3. Boston: Kluwer; 2004. p. 551–7.

    Google Scholar 

  • Einarsrud MA, Haereid S. Preparation of transparent monolithic silica xerogels with low density. J Sol–gel Sci Technol. 1994;2:903–6.

    Article  Google Scholar 

  • Ellerby LM, Nishida CR, Yamanaka SA, Dunn B, Valentine JS, Zink JL. Encapsulation of proteins in transparent porous silicate glasses prepared by the sol-gel method. Science 1992;255:1113–5.

    Article  Google Scholar 

  • Fabes BD, Doyle WF, Zelinski BJJ, Silvermann LA, Uhlmann DR. Strengthening of silica glass by gel-derived coatings. J Non-Cryst Solids. 1986;82:349–55.

    Article  Google Scholar 

  • Fang X, Shen B, Zhai J. Preparation, dielectric and ferroelectric properties of (Na0.5Bi0.5)0.94Ba0.06TiO3 thin films by a sol–gel process. J Sol–gel Sci Technol. 2011;58:1–5.

    Article  Google Scholar 

  • Fricke J, Gross J. Aerogel manufacture, structure, properties, and applications. In: Lee B-I, Pope EJA, editors. Chemical processing of ceramics. New York: Marcel Dekker; 1994. p. 311–36.

    Google Scholar 

  • Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972;238:37–8.

    Article  Google Scholar 

  • Furusaki T, Takahashi J, Kodaira K. Preparation of ITO thin films by sol–gel method. J Ceram Soc Japan. 1994;102:200–5.

    Article  Google Scholar 

  • Gerber T, Trankova T, Henckel K-O, Bienengraeber V. Development and in vitro test of sol–gel derived bone grafting materials. J Sol–gel Sci Technol. 2003;26:1173–8.

    Article  Google Scholar 

  • Gottardi V. Glasses and glass ceramics from gels. Proceedings ed. V. Gottardi. J Non- Cryst Solids. 1982;48:1–230.

    Article  Google Scholar 

  • Grätzel M. Nanocrystalline ceramic films for efficient conversion of light into electricity. J Sol–gel Sci Technol. 1994;2:673–7.

    Article  Google Scholar 

  • Guan C, Wang G, Ji J, Wang J, Wang H, Tan M. Bioencapsulation of living yeast (Pichia pastoris) with silica after transformation with lysozyme gene. J Sol–gel Sci Technol. 2008;48:369–77.

    Article  Google Scholar 

  • Habouti S, Softerbeck C-H, Es-Souni M. Uv assisted pyrolysis of solution deposited BiFeO3 multiferroic thin films. Effects on microstructure and functional properties. J Sol–gel Sci Technol. 2007;42:257–63.

    Article  Google Scholar 

  • Hashimoto K, Fujishima A. Elimination of environment contaminating materials by photocatalyst. Catalyst. 1994;36:524–536.

    Google Scholar 

  • Hattori A, Makita K, Okabayashi S. Development of HUD combiner for automotive windshield application. In: SPIE, Current developments in optical engineering and commercial optics congress and exposition proceedings, vol 1168. Bellingham, WA; 1989. p. 272–282.

    Google Scholar 

  • Hench LL. In: Proceedings of tenth International Congress on Glass, Kyoto. July, 1974, Ceramic Society of Japan, No.9, p.30

    Google Scholar 

  • Hench LL, Orcel G. Physical-chemical and biochemical factors in silica sol–gel. J Non-Cryst Solids. 1986;82:1–10.

    Article  Google Scholar 

  • Hirano S, Kato K. Preparation of crystalline LiNbO3 films with preferred orientation by hydrolysis of metal alkoxides. Adv Ceram Mater. 1988a;3:503–6.

    Article  Google Scholar 

  • Hirano S, Kato K. Formation of crystalline LiNbO3 films by hydrolysis of metal alkoxides. J Non-Cryst Solids. 1988b;100:538–41.

    Article  Google Scholar 

  • Hirano S, Kato K. Processing of crystalline Li(Nb, Ta)O3 films with preferred orientation through metal alkoxides. Mat Res Soc Symp Proc. 1989;155:181–90.

    Article  Google Scholar 

  • Ichiura H, Kitaoka T, Tanaka H. Photocatalytic oxidation of NOx using composite sheets containing TiO2 and a metal compound. Chemosphere. 2003;51:855–60.

    Article  Google Scholar 

  • Ikeda K, Sakai H, Baba R, Hashimoto K, Fujishima A. Photocatalytic reactions involving radical chain reactions using microelectrode. J Phys Chem B. 1997;101:2617–20.

    Article  Google Scholar 

  • Ishibashi K, Nosaka Y, Hashimoto K, Fujishima A. Time-dependent behavior of active oxygen species formation on photoirradiated TiO2 films in air. J Phys Chem B. 1998;102:2117–20.

    Article  Google Scholar 

  • Jeon NJ, Noh JH, Yang WS, Kim YC, Ryu S, Seo J, Seok SI. Compositional engineering of perovskite materials for high-performance solar cells. Nature. 2015;517:476–89.

    Article  Google Scholar 

  • Kajiwara Y, Nagai A, Chujo Y. Microwave-assisted preparation of intense luminescent BODIPY-containing hybrids with high photostability and low leachability. J Mater Chem. 2009;20:2985–92.

    Article  Google Scholar 

  • Kamiya K, Sakka S, Tatemichi Y. Preparation of glass fibers of the ZrO2-SiO2 and Na2O-ZrO2-SiO2 systems from metal alkoxides and their resistance to alkaline solution. J Mater Sci. 1980;15:1765–71.

    Article  Google Scholar 

  • Kanamori K, Aizawa M, Nakanishi K, Hanada T. New transparent methylsilsesquioxane aerogels and xerogels with improved mechanical properties. Adv Mater. 2007;19:1589–93.

    Article  Google Scholar 

  • Kanamori K, Aizawa M, Nakanishi K, Hanada T. Elastic organic–inorganic hybrid aerogels and xerogels. J Sol–gel Sci Technol. 2008;48:172–81.

    Article  Google Scholar 

  • Kato H, Kudo A. Visible-light-response and photocatalytic activities of TiO2 and SrTiO3 photocatalysts codoped with antimony and chromium. J Phys Chem B. 2002;106:5029–34.

    Article  Google Scholar 

  • Kato K, Suzuki K, Nishizawa K, Miki T. Ferroelectric properties of alkoxy-derived CaBi4Ti4O15 thin films on Pt-passivated Si. Appl Phys Lett. 2001;78:1119–21.

    Article  Google Scholar 

  • Kato K, Fu D, Suzuki K, Tanaka K, Nishiizawa K, Miki T. Ferro- and piezoelectric properties of polar-axis-oriented CaBi4Ti4O15 films. Appl Phys Lett. 2004;84:3771–3.

    Article  Google Scholar 

  • Katsumata K, Okazaki S, Cordonter CEJ, Shichi T, Sasaki T, Fujishima A. Preparation and characterization of self-cleaning glass for vehicle with niobia nanosheets. Appl Mater Interfaces. 2010;2:1236–41.

    Article  Google Scholar 

  • Kawazoe H, Yasukawa M, Hyodo H, Kurita M, Yanagi H, Hosono H. P-type electrical conduction in transparent thin films of CuAlO2. Nature. 1997;389:939.

    Article  Google Scholar 

  • Kessler VG. The synthesis and solution stability of alkoxide precursors. In: Kozuka H, editors. Handbook of Sol–gel Science and Technology. Vol.1. Boston, MA: Kluwer; 2004. p. 3–40.

    Google Scholar 

  • Kim C-Y, Sekino T. Niihara K, Optical, mechanical, and dielectric properties of Bi1/2Na1/2TiO3 thin film synthesized by sol–gel method. J Sol–gel Sci Technol. 2010a;55:306–10.

    Google Scholar 

  • Kim J, Yang S, Bae B. Thermal stability of sol–gel derived methacrylate oligosiloxane-based hybrids for LED encapsulants. J Sol–gel Sci Technol. 2010b;53:434–40.

    Google Scholar 

  • Kistler SS. Coherent expanded aerogels and jellies. Nature. 1931;127:741.

    Article  Google Scholar 

  • Kistler SS. Coherent expanded aerogels. J Phys Chem. 1932;36:52–64.

    Article  Google Scholar 

  • Klein LC, Gallo TA, Garvey GJ. Densification of monolithic silica gels below 1000°C. J Non-Cryst Solids. 1984;63:23–33.

    Article  Google Scholar 

  • Knobbe ET, Dunn B, Fuqua PD, Nishida F. Laser behavior and photostability characteristics of organic dye doped silicate gel materials. Appl Optics. 1990;29:2727–33.

    Article  Google Scholar 

  • Kodaira K, Sohma M, Furusaki T, Preparation and properties of SnO2 thin films by dip-coating method, 1990, Ceramic Trans. Vol II, Columbus, OH: Ceramic Thin and Thick Films, The American Ceramic Society, 1990. p. 301–306

    Google Scholar 

  • Koh K, Sugiyama S, Morinaga T, Ohno K, Tujii Y, Fukuda T, Yamahiro M, Iijima T, Oikawa H, Watanabe K, Miyashita T. Precision synthesis of a fluorinated polyhedral oligomeric silsesquioxane-terminated polymer and surface characterization of its blend film with poly(methyl methacrylate). Macromolecules. 2005;38:1264–70.

    Article  Google Scholar 

  • Koiwa I, Kanehira T, Mita J, Iwabuchi T, Osaka T, Ono S, Maeda M. Crystallization of Sr0.7Bi2.3Ta2O9+α thin films by chemical liquid deposition. Jpn J Appl Phys. 1996;35:49464951.

    Article  Google Scholar 

  • Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskite as visible-light sensitizers for photovoltaic cells. J Am Chem Soc. 2009;131:6050–1.

    Article  Google Scholar 

  • Kozuka H, Yamano A, Fukui T, Uchiyama H, Takahashi M, Yoki M, Akase T. Large area ceramic films on plastics: a versatile route via solution processing. J Appl Phys. 2012a;111:016106-1–3.

    Article  Google Scholar 

  • Kozuka H, Fukui T, Takahashi M, Uchiyama H, Takahashi M, Tsuboi S. Ceramic thin films on plastics: a versatile transfer process for large areas well as patterned coating. Appl Mater Interface. 2012b;4:6415–20.

    Article  Google Scholar 

  • Kozuka H, Fukui T, Uchiyama H. Sol–gel and transfer technique for fabricating dual ceramic thin film patterns on plastics. J Sol–gel Sci Technol. 2013;67:414–9.

    Article  Google Scholar 

  • Kresge ME, Leonowicz WJ, Roth WJ, Vartuli JC, Beck JS. Ordered mesoporous molecular sieves synthesized by a liquid crystal template mechanism. Nature. 1992;359:710–2.

    Article  Google Scholar 

  • Lan Z, Wu J, Lin J, Huang M. Dye-sensitized solar cell with a solid state organic- inorganic composite electrolyte containing catalytic functional polypyrrole nanoparticles. J Sol–gel Sci Technol. 2010;53:599–604.

    Article  Google Scholar 

  • Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskite. Science. 2012;338:643–7.

    Article  Google Scholar 

  • Levy D, Einhjorn S, Avnir D. Applications of the sol–gel process for the preparation of photochromic information-recording materials. J Non-Cryst Solids. 1989;13:137–45.

    Article  Google Scholar 

  • Li G, Zhu X, Lei H, Jiang H, Song W, Yang Z, Dai J, Sun Y, Pan X, Dai S. Preparation and characterization of CuAlO2 transparent thin films prepared by chemical solution deposition method. J Sol–gel Sci Technol. 2010;53:641–6.

    Article  Google Scholar 

  • Lin K, Hsu P, Chen G, Sawada Y. Compound-induced changes in thermal, structural and optical properties of indium-gallium-zinc-oxides prepared by sol–gel method. J Sol–gel Sci Technol. 2014;71:260–6.

    Article  Google Scholar 

  • Liu H, Wang X. Large electric polarization in BiFeO3 film prepared via a simple sol–gel process. J Sol–gel Sci Technol. 2008;47:154–7.

    Article  Google Scholar 

  • Liu X, Gao W, Ji B. Synthesis of LiNi1/3Co1/3Mn1/3 nanoparticles by modified Pechini method and their enhanced rate capability. J Sol–gel Sci Technol. 2012;61:56–61.

    Article  Google Scholar 

  • Livage J, Roux C, DaCosta JM, Deportes I, Quinsen JF. Immunoassays in sol–gel matrix. J Sol–gel Sci Technol. 1996;7:45–51.

    Article  Google Scholar 

  • Lorjai P, Chaisuwan T, Wanghasemjit S. Porous structure of polybenzoxazine-based organic aerogel prepared by sol–gel process and their carbon aerogels. J Sol–gel Sci Technol. 2009;52:56–64.

    Article  Google Scholar 

  • Lu Y, Ganguli R, Dewien CA, Snderson MT, Huang MH, Zink JL. Continuous formation of supported, cubic and hexagonal mesoporous film by sol–gel dip- coating. Nature. 1997;389:364–8.

    Article  Google Scholar 

  • Luo H, Churu C, Fabrizo EF, Schnohrica J, Hobb A, Pass A, et al. Synthesis and characterization of the physical, chemical and mechanical properties of isocyanate- crosslinked vanadia aerogels. J Sol–gel Sci Technol. 2008;48:113–34.

    Article  Google Scholar 

  • MacChesney JB, Johnson DW, Blandakar S, Bohrer MP, Fleming JW, Monberg FM, Trevor DJ. Optical fibers by a hybrid process using sol–gel silica over- cladding tubes. J Non-Cryst Solids. 1998;226:232–8.

    Article  Google Scholar 

  • MacCraith BD, McDonagh C, O’Keeffe G, Butler T, O’Kelly B, McGilp JF. Fiber optic chemical sensors based on evanescent wave interactions in sol–gel derived porous coatings. J Sol–gel Sci Technol. 1994;2:661–5.

    Article  Google Scholar 

  • Maeda H, Kasuga T, Hench LL. Preparation of poly(L-lactic acid)-polysiloxane- calcium carbonate hybrid membranes for guided bone regeneration. Biomaterials. 2006;27:1216–22.

    Article  Google Scholar 

  • Mahanan JL, Brock SL. CdS aerogels: effect of concentration and primary particle size on surface area and optoelectronic properties. J Sol–gel Sci Technol. 2006;40:341–50.

    Article  Google Scholar 

  • Mazdiyasuni KS, Dollof RT, Smith JS. Preparation of high purity submicron barium titanate powders. J Am Ceram Soc. 1969;52:523–6.

    Article  Google Scholar 

  • Meng QB, Takahashi K, Zhang X-T, Sutanto I, Rao TN, Sato O, Fujishima A, Watanabe H, Nakamori T, Uragami M. Fabrication of an efficient solid-state dye-sensitized solar cell. Langmuir. 2003;19:3572–4.

    Article  Google Scholar 

  • Mickens M, Assefa Z, Kumar D. Tunable white-light-emission of a CaW1-xMoxO4: Tm3+, Tb3+, Eu3+ phosphor prepared by a Pechini sol–gel method. J Sol–gel Sci Technol. 2012;63:153–61.

    Article  Google Scholar 

  • Miyauchi M, Nakajima A, Watanabe T, Hashimoto K. Photoinduced hydrophilic conversion of TiO2/WO3 layered thin films. Chem Mater. 2002;14:4714–20.

    Article  Google Scholar 

  • Monde T, Kozuka H, Sakka S. Superconducting oxide thin films prepared by sol–gel technique using metal alkoxide. Chem Lett. 1988;287–290.

    Google Scholar 

  • Mosa J, Aparicio M, Tadanaga K, Hayashi A, Tatsumisaga M. Li4Ti5O12 thin film electrodes by in-situ synthesis of lithium alkoxide for Li-ion microbatteries. Electro- chimica Acta. 2014;149:293–9.

    Article  Google Scholar 

  • Murakami M, Izumi K, Deguchi T, Morita A. SiO2 coating with CH3Si(OC2H5)3 solution on stainless steel plate. J Ceram Soc Jpn. 1989;97:91–4.

    Article  Google Scholar 

  • Nakajima A, Koizumi S, Watanabe T, Hashimoto K. Effect of repeated photoillumination on the wettability conversion of titanium dioxide. J Photobiol Chem. 2001;146:129–32.

    Article  Google Scholar 

  • Nakamura S. GaN growth using GaN buffer layer. Appl Phys Lett. 1991;30:L1705–7.

    Google Scholar 

  • Nakanishi K. Monolithic porous silica for high speed HPLC. In: Sakka S, editor. Handbook of sol–gel science and technology, vol. 3. Boston: Kluwer; 2004. p. 65–72.

    Google Scholar 

  • Nakanishi K, Soga N. Phase separation in gelling silica-organic polymer solution: systems containing poly-[sodium styrene sulfonate]. J Am Ceram Soc. 1991;74:2518–30.

    Article  Google Scholar 

  • Nakanishi K, Segawa Y, Soga N. Pore surface from polymer-containing solution. J Non-Cryst Solids. 1991;134:39–46.

    Article  Google Scholar 

  • Nakanishi K, Takahashi R, Nagakane T, Kitayama K, Koheiya N, Shikata H, Soga N. Formation of hierarchical pore structure in silica gel. J Sol–gel Sci Technol. 2000;17:191–210.

    Article  Google Scholar 

  • Nasu H, Makida S, Kato T, Ihara Y, Imura T, Osaka Y. Superconducting Y-Ba-Cu-O films with Tc > 70K prepared by thermal deposition technique of Y-, Ba-, and Cu-2ethylhexanoate. Chem Lett. 1987;16:2403–4.

    Article  Google Scholar 

  • Nicolan GA, Techener SJ. On a new method of preparation of xerogels and aerogels of silica and their textural property. Bull Soc Chim Fr. 1968;5:1900–6.

    Google Scholar 

  • Nishiura S, Tanabe S, Fujioka K, Fujimoto Y. Properties of transparent Ce:YAG ceramic phosphates for white LED. Opt Mater. 2011a;33:688–91.

    Article  Google Scholar 

  • Nishiura S, Tanabe S, Fujioka K, Fujimoto Y. Properties of transparent Ce3+::GdYAG ceramics phosphors for white LED. IOP Conf.Series. Mater Sci Eng. 2011b;18(102005):1–4.

    Google Scholar 

  • O’Regan B, Gräthel M. A low cost, high efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature. 1991;353:737–40.

    Article  Google Scholar 

  • Ogawa M. Formation of novel oriented transparent films of layered silica-surfactant nanocomposites. J Am Chem Soc. 1994;116:7941–2.

    Article  Google Scholar 

  • Ogiwara S, Kinugwa K. Properties of transparent, conducting In2O3 film formed by thermal decomposition of indium acetylacetonate. J Ceram Soc Jpn. 1982;90:157–63.

    Google Scholar 

  • Ohtomo T, Hayashi A, Tatsumisago M, Tsuchida Y, Hama S. All-solid-state lithium secondary batteries using the 75Li2S・25P2S5 glass and the 70Li2S・30P2O5 glass ceramic as solid electrolytes. J Power Sources. 2013;233:231–5.

    Article  Google Scholar 

  • Philip G, Schmidt H. New materials for contact lenses prepared from Si- and Ti- alkoxides by the sol–gel process. J Non-Cryst Solids. 1984;63:1–11.

    Article  Google Scholar 

  • Popali M, Kappel J, Pilz M, Schulz J, Feider G. A new inorganic–organic polymer for the passivation of thin film capacitors. J Sol–gel Sci Technol. 1994;2:157–60.

    Article  Google Scholar 

  • Pope EJA. Gel encapsulated microorganism: saccharomyces cerevisiae-silica gel biocomposites. JSol–gel Sci Technol. 1995a;4:25–229.

    Google Scholar 

  • Pope EJA. Life in glass: the encapsulation of living cells in inorganic gels. In: Proceedings of XVII international congress on glass, vol. 1. Beijing: Chinese Ceramic Society; 1995b. p. 165–73.

    Google Scholar 

  • Pope EJA, Braun K, Petersen CM. Bioartificial organs. I: silica gel encapsulated pancreatic islets for the treatment of diabetes mellitus. J Sol–gel Sci Technol. 1997;8:635–9.

    Google Scholar 

  • Rabinovich EM, Johnson DW, McChesney JB, Vogel EM. Preparation of trans- parent high silica articles from colloidal gels. J Non-Cryst Solids. 1982;47:435–9.

    Article  Google Scholar 

  • Rajalaksh A, Nithiyya VD, Karthikeyan K, Sanjeeviraja C, Lee YS, Kalai SR. Physicochemical properties of V5+ doped LiCoPO4 as cathode materials for Li-ion batteries. J Sol–gel Sci Technol. 2013;65:399–410.

    Article  Google Scholar 

  • Reetz MT, Zonta A, Simpelkam@ J, Rufinska A, Tesche B. Characterization of hydrophobic sol–gel materials containing entrapped lipase. J Sol–gel Sci Technol. 1996;7:35–43.

    Article  Google Scholar 

  • Reisfeld R. Spectroscopy and application of molecules in glasses. J Non-Cryst Solids. 1990a;121:254–66.

    Article  Google Scholar 

  • Reisfeld R. Theory and application of spectroscopically active glasses prepared by the sol–gel method. Proc SPIE Sol–gel Optics. 1990b;1328:29–39.

    Article  Google Scholar 

  • Riman RE, Haaland DM, Northrup CJM, Bowen HK, Bleier A. An infrared study of metal isopropoxide precursors for SrTiO3. Mat Res Soc Symp Proc. 1984;32:233–8.

    Article  Google Scholar 

  • Roux C, Livage J, Farhati K, Monjour L. Antibody-antigen reactions in porous sol–gel matrices. J Sol–gel Sci Technol. 1997;8:663–6.

    Google Scholar 

  • Roy R. Aids in hydrothermal experimentation.II, Methods of making mixtures for both “dry” and “wet” phase equilibrium studies. J Am Ceram Soc. 1956;39:145–6.

    Article  Google Scholar 

  • Roy R. Gel route to homogeneous glass preparation. J Am Ceram Soc. 1969;52:344.

    Article  Google Scholar 

  • Sakai S, Ono T, Iijima H, Kawakami K. alginate/aminopropyl-silicate/alginate membrane immunoisolatability and insulin secretion of encapsulated islets. Biotechnol Prog. 2002a;18:401–3.

    Article  Google Scholar 

  • Sakai S, Ono T, Iijima H, Kawakami K. In vitro and in vivo evaluation of alginate/sol–gel synthesized aminopropyl-silicate/alginate membrane for bioartificial pancreas. Biomaterials. 2002b;23:4177–83.

    Article  Google Scholar 

  • Sakai S, Ono T, Iijima H, Kawakami K. Proliferation and insulin secretion of mouse insulinoma cells encapsulated in alginate/sol–gel synthesized aminopropyl-silicate/alginate micro capsule. J Sol–gel Sci Technol. 2003;28:267–72.

    Article  Google Scholar 

  • Sakamoto W, Yamazaki H, Iwata A, Shimura T, Yogo T. Synthesis and characterization of BiFeO3-PbTiO3 thin films through metal-organic precursor solution. Jpn J Appl Phys. 2006;45:7315–20.

    Article  Google Scholar 

  • Sakamoto W, Iwata A, Moriya M, Yogo T. Electrical and magnetic properties of Mn-doped 0.7BiFeO3-0.3PbTiO3 thin films prepared under various heating atmospheres. Mater Chem Phys. 2009;116:536–41.

    Article  Google Scholar 

  • Sakka S, Kamiya K. Preparation of compact solids from metal alkoxides. In: Somiya S, Saito S, editors. Proceedings of the international symposium on factors in densification and sintering of oxide and non-oxide ceramics, 1987, Japan; 1979. p. 101–9.

    Google Scholar 

  • Sakka S, Kamiya K. TiO2-SiO2 glass prepared from metal alkoxides. J Mater Sci. 1980;15:2937–9.

    Article  Google Scholar 

  • Sakka S, Kokubo T. Preparation of glasses and ceramics for electrical use based on alkoxide and unidirectional solidification method. Jpn J Appl Phys. 1983;22 Suppl 22-2:3–7.

    Article  Google Scholar 

  • Sakka S, Kamiya K. Properties of shaped glasses through sol–gel method. In: Davis RF, Palmour III H, Porter RL, editors. Emergent process methods for high technology ceramics, Mater Science Research. New York: Plenum Press; 1984. p. 83–94.

    Chapter  Google Scholar 

  • Sakka S, Kamiya K, Yamanaka I. Non-crystalline solids of the TiO2-SiO2 and Al2O3-SiO2 systems formed from alkoxides. In: Kunugi M, Tashiro M, Soga N, editors. Proceedings of Xth international congress on glass, vol. 13. Kyoto: The Ceramic Society of Japan; 1974. p. 44–8.

    Google Scholar 

  • Sakka S, et al. Preparation of porous materials by the sol–gel method. In: Ishizaki K, editor. Porous materials, Ceramic Transactions, vol. 31. Westerville: The American Ceramic Society; 1993. p. 27–39.

    Google Scholar 

  • Sampath S, Pankratov I, Gun J, Lev O. Sol–gel derived ceramic-carbon enzyme electrode: glucose oxidase as a test case. J Sol–gel Sci Technol. 1996;7:123–8.

    Article  Google Scholar 

  • Samuel J, Strinkovski M, Shalom S, Ottolenghi M, Avnir D, Lewis A. Miniaturization of organically doped sol–gel materials: a micron-size fluorescent pH sensor. Mater Lett. 1994;21:431–4.

    Article  Google Scholar 

  • Sarapulova A, Mikhailova P, Schmitt LA, Oswald S, Bremnik N, Ehrenberg H. Disordered carbon nanofiber/LiCoPO4 composites as cathode materials for lithium ion batteries. J Sol–gel Sci Technol. 2012;62:98–110.

    Article  Google Scholar 

  • Sasaki Y, Akiyoshi K. Self-assembled nanogel engineering for advanced biomedical technology. Chem Lett. 2012;41:202–8.

    Article  Google Scholar 

  • Schmidt H. New type of non-crystalline solids between inorganic and organic- materials. J Non-Cryst Solids. 1985;73:681–91.

    Article  Google Scholar 

  • Schmidt H, Seiferling B, Philip G, Deichmann K. In: Mackenzie JD, Ulrich DR, editors. Ultrastructure, processing of advanced ceramics. New York: Wiley; 1988. p. 651.

    Google Scholar 

  • Schottner G, Rose K, Posset U. Scratch and abrasion resistant coating on plastic lenses – State of the art, current developments and perspective. J Sol–gel Sci Technol. 2003;27:71–9.

    Article  Google Scholar 

  • Schröder H. Oxide layers deposited from organic solutions. In: Haas G, Thun RE, editors. Physics of thin films, vol. 6. New York: Academic; 1969. p. 87–141.

    Google Scholar 

  • Scott JF, Araujo CA, Melnick BM, McMillan LD, Zuleeg R. Quantitative measurement of space-charge effects in lead zircon titanate memories. J Appl Phys. 1991;70:382–8.

    Article  Google Scholar 

  • Shirosaki Y, Tsuru K, Hayakawa S, Osaka A, Lopes MA. In vitro cytocompatibility of MG 63 cells on chitosan-organosiloxane hybrid mat membranes. Biomaterials. 2005;26:485–93.

    Article  Google Scholar 

  • Soltmann U, Böttcher H. Utilization of sol–gel ceramics for the immobilization of living microorganisms. J Sol–gel Sci Technol. 2008;48:66–72.

    Article  Google Scholar 

  • Sumitomo Chemicals Company. Japanese Patent, 1974; 49–108325: 1975; 50–12335.

    Google Scholar 

  • Takano R, Tadanaga K, Hayashi A, Tatsumisagao M. Low temperature synthesis of Al-doped Li7La3Zr2O12 solid electrolyte by a sol–gel process. Solid State Ion. 2014;255:104–7.

    Article  Google Scholar 

  • Tanaka H, Obana S. Coatings with photocatalyst on architectural glass. In: S. Sakka, editor, Handbook of Sol–gel Science and Technology Vol. 3, Boston, MA: Kluwer; 2004. p. 2117–2120.

    Google Scholar 

  • Tanaka T, Takahashi Y, Iizaka H, Ohguma K, Yamahiro M. Development of super durable hard coat film. In: Proceedings of RadTech Asia, Yokohama. 2011. p. 342–343.

    Google Scholar 

  • Tani T, Namikawa H, Arai K, Makishima A. Photochemical hole-burning study of 1, 4-dihydroxyanthraquinone doped on amorphous silica prepared by alcoholic method. J Appl Phys. 1985;58:3559–62.

    Article  Google Scholar 

  • Three M (3M) Company. Private communication. 1983; Catalogue Nextel fiber.

    Google Scholar 

  • Tillotson TM, Hrubush LW. Transparent ultralow-density silica aerogels prepared by a two-step sol–gel process. J Non-Cryst Solids. 1992;145:44–50.

    Article  Google Scholar 

  • Tohge N, Matsuda A, Minami T. Preparation of ZrO2 and ZrO2-SiO2 coating thin film by sol–gel method. J Chem Soc Jpn. 1987;9:1952–7.

    Google Scholar 

  • Tohge N, Matsuda A, Minami T, Matsuno Y, Katayama S, Ikeda Y. Fine-patterning on glass substrates by the sol–gel method. J Non-Cryst Solids. 1988;100:501–5.

    Article  Google Scholar 

  • Tohge N, Tatsumisago M, Minami T. Preparation of high-Tc superconducting oxide films in the Bi-(Pb)-Ca-Sr-Cu-O system from stabilized metal alkoxides. J Non-Cryst Solids. 1990;121:443–7.

    Article  Google Scholar 

  • Toki M, Miyashita S, Takeuchi T, Kanbe S, Kochi A. A large-size glass produced by a new sol–gel process. J Non-Cryst Solids. 1988;100:479–82.

    Article  Google Scholar 

  • Turniansky A, Avnir D, Bronshtein A, Aharonson N, Altstein M. Sol–gel entrapment of monoclonal anti-atrazine antibodies. J Sol–gel Sci Technol. 1996;7:135–43.

    Article  Google Scholar 

  • Uhlmann DR, Teowee G, Boulton JM, Motekef S, Lee SC. Electrical and dielectric properties of chemically derived ferroelectric films. J Non-Cryst Solids. 1992;147/148:409–23.

    Article  Google Scholar 

  • Uhlmann DR, Dawley JT, Poisl WH, Zelinski BJJ. Ferroelectric films. J Sol–gel Sci Technol. 2000;19:53–64.

    Article  Google Scholar 

  • Vadivel MA, Muraligan T, Manthium A. One-pot microwave-hydrothermal synthesis and characterization of carbon-carbon LiMPO4 (M = Mn, Fe, and Co) cathode. J Electrochem Soc. 2009;156:A79–83.

    Article  Google Scholar 

  • Van den Ham EJ, Peys N, De Dobbelaere C, D’Haen J, Mattelaer F, Detavernier C, Notten PHL, Hardy A, Van Bael MK. Amorphous and perovskite Li3xLa(2/3)- xTiO3 (thin) films via chemical solution deposition: solid electrolytes for all-solid-state Li-ion batteries. J Sol–gel Sci Technol. 2015;73:536–43.

    Article  Google Scholar 

  • Vasanti R, Kaplana D, Renganathan NG. Olivine-type nanoparticle for hybrid supercapacitor. J Solid State Electrochem. 2008;12:961969.

    Google Scholar 

  • Wallace S, Hench LL. The processing and characterization of DCCA modified gel-derived silica. Mater Res Soc Symp Proc. 1984;32:47–52.

    Article  Google Scholar 

  • Wang J, Huang S. Potential of low-temperature post processing of silica for high-temperature stable LED encapsulant. J Sol–gel Sci Technol. 2012;64:557–63.

    Article  Google Scholar 

  • Wu F, Chen KC, Mackenzie JD. Ferroelectric Ceramics – The sol–gel method versus conventional processing. Mat Res Soc Symp Proc. 1984;32:169–74.

    Article  Google Scholar 

  • Wu W, Liang S, Ping Z, Zheng H, Wu L. Low temperature synthesis of nanosized ZnNb2O6 photocatalysts. J Sol–gel Sci Technol. 2012;61:570–6.

    Article  Google Scholar 

  • Xu Y, JihChen C, Xu R, Mackenzie JD. The self-biased heterojunction effect of ferroelectric thin film on silicon substrate. J Appl Phys. 1990;67:2985–91.

    Article  Google Scholar 

  • Yajima S, Okamura K, Hayashi J, Omori M. Synthesis of continuous SiC fibers with high tensile strength. J Am Ceram Soc. 1976;59:324.

    Article  Google Scholar 

  • Yamane M, Aso S, Okano S, Sakaino T. Low temperature synthesis of a monolithic silica glass by the pyrolysis of a silica gel. J Mat Sci. 1979;14:607–11.

    Article  Google Scholar 

  • Yanagisawa T, Shimizu T, Kuroda K, Kato C. The preparation of alkyltrimethyl- ammmonium-Kanemite complexes and their conversion to microporous materials. Bull Chem Soc Jpn. 1990a;63:988–92.

    Article  Google Scholar 

  • Yanagisawa T, Shimizu T, Kuroda K, Kato C. The trimethylsilyl derivatives of alkyl- trimethylammmonium-Kanemite complexes and their conversion to microporous SiO2 materials. Bull Chem Soc Jpn. 1990b;63:1535–7.

    Article  Google Scholar 

  • Yokogawa H, Yokoyama M. Hydrophobic silica aerogels. J Non-Cryst Solids. 1995;186:23–9.

    Article  Google Scholar 

  • Yokogawa Y, Nishizawa K, Nagata F, Kameyama T. Bioactive properties of chitin/chitosan-calcium phosphate composite materials. J Sol–gel Sci Technol. 2001;21:105–13.

    Article  Google Scholar 

  • Yoldas BE. Alumina sol preparation from alkoxides. Am Ceram Soc Bull. 1975b;54:289–90.

    Google Scholar 

  • Zarzycky J, Prassas M, Phalippou J. Synthesis of glasses from gels: the problems of monolithic gels. J Mater Sci. 1982;17:3371–9.

    Article  Google Scholar 

  • Zhao L, Zhao X, Liu J, Zhang A, Wang D, Wei B. Fabrications of Nb-doped TiO2 (TNO) transparent conductive oxide polycrystalline films on glass substrates by sol–gel method. J Sol–gel Sci Technol. 2010;53:475–9.

    Article  Google Scholar 

  • Zhu CM, Wang LG, Yuan SL, Tian SC. Room-temperature multiferroic properties of 0.6BiFeO3-0.4(Bi0.5Na0.5)(1-x)BaxTiO3 solid solution ceramics. J Sol–gel Sci Tech. 2015;76:289–97.

    Article  Google Scholar 

  • Zhuang H, Kozuka H, Yoko T, Sakka S. Preparation of superconductive Bi-Sr-Ca- Cu-O coating films by the sol–gel method using an aqueous solution of metal acetate. Jpn J Appl Phys. 1990;29:L1107–10.

    Article  Google Scholar 

  • Zieba J, Zhang Y, Prasad PN. Sol–gel processed inorganic oxides organic polymer composites for second-order nonlinear optical application. SPIE Sol–gel Optics II. 1992;1328:403–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumio Sakka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Sakka, S. (2016). History of the Sol–Gel Chemistry and Technology. In: Klein, L., Aparicio, M., Jitianu, A. (eds) Handbook of Sol-Gel Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-19454-7_87-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19454-7_87-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-19454-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics