Skip to main content
Log in

Potential of low-temperature post processing of silica gel for high-temperature stable LED encapsulant

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this study, a low-temperature post processing of silica gel for high-temperature stable LED encapsulant was developed. The results indicated that the silica gels prepared by 1st post heat treatment at 300 °C for 5 h and then 2nd post processing at 80 °C for 50 h can have similar low weight loss and high transmittance as the silica gels were processed at 800 °C for 5 h. The result of such low processing temperature implies it may be possible to encapsulate inorganic gel on LED as the convenient potting method is being used in silicone encapsulation technology. However, the processing time can be greatly reduced if vacuum oven is used. Further surface impermeability improvement is also possible by additional local surface heat treatment. The advantages of adopting silica encapsulant in LED modules include higher thermal stability and better optical performance consistency in lumen, color temperature, etc. in new applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lin YH, You JP, Lin YC, Tran NT, Shi FG (2010) Development of high-performance optical silicone for the packaging of high-power LEDs. Compon Packag Technol 33(4):761–766. doi:10.1109/TCAPT.2010.2046488

    Article  CAS  Google Scholar 

  2. Narendran N, Gu Y, Freyssinier JP, Yu H, Deng L (2004) Solid-state lighting: failure analysis of white LEDs. J Cryst Growth 268(3–4):449–456. doi:10.1016/j.jcrysgro.2004.04.071

    Article  CAS  Google Scholar 

  3. Yanagisawa T, Kojima T (2005) Long-term accelerated current operation of white light-emitting diodes. Luminescence 114(1):39–42. doi:10.1016/j.jlumin.2004.11.010

    Article  CAS  Google Scholar 

  4. Wang J, Tsai CC, Cheng WC, Chen MH, Chung CH, Cheng WH (2011) High thermal stability of phosphor-converted white light-emitting diodes employing Ce: YAG-doped glass. Sel Top Quantum Electron 17(3):741–746. doi:10.1109/JSTQE.2010.2096459

    Article  CAS  Google Scholar 

  5. Elger G, Hutter M, Oppermann H, Aschenbrenner R, Reichl H, Jäger E (2002) Development of an assembly process and reliability investigations for flip-chip LEDs using the AuSn soldering. Microsys. Technol 7(5–6):239–243. doi:10.1007/s005420100103

    Article  Google Scholar 

  6. Nishiura S, Tanabe S, Fujioka K, Fujimoto Y (2011) Properties of transparent Ce:YAG ceramic phosphors for white LED. Opt Mater 33(5):688–691. doi:10.1016/j.optmat.2010.06.005

    Article  CAS  Google Scholar 

  7. Nogami M, Abe Y (1994) Sol–gel method for synthesizing visible photoluminescent nanosized Ge-crystal-doped silica glasses. Appl Phys 65(20):2545–2547. doi:10.1063/1.112630

    CAS  Google Scholar 

  8. Duran A, Serna C, Fornes V, Fernandez Navarro JM (1986) Structural considerations about SiO2 glasses prepared by SOL–GEL. Spain J Non –Cryst Solids 82(1–3):69–77. doi:10.1016/0022-3093(86)90112-2

    Article  CAS  Google Scholar 

  9. Shin SR, Lee ZH, Cho GS, Lee KW (2004) Hydrogen gas pick-up mechanism of Al-alloy melt during lost foam casting. J Mater Sci 39(5):1563–1569. doi:10.1023/B:JMSC.0000016152.96919.6c

    Article  CAS  Google Scholar 

  10. Khalil KMS, Makhlouf SA (2008) High surface area thermally stabilized porous iron oxide/silica nanocomposites via a formamide modified sol–gel process. Appl Surf Sci 254(13):3767–3773. doi:10.1016/j.apsusc.2007.11.066

    Article  CAS  Google Scholar 

  11. Matijasevic GS, Lee CC, Wang CY (1993) Au/Sn alloy phase diagram and properties related to its use as a bonding medium. Thin Solid Films 223(2):276–287. doi:10.1016/0040-6090(93)90533-U

    Article  CAS  Google Scholar 

  12. Nogami M, Moriya Y (1980) Glass formation through hydrolysis of Si(OC2H5)4 with NH4OH and HCl solution. J Non Cryst Solids 37(2):191–201. doi:10.1016/0022-3093(80)90150-7

    Article  CAS  Google Scholar 

  13. Sakka S, Kamiya K (1980) Glasses from metal alcoholates. J Non Cryst Solids 42(1–3):403–421. doi:10.1016/0022-3093(80)90040-X

    Article  CAS  Google Scholar 

  14. Agarwal A, Davis KM, Tomozawa M (1995) A simple IR spectroscopic method for determining fictive temperature of silica glasses. Non Cryst Solids 185(1–2):191–198. doi:10.1016/0022-3093(94)00676-8

    Article  CAS  Google Scholar 

  15. Lowry RK (1999) Sources and control of volatile gases hazardous to hermetic electronic enclosures. In:International symposium on advanced packaging materials: processes, properties and interfaces, 94–99

  16. Tennent NH (1979) Clear and pigmented epoxy resins for stained glass conservation: light ageing studies. Stud Conserv 24(4):153–164. doi:10.2307/1505777

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by National Science Council of Republic of China, Taiwan, R.O.C under Contract NSC101-3113-E-110-002-CC2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jau-Sheng Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, JS., Huang, SY. Potential of low-temperature post processing of silica gel for high-temperature stable LED encapsulant. J Sol-Gel Sci Technol 64, 557–563 (2012). https://doi.org/10.1007/s10971-012-2889-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-012-2889-1

Keywords

Navigation