Skip to main content
Log in

Disordered carbon nanofibers/LiCoPO4 composites as cathode materials for lithium ion batteries

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

LiCoPO4-coated disordered carbon nanofibers (CNFs/LiCoPO4) were obtained by a sol–gel method, using triethyl phosphite or triethyl phosphate as the phosphorous source. The crystal structure of the products was analyzed by X-ray powder diffraction, while morphology was studied using scanning electron microscopy, transmission electron microscopy, Auger electron spectroscopy and X-ray photoelectron spectroscopy. Optimal synthesis conditions for the CNFs/LiCoPO4 in light of the best electrochemical performance are discussed. The best discharge capacity 105 mAh/g (or ca. 63% of the theoretical capacity) shows the material with 40% CNFs/LiCoPO4 and addition coating by carbon black. This composition has a best purity of active materials and point coverage of CNFs. The X-ray photoelectron C1s spectra of the CNFs surface without and with sputter erosion show enhancement of C–O bonds at the fiber surface, which does not influence significantly electrochemical behavior of the composite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Shui JL, Yu Y, Yang XF, Chen CH (2006) Electrochem Commun 8:1087–1091

    Article  CAS  Google Scholar 

  2. Amine K, Yasuda H, Yamachi M (2000) Electrochem Solid State Lett 3:178

    Article  CAS  Google Scholar 

  3. Lloris JM, Pe′rez Vicente C, Tirado JL (2002) Electrochem Solid State Lett 5(10):A234–A237

    Article  CAS  Google Scholar 

  4. Bramnik NN, Bramnik KG, Baehtz C, Ehrenberg H (2005) J Power Sources 145:74

    Article  CAS  Google Scholar 

  5. Bramnik NN, Nikolowski K, Trots DM, Ehrenberg H (2008) Electrochem Solid State Lett 11(6):A89–A93

    Article  CAS  Google Scholar 

  6. Vasanthi R, Kalpana D, Renganathan NG (2008) J Solid State Electrochem 12:961–969

    Article  CAS  Google Scholar 

  7. Jin B, Gu H-B, Kim K-W (2008) J Solid State Electrochem 12:105–111

    Article  CAS  Google Scholar 

  8. Yang J, Xu JJ (2006) J Electrochem Soc 153:A716–A723

    Article  CAS  Google Scholar 

  9. Thorat IV, Mathur V, Harb JN, Wheeler DR (2006) J Power Sources 162:673–678

    Article  CAS  Google Scholar 

  10. Chen J, Vacchio MJ, Wang S, Chernova N, Zavalij PY, Whittingham MS (2008) Solid State Ion 178:1676–1693

    Article  CAS  Google Scholar 

  11. Zhao Y, Wang S, Zhao C, Xia D (2009) Rare Metals 28:117–121

    Article  Google Scholar 

  12. Vadivel Murugan A, Muraliganth T, Manthiram A (2009) J Electrochem Soc 156:A79–A83

    Article  CAS  Google Scholar 

  13. Wang GX, Bewlay S, Yao J, Ahn JH, Dou SX, Liu HK (2004) Electrochem Solid State Lett 7(12):A503–A506

    Article  CAS  Google Scholar 

  14. Sivakumar BM, Bramnik NN, Ensling D, Ehrenberg H, Jaegermann W (2008) J Power Sources 180:553–560

    Article  Google Scholar 

  15. Wolfenstine J (2006) J Power Sources 158:1431–1435

    Article  CAS  Google Scholar 

  16. Phadhi K, Nanjundaswamy KS, Goodenough JB (1997) J Electrochem Soc 144:1188

    Article  Google Scholar 

  17. Bramnik NN, Bramnik KG, Buhrmester T, Baehtz C, Ehrenberg H, Fuess H (2004) J Solid State Eletrochem 8:558–564

    CAS  Google Scholar 

  18. Deniard P, Dulac AM, Rocquefelte X, Grigorova V, Lebacq O, Pasturel A, Jobic S (2004) J Phys Chem Solids 65:229–233

    Article  CAS  Google Scholar 

  19. Shi S, Liu L, Ouyang C, Wang D-S, Wang Z, Chen L, Huang X (2003) Phys Rev B 68:195108

    Article  Google Scholar 

  20. Wang GX, Bewaly SL, Konstantino K, Liu HK, Dou SX, Ahn J-H (2004) Electrochim Acta 50:443

    Article  CAS  Google Scholar 

  21. Wolfenstine J, Read J, Allen JL (2007) J Power Sources 163:1070–1073

    Article  CAS  Google Scholar 

  22. Herle PS, Ellis B, Coombs N, Nazar NF (2004) Nat Matter Lett 3:147

    Article  CAS  Google Scholar 

  23. Piana M, Cushing BL, Goodenough JB, Penazzi N (2004) Solid State Ion 175:233–237

    Article  CAS  Google Scholar 

  24. Bramnik NN, Nikolowski K, Baehtz C, Bramnik KG, Ehrenberg H (2007) Chem Mater 19:908–915

    Article  CAS  Google Scholar 

  25. Liu Jun, Conry ThomasE, Song Xiangyun, Yang Li, Doeff MarcaM, Richardson ThomasJ (2011) J Mater Chem 21:9984–9987

    Article  CAS  Google Scholar 

  26. Fuertes AB, Sevilla M, Valdes-Solis T, Tartaj P (2007) Chem Mater 19:5418–5423

    Article  CAS  Google Scholar 

  27. Kubota S, Nishikiori H, Tanaka N, Endo M, Fujii T (2005) J Phys Chem B 109:23170–23174

    Article  CAS  Google Scholar 

  28. Liu D-M, Troczynski T, Tseng WJ (2001) Biomaterials 22:1721–1730

    Article  CAS  Google Scholar 

  29. Roisnel T, Rodriguez-Carvajal J (2001) Mater Sci Forum 378–381:118–123

    Article  Google Scholar 

  30. Westheimer FH, Huang S, Covitz F (1988) J Am Chem Soc 110:181–185

    Article  CAS  Google Scholar 

  31. Thackeray M, Baker S, Adendorff K, Goodenough JB (1985) Solid State Ion 17:175

    Article  CAS  Google Scholar 

  32. Ehrenberg H, Bramnik NN, Senyshyn A, Fuess H (2009) Solid State Sci 11:18–23

    Article  CAS  Google Scholar 

  33. http://www.freepatentsonline.com/20100028676.pdf

Download references

Acknowledgment

This work was supported by the DFG (EH183/3) within SPP1181. The authors are thankful to Sabine Foro (Institute for Materials Science, Darmstadt University of Technology, Petersenstr. 23, 64287 Darmstadt, Germany) for chemical analysis of the composites and Kenichi Tsutsumi from JEOL company, Japan for the AES investigations. This work has considerably benefited from financial support from the Bundesministerium für Bildung und Foschung (BMBF) within the program “Elektrochemie für Elektromobilität”, grant no. 03KP801.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelina Sarapulova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarapulova, A., Mikhailova, D., Schmitt, L.A. et al. Disordered carbon nanofibers/LiCoPO4 composites as cathode materials for lithium ion batteries. J Sol-Gel Sci Technol 62, 98–110 (2012). https://doi.org/10.1007/s10971-012-2691-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-012-2691-0

Keywords

Navigation