Skip to main content
Log in

Elastic organic–inorganic hybrid aerogels and xerogels

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Novel aerogels and xerogels with methylsilsesquioxane (MSQ, CH3SiO1.5) networks have been prepared by a modified sol–gel process using surfactant and urea as a phase-separation inhibitor and as an accelerator for the condensation reaction, respectively. Optimized aerogels dried under a supercritical condition not only showed the similar properties as conventional pure silica aerogels such as high transparency and porosity etc, but also demonstrated outstanding mechanical strength against compression; the aerogel drastically shrank upon loading and then recovered when unloaded, which is called a “spring-back” behavior. On ambient pressure drying, the wet gel also exhibited the similar response against compression stress originated from the capillary pressure, and thus xerogels with the comparative structure and properties to those of corresponding aerogels have also been obtained. This unusual mechanical behavior is attributed to the trifunctional flexible networks of MSQ, low silanol concentration which prevents the irreversible shrinkage, and high concentration of a hydrophobic methyl group directly attached to every silicon atom which helps re-expansion after the temporal shrinkage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Fricke J, Emmerling A (1992) J Am Ceram Soc 75:2027

    Article  CAS  Google Scholar 

  2. Hüsing N, Schubert U (1998) Angew Chem Int Ed 37:22

    Article  Google Scholar 

  3. Pierre AC, Pajonk GM (2002) Chem Rev 102:4243

    Article  CAS  Google Scholar 

  4. Iijima T, Adachi I, Enomoto R, Suda R, Sumiyoshi T, Leonidopoulos C, Marlow DR, Prebys E, Kawai H, Kurihara E, Nanao M, Suzuki K, Unno Y, Ogawa S, Murakami A, Khan MHR (2000) Nucl Inst and Meth A 453:321

    Article  CAS  Google Scholar 

  5. Li W, Reichenauer G, Fricke J (2002) Carbon 40:2955

    Article  CAS  Google Scholar 

  6. Kim SJ, Hwang SW, Hyun SH (2005) J Mater Sci 40:725

    Article  CAS  Google Scholar 

  7. Tsou P (1995) J Non-Cryst Solids 186:415

    Article  CAS  Google Scholar 

  8. Kistler SS (1931) Nature 127:741

    Article  CAS  Google Scholar 

  9. Hüsing N, Schubert U (1997) J Sol-Gel Sci Tech 8:807

    Google Scholar 

  10. Hüsing N, Schubert U, Misof K, Fratzl P (1998) Chem Mater 10:3024

    Article  Google Scholar 

  11. Meador MAB, Fabrizio EF, Ilhan F, Dass A, Zhang G, Vassilaras P, Johnston JC, Leventis N (2005) Chem Mater 17:1085

    Article  CAS  Google Scholar 

  12. Katti A, Shimpi N, Roy S, Lu H, Fabrizio EF, Dass A, Capadona LA, Leventis N (2006) Chem Mater 18:285

    Article  CAS  Google Scholar 

  13. Kanamori K, Aizawa M, Nakanishi K, Hanada T (2007) Adv Mater 19:1589

    Article  CAS  Google Scholar 

  14. Baney RH, Itoh M, Sakakibara A, Suzuki T (1995) Chem Rev 95:1409

    Article  CAS  Google Scholar 

  15. Kanamori K, Yonezawa H, Nakanishi K, Hirao K, Jinnai H (2004) J Sep Sci 27:874

    Article  CAS  Google Scholar 

  16. Loy DA, Baugher BM, Baugher CR, Schneider DA, Rahimian K (2000) Chem Mater 12:3624

    Article  CAS  Google Scholar 

  17. Dong H, Brook MA, Brennan JD (2005) Chem Mater 17:2807

    Article  CAS  Google Scholar 

  18. Brinker CJ, Keefer KD, Schaefer DW, Ashley CS (1982) J Non-Cryst Solids 48:47

    Article  CAS  Google Scholar 

  19. Emmerling A, Petricevic R, Beck A, Wang P, Scheller H, Fricke J (1995) J Non-Cryst Solids 185:240

    Article  CAS  Google Scholar 

  20. Yang S, Mirau PA, Pai C-S, Nalamasu O, Reichmanis E, Lin EK, Lee H-J, Gidley DW, Sun J (2001) Chem Mater 13:2762

    Article  CAS  Google Scholar 

  21. de Theije FK, Balkenende AR, Verheijen MA, Baklanov MR, Mogilnikov KP, Furukawa Y (2003) J Phys Chem B 107:4280

    Article  Google Scholar 

  22. Lee B, Park Y-H, Hwang Y-T, Oh W, Yoon J, Ree M (2005) Nat Mater 4:147

    Article  CAS  Google Scholar 

  23. Schaefer DW, Brow RK, Oliver BJ, Rieker T, Beaucage G, Hrubesh L, Lin JS (1994) In: Brumberger H (ed) Modern aspects of small-angle scattering, Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  24. Volpe CD, Pagani SDE (1997) J Non-Cryst Solids 209:51

    Article  Google Scholar 

  25. Brinker CJ, Scherer G (1990) Sol–gel science: the physics and chemistry of sol–gel processing. Academic Press, San Diego

    Google Scholar 

  26. Scherer GW (1988) J Non-Cryst Solids 100:77

    Article  CAS  Google Scholar 

  27. Scherer GW (1990) J Am Ceram Soc 73:3

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Prof. Hironori Kaji at Institute for Chemical Research, Kyoto University is highly acknowledged for the measurements of solid state NMR. We also thank Drs. Sono Sasaki and Katsuaki Inoue at Japan Synchrotron Radiation Research Institute (JASRI) for their support for SAXS measurements at SPring-8. The present work was partly supported by a Grant for Practical Application of University R&D Results under the Matching Fund Method from New Energy and Industrial Technology Development Organization (NEDO), Japan. This research was also partly supported by the Global COE Program “International Center for Integrated Research and Advanced Education in Materials Science” (No. B-09) of the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan, administrated by the Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuyoshi Kanamori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanamori, K., Aizawa, M., Nakanishi, K. et al. Elastic organic–inorganic hybrid aerogels and xerogels. J Sol-Gel Sci Technol 48, 172–181 (2008). https://doi.org/10.1007/s10971-008-1756-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-008-1756-6

Keywords

Navigation