Skip to main content
Log in

Combining mesoporous silica–magnetite and thermally-sensitive polymers for applications in hyperthermia

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this work, the synthesis strategy of a multifunctional system of [SBA-16/P(N-iPAAm)/Fe3O4] hybrids of interest for magneto-hyperthermia was explored. Magnetite nanoparticles coated by mesoporous silica were prepared by an alternative chemical route using neutral surfactant and without the application of any functionalization method. Monomer adsorption followed by in situ polymerization initiated by a radical was used to incorporate the hydrogel into the pore channels of the silica nanocomposite. Structural and magnetic characterization of the obtained materials was carried out by using thermal analysis, X-ray diffraction, N2 adsorption desorption isotherms, 57Fe Mössbauer spectroscopy, vibrating sample magnetometry and transmission electron microscopy. Measurements of alternating current magnetic-field-induced heating behaviour under different applied magnetic fields showed that the [SBA-16/P(N-iPAAm)/Fe3O4] hybrid here synthesized is suitable as a hyperthermia agent for biological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bruce IJ, Taylor J, Todd M, Davies MJ, Borioni E, Sangregorio C, Sem T (2009) J Magn Magn Mater 284:145–160

    Article  Google Scholar 

  2. Azzazy HME, Mansour MMH (2009) Clin Chim Acta 403:1–8

    Article  Google Scholar 

  3. Lee H, Lee E, Kim DK, Jang NK, Jeong YY, Jon S (2006) J Am Chem Soc 128:7383–7389

    Article  Google Scholar 

  4. Kim DH, Nikles DE, Johnson DT, Brazel CS (2008) J Magn Magn Mater 320:2390–2396

    Article  Google Scholar 

  5. Qin J, Asempah I, Laurent S, Fornara A, Muller RN, Muhammed M (2009) Adv Mater 21:1354–1357

    Article  Google Scholar 

  6. Chastellain M, Petri A, Gupta A, Rao KV, Hofmann H (2004) Adv Eng Mater 6:235–241

    Article  Google Scholar 

  7. Bae S, Lee SW, Hirukawa A, Takemura Y, Jo YH, Lee SG (2009) IEEE Trans Nanotechnol 8:86–94

    Article  Google Scholar 

  8. Berry CC, Curtis ASG (2003) J Phys D Appl Phys 36:198–206

    Article  Google Scholar 

  9. Souza KC, Ardisson JD, Sousa EMB (2009) J Mater Sci Mater Med 20:507–512

    Article  Google Scholar 

  10. Vinu A, Mori T, Arigab K (2006) Sci Technol Adv Mater 7:753–771

    Article  Google Scholar 

  11. Cheng CF, Lin YCH, Cheng HY, Chen C (2003) Chem Phys Lett 382:496–501

    Article  Google Scholar 

  12. Mesa M, Sierra L, Guth JL (2008) Microporous Mesoporous Mater 112:338–350

    Article  Google Scholar 

  13. Kruk M, Jaroniec M, Joo SH, Ryoo R (2003) J Phys Chem B 107:2205–2221

    Article  Google Scholar 

  14. Sousa RG, Garrido IQ, Cabanillas AP, Rienda JMB (2005) J Controlled Release 102:595–606

    Article  Google Scholar 

  15. Sousa RG, Magalhães WF, Freitas RFS (1998) Polymer 61:275–281

    Google Scholar 

  16. Ponvel KM, Kim YH, Lee CH (2010) Mater Chem Phys 122:397–401

    Article  Google Scholar 

  17. Aliyan H, Fazaeli R, Jalilian R (2013) Appl Surf Sci 276:147–153

    Article  Google Scholar 

  18. Freitas RFS, Cussler EL (1987) Chem Eng Sci 42:97–103

    Article  Google Scholar 

  19. Freitas RFS, Cussler EL (1987) Sep Sci Technol 22:911–919

    Article  Google Scholar 

  20. Coughlan DC, Quilty FP, Corrigan OI (2006) J Controlled Release 98:97–114

    Article  Google Scholar 

  21. Peppas NA, Langer R (2003) Bioeng Food Nat Prod 49:2990–3006

    Google Scholar 

  22. Fajaroh F, Setyawan H, Nur A, Lenggoro W (2013) Adv Powder Technol 24:507–511

    Article  Google Scholar 

  23. Deng YH, Wang CC, Hu JH, Yang WL, Fu SK (2005) Coll Surf A Physicochem Eng Asp 262:87–93

    Article  Google Scholar 

  24. Lee EH, Kim CY, Choa YH (2012) Curr Appl Phys 12:S47–S52

    Article  Google Scholar 

  25. Souza KC, Mohallem NDS, Sousa EMB (2010) J Sol Gel Sci Technol 53:418–427

    Article  Google Scholar 

  26. Zhu S, Zhou Z, Zhang D, Jin LZ (2007) Microporous Mesoporous Mater 106:56–61

    Article  Google Scholar 

  27. Lien YH, Wu TM (2008) J Colloid Interface Sci 326:517–521

    Article  Google Scholar 

  28. Zhang Z, Zhang L, Chen L, Chen L, Wan QH (2006) Biotechnol Prog 22:514–518

    Article  Google Scholar 

  29. Zhao DL, Zeng XW, Xia QS, Tang JT (2009) J Alloys Compd 469:215–218

    Article  Google Scholar 

  30. Wu JH, Ko SP, Liu HL, Jung MH, Lee JH, Ju JS, Kim YK (2008) Coll Surf A Physicochem Eng Asp 313:268–272

    Article  Google Scholar 

  31. Franger S, Berthet P, Dragos O, Baddour-Hadjean R, Bonville P, Berthon J (2007) J Nanopart Res 9:389–402

    Article  Google Scholar 

  32. Sugimoto T, Matijevic E (1979) J Colloid Interface Sci 74:227–243

    Article  Google Scholar 

  33. Sousa RG (1997) Ph.D. Thesis, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil

  34. Mercante LA, Melo WWM, Granada M, Troiani HE, Macedo WAA, Ardison JD, Vaz MGF, Novak MA (2012) J Magn Magn Mater 324:3029–3033

    Article  Google Scholar 

  35. Holmes SM, Zholobenko VL, Thursfield A, Plaisted RJ, Cundy CS, Dwyer J (1998) J Chem Soc Faraday Trans 94:2025–2032

    Article  Google Scholar 

  36. Berube′ F, Kaliaguine S (2008) Microporous Mesoporous Mater 115:469–479

    Article  Google Scholar 

  37. Murad E, Johnston JH (1987) Iron oxides and oxyhydroxides. In: Long GI (ed) Mössbauer spectroscopy applied to inorganic chemistry, vol 2. Plenum Publishing Corporation, New York, pp 507–582

  38. Fellenz NA, Cano LA, Bengoa JF, Azevedo IS, Mercader RC, Marchetti SG (2011) Hyperfine Interact 202:17

    Article  Google Scholar 

  39. Han DH, Wang JP, Luo HL (1994) J Magn Magn Mater 136:176

    Article  Google Scholar 

  40. Tronc E, Ezzir A, Cherkaoui R, Chanéac C, Noguès M, Kachkachi H, Fiorani D, Testa AM, Grenèche JM, Jolivet JP (2000) J Magn Magn Mater 221:63–79

    Google Scholar 

  41. Morrish AH, Haneda K (1983) J Magn Magn Mater 35:105

    Article  Google Scholar 

  42. Reddy LH, Arias JL, Nicolas J, Couvreur P (2012) Chem Rev 112:5818–5878

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to CNPq—Conselho Nacional de Desenvolvimento Científico e Tecnológico, FAPEMIG—Fundação de Amparo à Pesquisa do Estado de Minas Gerais, and CAPES—Coordenação de Aperfeiçoamento de pessoal de Nível Superior, for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. B. Sousa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azevedo, R.C.S., Sousa, R.G., Macedo, W.A.A. et al. Combining mesoporous silica–magnetite and thermally-sensitive polymers for applications in hyperthermia. J Sol-Gel Sci Technol 72, 208–218 (2014). https://doi.org/10.1007/s10971-014-3307-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3307-7

Keywords

Navigation